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on a one-dimensional
convolutional neural network for UV-vis
spectrometric quantification of nitrate and COD in
water under random turbidity disturbance scenario

Meng Xia, ab Ruifang Yang, a Gaofang Yin,a Xiaowei Chen, a Jingsong Chenab

and Nanjing Zhao*ac

This paper proposed a novel spectrometric quantification method for nitrate and COD concentration in

water using a double-channel 1-D convolution neural network for relatively long UV-vis absorption

spectra data (2600 points). To improve the model's ability to resist turbidity disturbance, a new dataset

augmentation method was applied and the absorption spectra of nitrate and COD under different

turbidity disturbances were successfully simulated. Compared to the PLSR model, the value of RRMSEP

for the CNN model was reduced from 6.1% to 1.4% in nitrate solution and 4.5% to 1.3% in COD solution.

Compared to the PLSR model, the regression accuracy of the CNN model was increased from 56% to

93% in nitrate solution and 68% to 91% in COD solution. The test on the actual solution under different

turbidity disturbances shows that the 1D-CNN model had a bias rate of less than 2% in both nitrate and

COD solutions, while the worst bias rate in the PLSR method was 15%.
1. Introduction

Water is an essential resource for human production and life,
and the issue of water security plays a decisive role in human
health, food security, and environmental protection, among
other aspects. With rapid global industrialization and
increasing use of organic fertilizers, a great deal of sewage with
a large number of industrial pollutants and organic pollutants
are discharged into the surface water environment. As a result,
the ecosystem in the surface water collapses.1 Therefore, it
becomes important to evaluate water environmental quality
using a scientically based water quality index (WQI).

The main water quality parameters include chemical oxygen
demand (COD), heavy metal content, nitrate nitrogen (NO3–N),
dissolved organic carbon (DOC), and turbidity.2,3 There are
different methods for determining water quality parameters
including chemical, biological, and physical methods, among
which, spectroscopy is a frequently-used method to identify
substances and determine conduct quantitatively through the
absorption spectra.4,5 Because water analysis using standard
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laboratory methods oen requires a longer processing time,
such as sample pre-treatment or adding reagents,6 the method
of absorption spectroscopy combined with advanced optical
sensors stands out against the laboratory chemical methods,
which allows real-time water quality measurements due to the
advantages of quick response, high detection efficiency, high
precision and in situ measurement.7

Once the spectral data is obtained, it becomes vital to
establish an accurate link between the absorption spectra and
WQI. Thus, some researchers have already proposed well-
established water quality analysis methods using ultraviolet-
visible (UV-vis) absorption spectra. Currently, the main
method of model analysis of water quality parameters is partial
least squares regression (PLSR) and principal component
regression (PCR). For example, Langergraber et al.8 rstly used
partial least squares regression (PLSR) to develop a quantitative
model between absorption spectral peaks andWQIs. Tiecher, T.
et al.9,10 applied improved PLSR and SVM methods to the
quantication of sediment source contributions based on the
UV-vis spectrum. Li et al.11 proposed the principal component
analysis (PCA) to the UV-vis spectrum for detecting water quality
contamination. However, these methods are oen poorly
accurate in actual surface water applications due to turbidity
disturbance. Thus, it is oen necessary to perform the pre-
treatment to remove the effect of turbidity on absorption
spectra. Hu et al.12 have proposed a novel method of turbidity
compensation based on the law of Mie-scattering. However, the
Mie-scattering theory applies mainly to the particle whose
© 2023 The Author(s). Published by the Royal Society of Chemistry
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diameter ranges from submicron to micron. For the particles
below a micron to a nanometer in diameter, Rayleigh scattering
theory is usually used to evaluate light scattering. Fraunhofer
diffraction theory is oen applied to the particle larger than
a micron to a millimeter in diameter.13,14 In actual waters, the
effect of turbidity on absorption spectra is quite complex due to
the complexity of the particles' diameter,15,16 and the absor-
bance caused by turbidity varies at different wavelengths.17,18 In
addition, at different solute concentrations, the contribution of
turbidity to absorbance shows variation due to non-linear
deviations in absorbance caused by changes in the total
absorbance of the solution.19,20 As a result, there will always be
some deviations in the spectral turbidity compensation calcu-
lated by theoretical methods.

With the development of machine learning techniques,
some simple machine learning algorithms are oen applied to
the spectrometric quantication of solute to calibrate the non-
linear deviations in the absorption spectra. For example, Feng
et al.21 proposed a new approach for detecting aqueous phenolic
contaminants by combining wavelet analysis and Support
Vector Machine (SVM). Lu, Y. et al.22,23 successfully detected
chlorpyrifos and carbendazim residues in the cabbage from
visible-near-infrared spectra using both SVM and PLSR
methods. SVM regression methods are simple and effective in
detecting patterns in complex and non-linear data.24,25 However,
when the dataset is large and the data dimensions are high, the
research shows that the neural network can outperform SVM.26

Spectra-characteristic data under random turbidity disturbance
scenarios can be very large both in scale and dimension. Our
survey shows that the CNN model always outperforms the PLSR
model under conditions of large size scale of the dataset.
Ng, W., et al. applied the CNN model using a total of 14 594
samples of visible/near-infrared (vs-NIR), mid-infrared (MIR),
and their combined spectra to characterize all soil properties.27

The results showed that compared to the PLSR model, the CNN
model provides an average improvement prediction of 33–42%
using vis-NIR and 30–43% using MIR spectral data input.
Another CNN model for NIR spectrum calibration was
Table 1 Modelling algorithms of spectral data

Algorithm Algorithm principle A

Partial least squares regression
(PLSR)

Based on the maximum
information supervised by the
response matrix, reecting data
variation, the regression equation
between variables is established

I
p
d

Principle component regression
(PCR)

Based on the construction of
a regression model using the
principal components ltered by
the PCA method as features, the
original variables are replaced with
the new model based on the score
coefficient matrix

I
c
r

Support vector machine regression
(SVR)

Realized by constructing a linear
decision function in high
dimensional space aer dimension
increasing

I
f
s

© 2023 The Author(s). Published by the Royal Society of Chemistry
investigated by Cui, C. H., et al. using the datasets containing
6998, 1000, and 415 training and 618, 597, and 108 validation
samples, respectively from different sources.28 Results indicated
that compared to the PLSRmodel the root-mean-square error of
prediction (RMSEP) of the CNN model was reduced from 0.094
to 0.085, and the noise level was reduced from 0.165 to 0.036.
However, when the size scale of the training dataset is small, the
PLSR method may outperform the CNN method. For example,
Wu, X. J., et al. established a 1D-CNN quantitative identication
model based on Raman spectra for olive oil.29 The results
showed that the RMSEP of the CNN model was increased from
0.4594 to 0.7183 compared to the PLS model, which demon-
strates the lower prediction accuracy of the CNN model. In this
paper's case, the scale of training and test dataset is over 200
000. Therefore, neural network method is chosen to complete
the tasks of spectrum feature extraction and solute concentra-
tion regression. The advantages and disadvantages of the
modelling algorithms of spectral data is show in Table 1. In
summary, SVM can only solve the problems in small samples
and PLSR is a supervised learning method that can offer an
alternative to PCR, which works better on solving nonlinear
data compared to PCR. Taking the large scale of dataset and
nonlinear characteristic of the spectrum data, PLSR method is
chosen for comparison of the CNN method.

The best way for the neural network to obtain a better
generalization capability is to train the model with a more
extensive and comprehensive dataset. Therefore, it can be
concluded that the quality of the training dataset, to a large
extent, determines the quality of the nal training results.
Dataset augmentation is a particularly effective way to improve
model performance for specic categorical regression prob-
lems.30 It can easily simulate spectral images under different
turbidity disturbances based on experimental measurement
results rather than theoretical calculation results. The problem
of water quality analysis under turbidity disturbance can be
seen as a classication and regression problem under random
spectral noise. However, the neural network is proven not to be
quite robust to noise.31 Therefore, one way to improve the
dvantages Disadvantages

t is simple to calculate. It has high
recision and a small overall
eviation

It has a large local deviation and
less independent variable deviation
information

t is simple to solve multi-
ollinearity problems. It has a fast
unning speed

It is difficult to solve nonlinear data

t can solve high-dimensional
eature data and work well on
olving nonlinear data

It is not suitable for a large sample
size and a large calculation amount

RSC Adv., 2023, 13, 516–526 | 517

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06952k


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
D

ec
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

0/
23

/2
02

5 
4:

08
:1

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
robustness of a neural network to turbidity noise is to add
random turbidity noise to the network input before training.
Thus, to obtain a better performance of modeling under the
random disturbance of turbidity, a designed dataset augmen-
tation method is deployed in this paper.

In this paper, we aim to optimize the neural network struc-
ture for the relatively long UV-vis absorption spectra data.
Meanwhile, to improve the model's ability to resist turbidity
disturbance, a new dataset augmentation method for absorp-
tion spectra of nitrate and COD under different turbidity
disturbances was applied. The main difference between our
present work and the prior studies is that the turbidity inter-
ference problem was solved by the combination of a data
augmentation method and a convolutional neural network
without turbidity removal pre-treatment. Finally, the solution
concentration regression results of the designed neural network
were evaluated and compared to that of the PLSR method.

2. Materials and methods
2.1 Spectrophotometer platform

Fig. 1 shows the detailed hardware information of the applied
UV-vis spectrophotometer platform in this article, which has
been discussed in our previous study.32 The light from the light
source, collimated by a group of lenses, irradiates into the
double-optical-path structure. The light is received by the CMOS
linear image sensor aer passing through the focusing lens and
gratings. The light into the upper path, called measurement
light, passes through the sample pool, and absorption occurs.
According to Lambert–Beer's law, absorption can be calculated
by the following formula:

A ¼ �logT ¼ log
I0

I
¼ 3� c� d (1)
Fig. 1 The implemented spectrophotometer platform incorporates
a linear CMOS image sensor chip and FPGA microcontroller (a) and
a schematic view of the fused double-beam structure (b).

518 | RSC Adv., 2023, 13, 516–526
where A represents the absorption, I0/I is the intensity of the
measuring light beam that is accepted by the CMOS sensor
before/aer passing through the sample; 3 is the molar
absorption coefficient; c is the concentration of the measured
solution, and d is the path length of the measuring beam in the
sample. Therefore, if the optical length is constant, a certain
proportional relation exists between the absorption peak and
the concentration of the measured solution. In this paper, we
focused on the nitrate solution and the COD solution.33

2.2 Dataset

The dataset used in this study is comprised of UV-vis absorption
spectra (200–750 nm) of 0–5 mg L−1 nitrate solution and 0–
70 mg L−1 equivalent COD solution mixed with 0–90 NTU For-
mazin turbidity solution. The nitrate solution of different
concentrations was prepared by dissolving potassium nitrate
into the deionized water, which was supplied by a MilliQ water
purication system (Millipore Corporation, Billerica, MA, USA).
Meanwhile, the COD solution of different concentrations was
prepared by dissolving the potassium hydrogen phthalate into
the deionized water. All nitrate/COD concentrations mentioned
below are expressed by converting the potassium nitrate
solution/potassium hydrogen phthalate solution concentra-
tions to equivalent nitrate/COD concentrations. The UV-vis
absorption spectra in Fig. 2 were acquired spectrophotometer
platform described in Section 2.1. A total of 480 700 UV-vis
absorption spectra dataset was sourced by adding the single
substance (nitrate/COD) solution spectra to different turbidity
disturbances. The spectra of the single substance solution were
expanded by applying the cubic spline interpolation method to
the concentration gradient groups. In the actual water envi-
ronment, due to the complexity of the substances in the water,
the absorptivity of the different substances in the absorption
spectra has a presence of interactions. Thus, it is usually not
accurate to calculate the total absorption spectra by simply
adding the solo absorption of each substance. To ensure that
the inuence, which the different turbidity brings to the nitrate/
COD absorption spectra, is identical to the natural scenario,
a new concept called Turbidity Residual Spectra (TRS), is
proposed in this paper. As a result, 200 000 nitrate spectra and
280 700 COD spectra under the turbidity disturbance were
generated and further split into a training set and a test set.

2.3 Partial least squares regression

PLSR analysis was performed in this study as the baseline
method to compare the effect of the DL model performance.
The PLSR was implemented using the partial least squares
regression (PLSR) algorithm, which is a supervised method
suitable for the large and unbalanced dataset with no obvious
differences between the samples. The PLSR algorithm starts
with calculating two unnormalized weights u and v, so that they
maximize the covariance between the projected X matrix and
the projected target Y. The scores are obtained by projecting X
matrix and Ymatrix on the singular vectors i.e. x = X$u and u =

Y$v then the loadings vectors are obtained by regressing X and Y
on x. Aer deating X and Y to subtract the variation extracted
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Measured original nitrate (a) and COD (b) absorption spectra
with turbidity disturbance.
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by the current number of components, we have scores matrices
corresponding to the projection of the training data X and Y,
respectively. Aer transforming X into �X and Y into �Y , using the
rotation matrix PX, PY which satised �X = XPX, �Y = YPY, the
targets of some data X can be predicted by looking for a coeffi-
cient matrix b such that Y = Xb. PLSR algorithms nd the
fundamental relations between two matrices (X and Y) and
project both X and Y into a lower-dimensional subspace such
that the covariance between transformed (X) and transformed
(Y) is maximal. In this work, 10-fold cross-validation was used to
determine the optimal number of components for the nal
PLSR model, and the number of components was set to 20
based on the cross-validation result. The PLSR analysis was
carried out using the “PLSRegression” function in python's
cross decomposition module of the scikit-learn library.
Fig. 3 A summary of the double channel 1-D convolution neural
network consisting of six convolutional layers with double parallel
kernels for feature extraction, five max pooling layer, a single flatten
layer, and a single fully connected layer with linear function for
regression.
2.4 Deep learning modeling

Dataset features suitable for the CNN method should meet the
local correlation principle, which is to say, the data feature is
mainly reected in the local and can be extended from the local
to the whole. The spectral sequence is equivalent to a long
image (2600 points). When judging the properties of the char-
acteristic peak from the absorption spectra sequence, it is the
small pixel area adjacent to the peak that plays a key role, while
the distant pixels in the spectra have a weak correlation. Thus,
the spectra dataset meets the local correlation principle and we
can apply CNN to the spectra sequence. It is also possible to
© 2023 The Author(s). Published by the Royal Society of Chemistry
apply recurrent neural network (RNN) models such as LSTM to
the spectra sequence. However, the RNN method is not able to
run in a parallel structure. Therefore, the data processing speed
of RNN is unbearable for such a long spectra sequence.

The application of modern convolutional neural networks
(CNN) generally consumes billions of parameters, which leads
to a tremendous space complexity of the network model. Thus,
it is crucial to utilize parallel computing technology to realize
the acceleration and lightweight of the CNNmodel deployment.
A method based on hardware improvement has been applied in
this research. Moreover, the convolution procedure itself can be
accelerated by choosing a proper convolution algorithm.

When a convolution kernel with dimension length d can be
expressed as the exterior product of d vectors (each dimension
contains one vector), this kernel is called the separable kernel.
Applying the näıve convolution method to the separable kernel
is quite inefficient for the nal convolution result is equivalent
to the combination of d one dimension convolution (each
convolution using one of the d vectors). The combination
method is faster than using the exterior product of a convolu-
tion kernel with dimension length d. Meanwhile, it takes fewer
parameters to express the kernel into the vectors. For example,
if the kernel's width isw elements in every dimension, the space
and time complexity of the näıve convolution method is O(w^d),
while the space and time complexity of the separable convolu-
tion method is O(w × d).

A 1-dimensional convolutional neural network (1D-CNN)
deep learning (DL) architecture inspired by ref. 34 was used
for model training and testing. A summary of the architecture is
presented in Fig. 3, where 6 feature extraction layers were
created with one spectrum input layer and one nal regression
result output layer. The spectra data is recognized by identifying
absorption peaks' position and intensity, which, in general, are
features with a large difference. To identify such features,
maximum pooling was used for all pooling, and the Relu
function (Relu(x) = max(x,0)) was used for the activation func-
tion. A max-pooling layer was added aer each 1-D convolution
RSC Adv., 2023, 13, 516–526 | 519
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Fig. 4 Discrete dataset of turbidity residual spectra under COD
concentration of 10 mg L−1 (a), 30 mg L−1 (b), 50 mg L−1 (c), and
70 mg L−1 (d).

Fig. 5 Interpolation operation used twice respectively for turbidity
concentration filling (a) and nitrate concentration filling (b).
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block to reduce the dimension of each layer's output data as
well. Each feature extraction layer contains a 1-D convolution
block whose output dimension increases from 16 to 128, fol-
lowed by the max pooling layer whose pool size and strides were
both 2. With this combination in each layer, all features were
retained, and then only the most “important” features in the
local region are retained by pooling to achieve the purpose of
down-sampling, and the obtained features are intuitively more
accurate. Due to the relatively long spectral sequence (2600
dimensions), a double-channel-based structure was imple-
mented to the 1D-CNN block to reduce the space and time
complexity of the convolution calculation. Some tricks were also
adopted to the model: for each convolution kernel in the 1-D
convolution block, the kernel size was set as 3, dilated convo-
lution was used, and the dilation rate was 1, 2, 4, respectively in
each convolution kernel, and the number of 1-D convolution
blocks was as large as possible. Another convolution kernel was
used whose size was set as 1 to reconcile the input and the
output of the block so that their shape remains consistent. For
the nitrate dataset, 200 000 spectra samples were further split
into 199 000 training and 1000 test sets using the “test_-
train_split” function from “SciKit-learn”. And for the COD
dataset, 280 700 spectra samples were split into 279 700 training
and 1000 test set.

The model weights were optimized with an adaptive Adam
optimizer. The mean squared error and coefficient of determi-
nation were used as the loss function and accuracy function to
train the network. A batch size of 20 was used to get the best
performance of the training procedure35 and each model was
trained up to 50 epochs with 500 steps per epoch. Aer every 50
epochs were nished, the learning rate was lowered by using
different Adam optimizers. To have a fair comparison for
different pre-processing techniques, the same architecture
settings were used.

All analyses were carried out using Tensorow GPU 2.6.0
using the dual Geforce RTX 3090 (Nvidia Corporation, Santa
Clara, California, USA), under the environment of CUDA 11.2,
using a small server computer equipped with a 2.20 GHz Intel®
Xeon® Silver 4210 CPU (Intel Corporation, Santa Clara, CA) and
32 GB RAM, running Ubuntu 9.4.0 operating system and
python 3.8.2.

3. Results
3.1 Spectral proles and dataset augmentation

A convolutional neural network, that is capable of classifying
objects robustly even if it is placed in a different place, is
identied to have the property of invariance. In this paper's
scenario, to be more specic, the property of invariance is re-
ected in the model's ability to accurately invert solute
concentrations despite disturbances from different turbidity
levels. By performing dataset augmentation, we can stop the
neural network from learning irrelevant features (e.g. spectral
features due to turbidity) and radically improve the overall
performance.30 In this research, considering the features of the
spectra data, a new interpolation method was used to realize
dataset augmentation.
520 | RSC Adv., 2023, 13, 516–526
Due to the non-linearity of Lambert's law, the effect of
turbidity on the absorption spectra cannot be simply under-
stood as the result of superimposing the turbidity spectrum on
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Continuous dataset structure of turbidity residual spectra in
COD solution

Residual turbidity spectrum

COD concentration
(mg L−1)

Turbidity (NTU) residual turbidity spectrum

0 0.225 / 30 / 60 / 90

0 / / / /

0.1 / / / / / / / /
/ / / / / / / / /
10 / / / / /

/ / / / / / / / /
30 / / / / /

/ / / / / / / / /
50 / / / / /

/ / / / / / / / /
70 / / / /
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the solute spectrum.36 In other words, the effect of turbidity on
the absorption spectra can vary at different solute concentra-
tions. To better understand the inuence of turbidity brings to
the absorption spectra under different solution concentrations,
the absorption spectra of the substances before and aer the
effect of turbidity at each concentration were measured, and the
difference between the two spectra was made to assess the
contribution of turbidity to the spectra at different solution
concentrations. The difference between the two spectra is called
Turbidity Residual Spectra (TRS). Following the same proce-
dure, the discrete TRS at each concentration was calculated, and
the results are shown in Fig. 4.
Table 3 Continuous dataset structure of turbidity residual spectra in nit

Residual turbidity spectrum

Nitrate concentration
(mg L−1)

Turbidity (NTU) residual turbidity spectru

0 0.225 /

0 / /

0.1 / / /
/ / / /
1 / / /

/ / / /
2 / / /

/ / / /
3 / / /

/ / / /
4 / / /

/ / / /
5 / /

© 2023 The Author(s). Published by the Royal Society of Chemistry
The turbidity residual spectra dataset was then expanded by
applying the cubic spline interpolation method in the function
“interpolate.interp1d()” in the python library “SciPy”. As
depicted in Fig. 5, to obtain a continuous TRS dataset, the
interpolation operation was used twice respectively for
turbidity concentration lling and COD concentration lling,
so that the corresponding TRS data ranges from 0–90 NTU can
be found regardless of the COD concentration (0–70 mg L−1).
The interpolation operation was rst applied in the turbidity
values at each separate COD concentration and then applied in
the COD concentration at each turbidity value interpolated
before. The nal continuous dataset structure is depicted in
Table 2.

As depicted in Fig. 6, the discrete TRS dataset under different
nitrate solutions was calculated by following the same steps.
Then the dataset was expanded using the same interpolation
method, the interpolation result is shown in Table 3.

To further validate the accuracy of the dataset augmentation
method, the absorption spectra of a 5 mg L−1 nitrate and
a 50 mg L−1 COD solution were then tested at turbidity of 45
NTU, and the test results were compared with the simulation
spectra using the indicators of standard bias. The standard bias
at each wavelength is calculated using the following formula:

Biasi ¼
��Ai � Aip

��
Ai

� 100% (2)

in which, Ai is the tested absorbance at the wavelength i, Aip is
the simulated absorbance at the wavelength i. One of the
interpolation spectral data of nitrate and COD solutions are
depicted in Fig. 7(a) and (c). The calculation results of
normalized bias between the interpolation spectra and true
spectra of nitrate and COD are depicted in Fig. 7(b) and (d). For
both scenarios in nitrate and COD solutions, the simulated
spectra result showed a high level of accuracy. More specically,
in the worst case of the COD solution spectra at the wavelength
rate solution

m

30 / 60 / 90

/ /

/ / / / /
/ / / / /

/ /

/ / / / /
/ /

/ / / / /
/ /

/ / / / /
/ /

/ / / / /
/ /
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Fig. 6 Dataset of turbidity residual spectra under nitrate concentration
of 0 mg L−1 (a), 1 mg L−1 (b), 2 mg L−1 (c), 3 mg L−1 (d), 4 mg L−1 (e),
5 mg L−1 (f).

Fig. 7 Interpolation spectra and true spectra of nitrate (a) and COD (c)
and normalized bias between the interpolation spectra and true
spectra of nitrate (b) and COD (d).

Fig. 8 Distribution of nitrate (a) and COD (b) solution for the test and
training sets.

Fig. 9 Trends in loss (MSE) and accuracy (coefficient of determination)
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of 300 nm, the bias was still below 6%, and the average bias
levels in the COD solution were at 4.1%. As for the nitrate
spectra case, due to the simplicity of the nitrate spectra (the
spectra data shows a smoother curve), the simulated spectra
results gained a better accuracy, and the average bias level
reached 1.6%.

A distribution summary of reference nitrate and COD solution
values in test and training sets is presented in Fig. 8. The dataset
was produced by adding the corresponding turbidity residual
spectra to the nitrate/COD absorption spectra at different
concentrations. The nitrate and COD concentration of the test
set was well represented in the method of random sampling
using the ‘sample’ function in the python library of “pandas”.
522 | RSC Adv., 2023, 13, 516–526
3.2 Convolution neural network vs. partial least-squares

Fig. 9 shows the evolution of the loss and accuracy rate of the
model during the training process of 1D-CNN. The coefficient of
determination was used as an indicator of model accuracy and
the mean square error (MSE) was used as an indicator of model
loss. A closer look at the trends in loss and accuracy reveals
a small leap when the training epoch arrives at 50, due to an
adjustment in the learning rate (from 10−2 to 10−3). At the
of the model during the training procedure.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Comparison between predicted regression values and true
values of COD solution using PLSR (a) and 1-D CNN (c) model with
model accuracy evaluation on PLSR (b) and 1-D CNN (d) using the
linear regression method.
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epoch of 100, even though the learning rate of the model was
adjusted to a smaller value (from 10−3 to 10−4), the loss and
learning rate remained essentially unchanged, which indicates
the model is about to converge. It nally takes 1391 seconds for
the 1D-CNN model to complete the whole 150-epoch training
(about 9 seconds per epoch). The MSE and the coefficient of
determination of the model nearly respectively reached 0 and 1
at the end of the training process. Therefore, it can be
concluded that at this point, the model training converges to
convergence for the current training sets. The model was
trained separately for COD nitrate datasets. Thus, two models
were produced for the corresponding datasets.

The best-performing models were saved aer the training
process was completed. To further evaluate the performance of
the model, 1000 test sets of COD and nitrate spectra data
produced in 3.1 were sent into the two corresponding models.
In Fig. 10 and 11, the comparison was made between the PLSR
and 1-D CNN method for predicted regression results of COD
and nitrate solution concentration using the test sets. The true
values and the predicted regression values using the two
different methods are directly shown in Fig. 10(a), (c), 11(a) and
(c). If the round point and the triangle point in the gure
overlap, it can be concluded that the regression is highly
accurate. Thus, as can be seen from the gure, in both COD and
nitrate solutions, the bias between the true values and the
predicted regression values in the CNN model was much
smaller than it was in the PLSR model. To further quantify the
model regression accuracy, a scatter plot was drawn using the
true values as the horizontal axis and the predicted regression
values as the vertical axis, and the linear analysis between the
Fig. 10 Comparison between predicted regression values and true
values of nitrate solution using PLSR (a) and 1-D CNN (c) model with
model accuracy evaluation on PLSR (b) and 1-D CNN (d) using the
linear regression method.

© 2023 The Author(s). Published by the Royal Society of Chemistry
true values and predicted regression values were made as shown
in Fig. 10(b), (d), 11(b) and (d). It can be seen from the scatter
plot that the higher the regression accuracy is, the closer to one
the slope of the tting line is. Thus, the accuracy of the model
can be evaluated by checking the linearity and the slope in the
linear analysis result. The R-square in the CNN model for the
linear analysis of nitrate and COD solution was 0.99943 and
0.99946, while in the PLSR model was 0.98869 and 0.99407. The
slope in the CNN model for the linear analysis of nitrate and
COD solution was respectively 0.99575 and 1.00021, while in the
PLSR model was 0.98804 and 0.9935. Consequently, both indi-
cators of slope and R-square reveal that the CNN model
performs higher accuracy in nitrate solution and COD solution
under random turbidity disturbance.

Moreover, RRMSEP was also used as an evaluation indicator
for the regression model,37,38 the RRMSEP can be calculated
using the following formula:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm
i¼1

�
yi � yip

�2

m� 1

vuuut
(3)

RRMSEP ¼ RMSEP

ymp

� 100% (4)

in which, yi is the true concentration value of the sample i, yip is
the predicted regression concentration value of the sample i in
the test sets. Parameter m is the total sample quantities in the
test sets. Thus, the lower the RRMSEP is, the closer the true
value of the predicted regression value is. The calculation
results indicate that the RRMSEP of the CNN model for nitrate
RSC Adv., 2023, 13, 516–526 | 523
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Fig. 12 Accuracy comparison between PLSR and 1-D CNN method
for the result of nitrate (a) and COD (b) solution concentration
regression using the test sets.

Fig. 13 Regression results of the actual nitrate (a) and COD (c) solu-
tions blended with 10, 50, and 80 NTU turbidity solutions with
regression accuracy comparison between PLSR and 1-D CNNmethod
on nitrate (b) and COD (d) solution.
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and COD solution was respectively 4.7% and 3.2% lower
compared to the PLSR model.

To compare the accuracy of the two models more intuitively,
it is dened that the group, whose bias between the true values
and the predicted regression values is less than 5%, is the group
with the correct judgment. The comparison result for the nitrate
and COD solution is depicted in Fig. 12. The gure shows that
the accuracy of nitrate concentration regression was increased
from 56% of the PLSR model to 93% of the CNN model and the
accuracy of COD concentration regression was increased from
68% of PLSR model to 91% of CNN model.

When applying the PLSR algorithm, the non-linearity
appeared between the predicted regression and true values of
both COD and nitrate solutions at high-concentration groups.
This is due to the deviation from linearity in the absorption
spectrum peak at high solute concentrations, which is caused
by the CMOS image sensor showing different photoelectric
conversion efficiencies at different light intensities and
different wavelengths.39 On the other hand, the CNN method
learned the non-linear deviation in the absorption spectrum
peak generated by the hardware system of the spectrometer
from a large dataset and successfully corrected this deviation.

To better showcase the performance of our CNNmethod, the
regression results of other non-linear methods such as SVR and
k-nearest neighbor (KNN) method were added to the Table 4.
Radial basis function (RBF) is used as the kernel function of the
SVR method to handle the non-linear problems. The results
indicated that the SVR is the most time-consuming method
while processing the long spectral data in the large size scale of
the dataset, while KNN is the most time-saving method at the
cost of a low accuracy rate.

Finally, the absorption spectra of nitrate solutions and COD
solutions blended with 10, 50, and 80 NTU turbidity solutions
Table 4 Different modelling regression results of nitrate/COD dataset

Algorithm Aver

Partial least squares regression (PLSR) 5.3%
Support vector machine regression (SVR) 4.6%
k-Nearest neighbor (KNN) 5.5%
Double-channel 1-D convolution neural network (1-D CNN) 1.3%

524 | RSC Adv., 2023, 13, 516–526
were tested. The spectrum data was sent separately into the
trained 1D-CNN model and PLSR model. The regression results
of two different models are depicted in Fig. 13. The error bar in
Fig. 13(a) and (b) represents the error level of three regression
results (under 10, 50, 80 NTU) in each concentration. The bias
in Fig. 13(c) and (d) calculated by the formula (2) represents the
relative deviation between the true values and the predicted
regression values of the solute. The results indicate that the
CNN had an error rate of less than 2% for both nitrate and COD
concentration in actual solution tests. In comparison, using the
PLSR method, the worst bias rate in actual solution tests
was 15%.

From the demonstration of the modeling process and the
analysis of the regression results, it can be concluded that the
advantage of the proposed CNN method is that by combining
the dataset augmentation method and CNN method, the
turbidity interference is successfully excluded during spectro-
metric quantication of nitrate/COD solution without any
spectral pre-treatment. However, the proposed method still has
its drawback, that its application scenarios are highly depen-
dent on the training dataset.
age RRMSEP
Average result
accuracy rate

Processing time (training
time included)

61.5% 657 seconds
86.4% 1569 seconds
59.4% 235 seconds
92% 1395 seconds

© 2023 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusions

This study introduced an analysis method for the absorption
spectra of nitrate and COD solution under a random turbidity
disturbance scenario. The method is based on the structure of
1-D CNN, and some improvement to the network structure has
been made such as double-channel transmission, dilated
convolution, and diminishing Adam optimizer to adapt the
model to the relatively long spectral sequence (2600 points). To
obtain a more realistic spectral dataset for the CNN model
under random turbidity disturbance, the concept of turbidity
residual spectrum was introduced. On this basis, the cubic
spline interpolation operation was applied twice respectively for
the TRS dataset and pure solution dataset so that a continuous
spectrum dataset of different solute concentrations under
different turbidity disturbances can be acquired. The evaluation
result of the spectrum bias between the simulation and the
tested nitrate solution was below 2% in all wavelengths, while it
was 4.1% on average in all wavelengths in the COD solution.
The result indicates that this dataset augmentation method
successfully restored the spectrum data of the nitrate and COD
solution under different turbidity disturbances.

The augmented training dataset was then fed into the PLSR
model and the CNN model. The training results of the two
models were compared. The results show that the R-square
value for the PLSR model between the true values and predicted
regression values of nitrate and COD solution were 0.98869 and
0.99407, while they were 0.99943 and 0.99946 for the CNN
model. Compared to the PLSR model, the value of RRMSEP for
the CNN model was reduced from 6.1% to 1.4% in nitrate
solution and from 4.5% to 1.3% in COD solution, and the
accuracy of the regression result for the CNN model was
increased from 56% to 93% in nitrate solution and 68% to 91%
in COD solution. At last, the absorption spectra of prepared
nitrate and COD solutions in more groups blended with
different turbidity solutions were tested. The test result shows
that the 1D-CNN model performed an error rate of less than 2%
in both nitrate and COD solutions, while the worst bias rate in
the PLSR method was 15%. All the test results indicate that the
1D-CNN model can successfully extract and quantify the char-
acteristic information of nitrate/COD solution from the
absorption spectra under random turbidity disturbance and the
1D-CNNmodel showed higher regression accuracy compared to
the PLSR method.
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