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Predicting the high heating value and nitrogen
content of torrefied biomass using a support vector
machine optimized by a sparrow search algorithm+

Liu Xiaorui, @22 Yang Jiamin® and Yuan Longji*®

A support vector machine (SVM) model with RBF kernel function combined with sparrow search algorithm
(SSA) optimization was developed to predict the HHV and nitrogen content (No) values of torrefied biomass
based on the feedstock properties and torrefaction conditions. Results showed that SSA optimization
significantly improved the prediction performance of the SVM model for both HHV and No. A coefficient
of determination (R?) larger than 0.91 was achieved when the SSA-SVM model was implemented, and
the values of RMSE were also fairly acceptable. The agreement between experimental data and SSA-SVM
predicted values demonstrated the high predictive precision of the model. This study provides
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Introduction

Global warming caused by the excessive consumption of fossil
fuels, which produce large amounts of greenhouse gas (mainly
CO,) emissions, has led to the diminishment of snow and ice, as
well as a global average sea level rise.! Due to this, the utilization
of sustainable and renewable energy sources such as solar,
wind, and biomass energy, etc. becomes increasingly important.
Among these renewable sources, biomass, which is the only
carbon-based material, has attracted increasing attention.
Different from solar and wind energy, biomass can not only be
used for power generation and heat supply but can also be
converted into gaseous, liquid and solid products with zero CO,
emissions through its life cycle.”> However, some inherent
disadvantages of biomass prevent its large-scale utilization,
such as the high moisture content, low calorific value and low
energy density which would result in the high costs for biomass
collection, storage and transportation.®

Torrefaction, which is traditionally performed at 200-300 °C in
inert atmosphere is a promising pretreatment technique to over-
come the above mentioned shortcomings of raw biomass.**® Few
studies also include an oxidative atmosphere such as air, steam,
flue gas, etc. into the definition of torrefaction.”® In order to
estimate the torrefaction process, characterization of torrefied
biomass properties is necessary.’ Higher heating value (HHV), an
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a reference for the utilization of torrefied biomass in solid fuels and the design of torrefaction facilities.

important parameter for designing the biomass conversion
facilities, is either experimentally tested by a calorimeter bomb or
mathematically calculated using Channiwala and Parikh's corre-
lation based on the proximate and ultimate analysis results.**
These characterizations always require repetitive experiments and
subsequently instrumental analysis or mathematical method,
consuming lots of time, costs and manpower. Therefore, devel-
oping a reliable method to predict the properties of torrefied
biomass based on those of feedstock without various tests and
experiments is of great value to save time, costs and manpower.

Machine Learning (ML), a subset of artificial intelligence (AI),
has a strong ability to deal with the multi-dimensional and non-
linear problems involving classification and regression with the
superiorities of time-saving and high prediction accuracy.'* Due to
these advantages, ML can be applied to the prediction of torrefied
biomass properties to avoid repetitive experiments. For torrefied
biomass, the artificial neural network (ANN) models were most
frequently used to predict the yields,”** the CHO contents and
HHV,” and the exergy™ of torrefied biomass. In addition to the
ANNS, several other models have also been developed to predict
the properties of torrefied product. Garcia et al.*>*® predicted the
HHYV of torrefied biomass using support vector machine models
(SVMs) combined with particle swarm optimization (PSO) or
simulated annealing (SA) optimization. Onsree et al.'”*® compared
the accuracy of kernel ridge regression (KRR), gradient tree
boosting (GTB), ANN, SVM and random forest (RF) models in
predicting the yields. Leng et al' employed extreme gradient
boosting (XGB), RF, SVM, and multilayer perceptron (MLP) algo-
rithms to predict the distribution of three-phase product. These
studies indicated that ML algorithms are capable of predicting the
properties of torrefied biomass especially the yield and HHV.
However, it is worth noting that no single algorithm was optimal
for all problems since every system had its unique data structure.*

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Moreover, application of ML algorithms in biomass torrefaction is
fairly rare and existing literatures mainly focused on the predic-
tion of yield and HHV, whereas other properties of torrefied
biomass were seldomly concerned.

It is well known that NOx is the main gaseous pollutants
during biomass utilization due to the higher conversion rate of
fuel-N than occurs with coal.** Besides, when biomass is pyro-
lyzed and gasified, a considerable proportion of fuel-N was
released in the forms of NH; and HCN which are harmful to the
environment and human health.?” These nitrogen containing
pollutants were mainly originated from the conversion of the
nitrogen element in the feedstocks. Therefore, the nitrogen
content of torrefied biomass should also be deservedly atten-
ded. However, to the authors' knowledge, the prediction of
nitrogen content of torrefied biomass has not been reported.

As reviewed above, there are still large gaps in the prediction
of torrefied biomass properties using machine learning
method. In this study, two important fuel parameters involving
the HHV and nitrogen content of torrefied biomass were esti-
mated by the support vector machine (SVM) with RBF kernel
function. To improve its prediction accuracy, the SVM model
was further optimized by sparrow search algorithm (SSA) tech-
nique to develop a novel SSA-SVM model. To date, this is the
first study to implement the SSA-SVM model to predict the
properties of torrefied biomass.

Methods

Dataset collection and pre-processing

497 data points were extracted from 66 peer-reviewed publica-
tions with respect to the traditional torrefaction which was
performed at 200-300 °C in inert atmosphere (N,, He, Ar and
anoxic environment) to create a dataset. The detailed informa-
tion of the dataset was given in the ESI (Table S1t). Most of the
data points were directly extracted from the text and the tables
of the papers and the corresponding ESI.{ While for those data
which were not directly listed, WebPlotDigitizer tool (https://
apps.automeris.io/wpd/) employed to extract the
necessary data from the figures. The proximate analysis
results of the raw biomass involving volatile matter
(VM, wt%), fixed carbon (FC, wt%) and ash (Ash, wt%)
contents, the ultimate analysis results (C, H, O, Ni, wt%) and
torrefaction conditions involving temperature (Temp, °C) and
duration time (time, min) were collected as input features.
The HHV (M] kg™ ") values and nitrogen content (No) of the
torrefied biomass were assigned to the targets.

Then, correlation analysis was performed and the linear
dependency among all the input and output variables was
measured by Pearson's correlation coefficient (PCC).>

was

n

S =% S0 - 7)

i=1 i=1 (1)

i=1 i=1

where r is the value of PCC ranging from —1 to 1, where 0 means
no linear correlation, and a negative or positive value indicates
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a negative or positive correlation, respectively. The greater the
absolute value of r, the stronger the linear correlation; X and y
are the means of the input feature and output target, respec-
tively. The two features were considered to be strongly corre-
lated to each other when the absolute value of r is greater than
0.7, and one of them will be excluded.*

To obtain a uniform range among the variables, the features
and targets were normalized with Z-score standardization using

eqn (2):

e M TH 2)

where x; is the value of input feature i x;’ is the normalized value
of initial x; w is the mean value of x; and s represents its
standard deviation.

Then the preprocessed dataset was randomly divided into
training and testing subsets at a ratio of 80% to 20% for the
evaluation of the developed models.

Training models

SVM model. SVM is a supervised machine learning model
that originally developed for two-group classification.”
However, it was soon extended to work for continuous
outcomes with small samples, high-dimensions, and non-
linearity which is called support vector regression (SVR).
When dealing with complex and nonlinear regression prob-
lems, the kernel function is particularly useful because it can
map the features into high dimensional space to linearly
separable variables® and greatly facilitate the computations.>®

SVR can be formulated as an optimization problem (eqn (3))
to minimize the norm of the weight vector (w) with some slack
variables (£, £;) introduced to increase the tolerance of regres-
sion error.””

A TR m . .
min —||w||"+ C iHE),EL6=0i=1,....m 3

The above optimization (eqn (3)) can be done by solving its
dual problem (eqn (4)) with a Lagrange dual formulation.

m m m

manyi(a; - ai) - 62)/,'(0(: + a,-) — % Zyi(a;‘ 4 04,-)
i=1 i=1 F

ij=1

x (o

— o)X x; (4)
where C is the penalty term that determines the trade-off
between the misclassifications of the training data and the
margin width. o; and «; are the Lagrange multipliers, and ¢ is
the tolerance of margin.

In this study, SVR model with the RBF kernel function (eqn
(5)) was employed to predict HHV and No.

K(x;, x)) = exp(—7|lx; =x{*), v > 0 (5)

where vy defines the effect of a single sample on the entire
classification hyperplane. Then, the SVR model with the RBF
kernel function can be described as:
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where b refers to the bias term.

SSA-SVM model. Penalty factor C and kernel function are the
two important hyper-parameters that affect the SVM model.?®
The selection of C and kernel function parameter can consider-
ably influence the regressor results. Traditional SVMs are not
sensitive to outliers and are easy to fall into local optimal solu-
tions. Thus, sparrow search algorithm (SSA), which is a novel
swarm intelligence optimization algorithm proposed by Xue
et al.”® in 2020 based on the behavior of sparrows foraging and
evading predators was employed to further optimize the SVM
model. Meanwhile, the SSA algorithm is suitable for optimizing

Preparation

SSA E |
Initialize SSA !
4 e T
, Calculate the initial population ‘ i i Initialize parameter C SVM |
| fitness values i andy i
i
| | i
‘ Update the position of finder ‘ L Obtain the optimal i
y ; i parameters !
i
‘ Update the position of joiner ‘ | ! 4 i
| — — i
! | i ‘ Training SVM w !
Update the sparrow’s position 3 ! model i
when danger is realized | e
N | Output the
Update the global optimal | predicted value
location |
s - |
INo__—Meet the maximum

~——__number of iterations

Fig.1 The working flow chart of the SSA-SVM model.
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C and kernel function parameter y of the SVM to obtain a better
combination of parameters due to its strong global searching
capability.*® Then, the optimal parameters obtained by the SSA
optimization algorithm were used to establish the SVM model.
The workflow of the SSA-SVM model is shown in Fig. 1.

Performance evaluation. The performance of the models was
evaluated in terms of R* and the root mean square error
(RMSE).** Conceptually, a higher R* and a lower RMSE indicate
a better model accuracy.

S G-
R=1-% 7)
S -y

i=1

wherey, y, and y are the predicted, actual, and mean values of
the target feature, respectively; N is the total number of data
points.

Results and discussion
Dataset description

An overview statistical distribution of the dataset was presented
in Fig. 2. Table S2t is the brief description of the dataset,
including the unit, count, range, mean value and standard
deviation of all the features.

As shown in Fig. 2 and Table S2,7 the VM content was
ranging from 32.2 wt% to 96.4 wt% with an average value of
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Fig.2 The statistical distribution of each variable involving the inherent properties of the raw biomass, the torrefaction conditions, and the HHV

and No of torrefied biomass.
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77.02 wt%. A peak density at 1.76 wt% was observed for ASH
content in the range of 0-32.58 wt%. The FC content was
distributed between 1.67 wt% and 61.4 wt% with a peak value at
16.51 wt%. The content of O element ranged from 11.37 wt% to
61.55 wt% with a mean value of 43.83 wt%. Such high O content
is responsible to the low HHV of the raw biomass. The highest
Ni was 14.29 wt%, however, it was less than 0.8 wt% for most of
the feedstock employed in the related literatures. As for the
torrefaction conditions, the most frequently used. Duration
time was 30 min followed by 60 min. Besides, 300 °C was the
most favourite temperature.

As for the properties of torrefied biomass, the HHV ranged
from 13.48 MJ kg " to 30.3 MJ kg~ ' with a median of 20.67 M]
kg~'. No was generally higher than Ni, while it was less than
1.5 wt% for most of torrefied biomass.

Fig. 3 illustrates the Pearson correlation matrix, the detailed
information of which was given in Table S3.7

A relatively strong negative correlation was found between
ASH and VM (—0.73). Thus, ASH would be removed from the
features in the following model. For any two of other features,
there was no significant linear correlation between them since
all the PCC absolute values were lower than 0.7. It is worth
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Fig. 3 Pearson correlation matrix between any two features.
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noting that No was strongly linearly correlated to Ni with
a positive PCC value of 0.93, indicating that a raw biomass
sample with higher nitrogen content can directly result in
a higher nitrogen content in their torrefied product.

Model prediction

Fig. 4 and 5 are the comparison between predicted values and
the experimental data for SYM model and SSA-SVM model,
respectively. For SVM model (Fig. 4), the data points of both
training and testing sets of HHV and No were dispersedly
distributed around the black line (y = x). While for the SSA-SVM
model, all the data points were densely distributed along the y =
x line, indicating the equivalence between the predicted values
and the experimental data. Therefore, SSA-SVM model had
better performance than SVM model in predicting the HHV and
No of torrefied biomass, that is, SSA optimization method
greatly improved the prediction performance of the SVM model.

The results of R* and RMSE for both training set and testing
set obtained from SVM and SSA-SVM prediction are shown in
Table 1. For both training set and testing set of HHV and No, the
R? values of SSA-SVM model (>0.91) were larger than the ones of
SVM model, indicating that SSA optimization significantly
improved the stability and prediction accuracy of the original
SVM model. The RMSE values of the two models for both HHV
and No were fairly acceptable. While the RMSE values of SSA-
SVM model were smaller than the corresponding ones of SVM
model, implying a more excellent performance of the SSA-SVM
model.

Nieto et al.*>'® predicted the HHV value of torrefied biomass
using SVM models. The best values of R* and RMSE for SA
optimized SVM model was 0.9028 and 0.5171, respectively, and
they were 0.9427 and 0.3944 for PSO optimized SVM model.
Thus, comparing the results of R* and RMSE for HHV predicted
using SVM related models in existing literatures with the values
obtained in this study, the SSA-SVM model exhibited compa-
rable performance.

While for the prediction of No, to the authors' knowledge, it
was performed for the first time in this study.
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Fig. 4 Comparison of SVM predicted values and experimental data.
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Fig. 5 Comparison of SSA-SVM predicted values and experimental data.

Table 1 R? and RMSE results of the two models

HHV No

SVM SSA-SVM SVM SSA-SVM
R? (training) 0.9013 0.9272 0.8838 0.9379
RMSE (training) 4.3346 1.1184 0.395 0.1046
R* (testing) 0.8284 0.9111 0.8274 0.918
RMSE (testing) 7.8543 1.2745 0.467 0.16

Fig. 6 illustrates the data points of HHV and No obtained from
SVM and SSA-SVM prediction and their comparison with the
experimental values. It is obviously that the curve behaviours of
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Fig. 6 Comparison between the actual and SVM/SSA-SVM predicted
targets of testing set.
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SSA-SVM predicted data were more consistent to the actual values
for both HHV and No. Therefore, SSA optimization was an effi-
cient method to improve the prediction ability of SVM model.

Conclusions

In this study, an innovative SVM model with RBF kernel function
hybridized with SSA optimization technique was developed to
predict the HHV and No values of torrefied biomass for the fuel
purpose based on the feedstock properties and the torrefaction
conditions. Comparing with the original SVM model, the SSA
optimized model exhibited a higher prediction precision for both
HHYV and No. Higher R* values (>0.91) were obtained for SSA-SVM
model and the values of MASE were also fairly acceptable, indi-
cating that SSA optimization significantly improved the perfor-
mance of SVM model. The high predictive precision of the SSA-
SVM model was further demonstrated by the agreement
between experimental data and predicted values.

Author contributions

Liu Xiaorui: conceptualization, methodology, visualization,
writing—original draft preparation, writing—review and editing,
funding acquisition. Yang Jiamin: methodology, writing—orig-
inal draft preparation. Yuan Longji: methodology, validation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was funded by the Natural Science Foundation of
Jiangsu Province, grant number BK20210511.

Notes and references

1 M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang
and Y. Park, Bioresour. Technol., 2022, 343, 126109.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06869a

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 03 January 2023. Downloaded on 1/17/2026 9:36:01 AM.

(cc)

Paper

2 W. Chen, B. Lin, Y. Lin, Y. Chu, A. T. Ubando, P. L. Show,
H. C. Ong, J. Chang, S. Ho, A. B. Culaba, A. Pétrissans and
M. Pétrissans, Prog. Energy Combust. Sci., 2021, 82, 100887.

3 Y. Liu, E. Rokni, R. Yang, X. Ren, R. Sun and Y. A. Levendis,
Fuel, 2021, 285, 119044.

4]. Gonzalez-Arias, X. GOmez, M. Gonzalez-Castano,
M. E. Sanchez, J. G. Rosas and ]. Cara-Jiménez, Energy,
2022, 238, 122022.

5 C. Lokmit, K. Nakason, S. Kuboon, A. Jiratanachotikul and
B. Panyapinyopol, Biomass Convers. Biorefin., 2022, DOIL:
10.1007/s13399-021-02132-2.

6 Y. Lin, W. Chen, B. Colin, A. Pétrissans, R. Lopes Quirino and
M. Pétrissans, Fuel, 2022, 310, 122281.

7 R. Tu, Y. Sun, Y. Wu, X. Fan, S. Cheng, E. Jiang and X. Xu,
Energy, 2022, 238, 121969.

8 L. Zhang, Z. Wang, J. Ma, W. Kong, P. Yuan, R. Sun and
B. Shen, Fuel, 2022, 310, 122477.

9 F. Kartal and U. Ozveren, Renewable Energy, 2022, 182, 578-
591.

10 S. Yu, H. Kim, J. Park, Y. Lee, Y. K. Park and C. Ryu, Int. J.
Energy Res., 2022, 46, 8145-8157.

11 H. N. Guo, S. B. Wu, Y. J. Tian, J. Zhang and H. T. Liu,
Bioresour. Technol., 2021, 319, 124114.

12 R. Aniza, W. Chen, F. Yang, A. Pugazhendh and Y. Singh,
Bioresour. Technol., 2022, 343, 126140.

13 H. Y. Ismail, S. Fayyad, M. N. Ahmad, ]J. J. Leahy,
M. Naushad, G. M. Walker, A. B. Albadarin and
W. Kwapinski, J. Cleaner Prod., 2021, 326, 129020.

14 F. Kartal and U. Ozveren, Biomass Bioenergy, 2022, 159,
106383.

15 P. J. Garcia Nieto, E. Garcia-Gonzalo, J. P. Paredes-Sanchez,
A. Bernardo Sanchez and M. Menéndez Fernandez, Neural.
Comput. Appl., 2019, 31, 8823-8836.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

16 P. ]J. Garcia Nieto, E. Garcia Gonzalo, F. Sanchez Lasheras,
J. P. Paredes Sanchez and P. Riesgo Fernandez, J. Comput.
Appl. Math., 2019, 357, 284-301.

17 T. Onsree and N. Tippayawong, Renewable Energy, 2021, 167,
425-432.

18 T. Onsree, N. Tippayawong, S. Phithakkitnukoon and
J. Lauterbach, Energy, 2022, 249, 123676.

19 E. Leng, B. He, ]J. Chen, G. Liao, Y. Ma, F. Zhang, S. Liu and
J. E, Energy, 2021, 236, 121401.

20 T. Williams, K. McCullough and J. A. Lauterbach, Chem.
Mater., 2020, 32, 157-165.

21 L. Xiaorui, Y. Xudong, X. Guilin and Y. Yiming, Fuel, 2021,
291, 120264.

22 X. Liu, Z. Luo, C. Yu and G. Xie, Fuel, 2019, 246, 42-50.

23 J. Li, X. Zhu, Y. Li, Y. W. Tong, Y. S. Ok and X. Wang, J.
Cleaner Prod., 2021, 278, 123928.

24 Q. Tang, Y. Chen, H. Yang, M. Liu, H. Xiao, S. Wang, H. Chen
and S. Raza Naqvi, Bioresour. Technol., 2021, 339, 125581.

25 Z. Ullah, M. Khan, S. Raza Naqvi, W. Farooq, H. Yang,
S. Wang and D. N. Vo, Bioresour. Technol., 2021, 335, 125292.

26 M. S. Nick Guenther, Stata J., 2016, 4, 917-937.

27 Y. Wang, Z. Liao, S. Mathieu, F. Bin and X. Tu, J. Hazard.
Mater., 2021, 404, 123965.

28 C. Yin, X. Deng, Z. Yu, Z. Liu, H. Zhong, R. Chen, G. Cai,
Q. Zheng, X. Liu, J. Zhong, P. Ma, W. He, K. Lin, Q. Li and
A. Wu, Biotechnol. Biofuels, 2021, 14, 106.

29 J. Xue and B. Shen, Syst. Sci. Control. Eng., 2020, 8, 22-34.

30 W. Tuerxun, X. Chang, G. Hongyu, J. Zhijie and Z. Huajian,
IEEE Access, 2021, 9, 69307-69315.

31 X. Yuan, M. Suvarna, S. Low, P. D. Dissanayake, K. B. Lee,
J. Li, X. Wang and Y. S. Ok, Environ. Sci. Technol., 2021,
55(17), 11925-11936.

RSC Adv, 2023, 13, 802-807 | 807


https://doi.org/10.1007/s13399-021-02132-2
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ra06869a

	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...

	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...

	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...
	Predicting the high heating value and nitrogen content of torrefied biomass using a support vector machine optimized by a sparrow search...


