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gh heating value and nitrogen
content of torrefied biomass using a support vector
machine optimized by a sparrow search algorithm†

Liu Xiaorui, a Yang Jiamina and Yuan Longji*b

A support vector machine (SVM) model with RBF kernel function combined with sparrow search algorithm

(SSA) optimization was developed to predict the HHV and nitrogen content (No) values of torrefied biomass

based on the feedstock properties and torrefaction conditions. Results showed that SSA optimization

significantly improved the prediction performance of the SVM model for both HHV and No. A coefficient

of determination (R2) larger than 0.91 was achieved when the SSA-SVM model was implemented, and

the values of RMSE were also fairly acceptable. The agreement between experimental data and SSA-SVM

predicted values demonstrated the high predictive precision of the model. This study provides

a reference for the utilization of torrefied biomass in solid fuels and the design of torrefaction facilities.
Introduction

Global warming caused by the excessive consumption of fossil
fuels, which produce large amounts of greenhouse gas (mainly
CO2) emissions, has led to the diminishment of snow and ice, as
well as a global average sea level rise.1 Due to this, the utilization
of sustainable and renewable energy sources such as solar,
wind, and biomass energy, etc. becomes increasingly important.
Among these renewable sources, biomass, which is the only
carbon-based material, has attracted increasing attention.
Different from solar and wind energy, biomass can not only be
used for power generation and heat supply but can also be
converted into gaseous, liquid and solid products with zero CO2

emissions through its life cycle.2 However, some inherent
disadvantages of biomass prevent its large-scale utilization,
such as the high moisture content, low caloric value and low
energy density which would result in the high costs for biomass
collection, storage and transportation.3

Torrefaction, which is traditionally performed at 200–300 °C in
inert atmosphere is a promising pretreatment technique to over-
come the above mentioned shortcomings of raw biomass.4–6 Few
studies also include an oxidative atmosphere such as air, steam,
ue gas, etc. into the denition of torrefaction.7,8 In order to
estimate the torrefaction process, characterization of torreed
biomass properties is necessary.9 Higher heating value (HHV), an
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gineering, China University of Mining and

yuanlongji@cumt.edu.cn

ESI) available: Table S1: dataset; Table
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important parameter for designing the biomass conversion
facilities, is either experimentally tested by a calorimeter bomb or
mathematically calculated using Channiwala and Parikh's corre-
lation based on the proximate and ultimate analysis results.4,10

These characterizations always require repetitive experiments and
subsequently instrumental analysis or mathematical method,
consuming lots of time, costs and manpower. Therefore, devel-
oping a reliable method to predict the properties of torreed
biomass based on those of feedstock without various tests and
experiments is of great value to save time, costs and manpower.

Machine Learning (ML), a subset of articial intelligence (AI),
has a strong ability to deal with the multi-dimensional and non-
linear problems involving classication and regression with the
superiorities of time-saving and high prediction accuracy.11Due to
these advantages, ML can be applied to the prediction of torreed
biomass properties to avoid repetitive experiments. For torreed
biomass, the articial neural network (ANN) models were most
frequently used to predict the yields,12,13 the CHO contents and
HHV,9 and the exergy14 of torreed biomass. In addition to the
ANNs, several other models have also been developed to predict
the properties of torreed product. Garćıa et al.15,16 predicted the
HHV of torreed biomass using support vector machine models
(SVMs) combined with particle swarm optimization (PSO) or
simulated annealing (SA) optimization. Onsree et al.17,18 compared
the accuracy of kernel ridge regression (KRR), gradient tree
boosting (GTB), ANN, SVM and random forest (RF) models in
predicting the yields. Leng et al.19 employed extreme gradient
boosting (XGB), RF, SVM, and multilayer perceptron (MLP) algo-
rithms to predict the distribution of three-phase product. These
studies indicated thatML algorithms are capable of predicting the
properties of torreed biomass especially the yield and HHV.
However, it is worth noting that no single algorithm was optimal
for all problems since every systemhad its unique data structure.20
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Moreover, application ofML algorithms in biomass torrefaction is
fairly rare and existing literatures mainly focused on the predic-
tion of yield and HHV, whereas other properties of torreed
biomass were seldomly concerned.

It is well known that NOx is the main gaseous pollutants
during biomass utilization due to the higher conversion rate of
fuel-N than occurs with coal.21 Besides, when biomass is pyro-
lyzed and gasied, a considerable proportion of fuel-N was
released in the forms of NH3 and HCN which are harmful to the
environment and human health.22 These nitrogen containing
pollutants were mainly originated from the conversion of the
nitrogen element in the feedstocks. Therefore, the nitrogen
content of torreed biomass should also be deservedly atten-
ded. However, to the authors' knowledge, the prediction of
nitrogen content of torreed biomass has not been reported.

As reviewed above, there are still large gaps in the prediction
of torreed biomass properties using machine learning
method. In this study, two important fuel parameters involving
the HHV and nitrogen content of torreed biomass were esti-
mated by the support vector machine (SVM) with RBF kernel
function. To improve its prediction accuracy, the SVM model
was further optimized by sparrow search algorithm (SSA) tech-
nique to develop a novel SSA-SVM model. To date, this is the
rst study to implement the SSA-SVM model to predict the
properties of torreed biomass.
Methods
Dataset collection and pre-processing

497 data points were extracted from 66 peer-reviewed publica-
tions with respect to the traditional torrefaction which was
performed at 200–300 °C in inert atmosphere (N2, He, Ar and
anoxic environment) to create a dataset. The detailed informa-
tion of the dataset was given in the ESI (Table S1†). Most of the
data points were directly extracted from the text and the tables
of the papers and the corresponding ESI.† While for those data
which were not directly listed, WebPlotDigitizer tool (https://
apps.automeris.io/wpd/) was employed to extract the
necessary data from the gures. The proximate analysis
results of the raw biomass involving volatile matter
(VM, wt%), xed carbon (FC, wt%) and ash (Ash, wt%)
contents, the ultimate analysis results (C, H, O, Ni, wt%) and
torrefaction conditions involving temperature (Temp, °C) and
duration time (time, min) were collected as input features.
The HHV (MJ kg−1) values and nitrogen content (No) of the
torreed biomass were assigned to the targets.

Then, correlation analysis was performed and the linear
dependency among all the input and output variables was
measured by Pearson's correlation coefficient (PCC).23

r ¼
Pn
i¼1

ðxi � xÞPn
i¼1

ðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xÞ2 Pn
i¼1

ðyi � yÞ2
s (1)

where r is the value of PCC ranging from−1 to 1, where 0 means
no linear correlation, and a negative or positive value indicates
© 2023 The Author(s). Published by the Royal Society of Chemistry
a negative or positive correlation, respectively. The greater the
absolute value of r, the stronger the linear correlation; x�and y�
are the means of the input feature and output target, respec-
tively. The two features were considered to be strongly corre-
lated to each other when the absolute value of r is greater than
0.7, and one of them will be excluded.24

To obtain a uniform range among the variables, the features
and targets were normalized with Z-score standardization using
eqn (2):

x*
i ¼

xi � m

s
(2)

where xi is the value of input feature i; x*i is the normalized value
of initial xi; m is the mean value of xi, and s represents its
standard deviation.

Then the preprocessed dataset was randomly divided into
training and testing subsets at a ratio of 80% to 20% for the
evaluation of the developed models.
Training models

SVM model. SVM is a supervised machine learning model
that originally developed for two-group classication.15

However, it was soon extended to work for continuous
outcomes with small samples, high-dimensions, and non-
linearity which is called support vector regression (SVR).
When dealing with complex and nonlinear regression prob-
lems, the kernel function is particularly useful because it can
map the features into high dimensional space to linearly
separable variables25 and greatly facilitate the computations.26

SVR can be formulated as an optimization problem (eqn (3))
to minimize the norm of the weight vector (u) with some slack
variables (xi, x*i ) introduced to increase the tolerance of regres-
sion error.27

min
u;b;xi ;x

*
i

1

2
kuk2 þ C

Xm
i¼1

�
xi þ x*i

�
; xi; x

*
i $ 0; i ¼ 1;.;m (3)

The above optimization (eqn (3)) can be done by solving its
dual problem (eqn (4)) with a Lagrange dual formulation.

max
Xm
i¼1

yi
�
a*
i � ai

�� 3
Xm
i¼1

yi
�
a*
i þ ai

�� 1

2

Xm
i;j¼1

yi
�
a*
i þ ai

�
� �

a*
i � ai

�
xi

Txj (4)

where C is the penalty term that determines the trade-off
between the misclassications of the training data and the
margin width. ai and a*

i are the Lagrange multipliers, and 3 is
the tolerance of margin.

In this study, SVR model with the RBF kernel function (eqn
(5)) was employed to predict HHV and No.

K(xi, xj) = exp(−gkxi −xjk2), g > 0 (5)

where g denes the effect of a single sample on the entire
classication hyperplane. Then, the SVR model with the RBF
kernel function can be described as:
RSC Adv., 2023, 13, 802–807 | 803
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f ðxÞ ¼
Xm
i¼1

�
a*
i � ai

�
Kðxi; xÞ þ b (6)

where b refers to the bias term.
SSA-SVM model. Penalty factor C and kernel function are the

two important hyper-parameters that affect the SVM model.28

The selection of C and kernel function parameter can consider-
ably inuence the regressor results. Traditional SVMs are not
sensitive to outliers and are easy to fall into local optimal solu-
tions. Thus, sparrow search algorithm (SSA), which is a novel
swarm intelligence optimization algorithm proposed by Xue
et al.29 in 2020 based on the behavior of sparrows foraging and
evading predators was employed to further optimize the SVM
model. Meanwhile, the SSA algorithm is suitable for optimizing
Fig. 1 The working flow chart of the SSA-SVM model.

Fig. 2 The statistical distribution of each variable involving the inherent p
and No of torrefied biomass.

804 | RSC Adv., 2023, 13, 802–807
C and kernel function parameter g of the SVM to obtain a better
combination of parameters due to its strong global searching
capability.30 Then, the optimal parameters obtained by the SSA
optimization algorithm were used to establish the SVM model.
The workow of the SSA-SVM model is shown in Fig. 1.

Performance evaluation. The performance of the models was
evaluated in terms of R2 and the root mean square error
(RMSE).31 Conceptually, a higher R2 and a lower RMSE indicate
a better model accuracy.

R2 ¼ 1�
PN
i¼1

ðŷ� yÞ2

PN
i¼1

ðŷ� yÞ2
(7)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðŷ� yÞ2

N

vuuut
(8)

whereŷ, y, and y�are the predicted, actual, and mean values of
the target feature, respectively; N is the total number of data
points.
Results and discussion
Dataset description

An overview statistical distribution of the dataset was presented
in Fig. 2. Table S2† is the brief description of the dataset,
including the unit, count, range, mean value and standard
deviation of all the features.

As shown in Fig. 2 and Table S2,† the VM content was
ranging from 32.2 wt% to 96.4 wt% with an average value of
roperties of the raw biomass, the torrefaction conditions, and the HHV

© 2023 The Author(s). Published by the Royal Society of Chemistry
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77.02 wt%. A peak density at 1.76 wt% was observed for ASH
content in the range of 0–32.58 wt%. The FC content was
distributed between 1.67 wt% and 61.4 wt% with a peak value at
16.51 wt%. The content of O element ranged from 11.37 wt% to
61.55 wt% with a mean value of 43.83 wt%. Such high O content
is responsible to the low HHV of the raw biomass. The highest
Ni was 14.29 wt%, however, it was less than 0.8 wt% for most of
the feedstock employed in the related literatures. As for the
torrefaction conditions, the most frequently used. Duration
time was 30 min followed by 60 min. Besides, 300 °C was the
most favourite temperature.

As for the properties of torreed biomass, the HHV ranged
from 13.48 MJ kg−1 to 30.3 MJ kg−1 with a median of 20.67 MJ
kg−1. No was generally higher than Ni, while it was less than
1.5 wt% for most of torreed biomass.

Fig. 3 illustrates the Pearson correlation matrix, the detailed
information of which was given in Table S3.†

A relatively strong negative correlation was found between
ASH and VM (−0.73). Thus, ASH would be removed from the
features in the following model. For any two of other features,
there was no signicant linear correlation between them since
all the PCC absolute values were lower than 0.7. It is worth
Fig. 3 Pearson correlation matrix between any two features.

Fig. 4 Comparison of SVM predicted values and experimental data.

© 2023 The Author(s). Published by the Royal Society of Chemistry
noting that No was strongly linearly correlated to Ni with
a positive PCC value of 0.93, indicating that a raw biomass
sample with higher nitrogen content can directly result in
a higher nitrogen content in their torreed product.
Model prediction

Fig. 4 and 5 are the comparison between predicted values and
the experimental data for SVM model and SSA-SVM model,
respectively. For SVM model (Fig. 4), the data points of both
training and testing sets of HHV and No were dispersedly
distributed around the black line (y= x). While for the SSA-SVM
model, all the data points were densely distributed along the y=
x line, indicating the equivalence between the predicted values
and the experimental data. Therefore, SSA-SVM model had
better performance than SVMmodel in predicting the HHV and
No of torreed biomass, that is, SSA optimization method
greatly improved the prediction performance of the SVMmodel.

The results of R2 and RMSE for both training set and testing
set obtained from SVM and SSA-SVM prediction are shown in
Table 1. For both training set and testing set of HHV and No, the
R2 values of SSA-SVMmodel (>0.91) were larger than the ones of
SVM model, indicating that SSA optimization signicantly
improved the stability and prediction accuracy of the original
SVM model. The RMSE values of the two models for both HHV
and No were fairly acceptable. While the RMSE values of SSA-
SVM model were smaller than the corresponding ones of SVM
model, implying a more excellent performance of the SSA-SVM
model.

Nieto et al.15,16 predicted the HHV value of torreed biomass
using SVM models. The best values of R2 and RMSE for SA
optimized SVM model was 0.9028 and 0.5171, respectively, and
they were 0.9427 and 0.3944 for PSO optimized SVM model.
Thus, comparing the results of R2 and RMSE for HHV predicted
using SVM related models in existing literatures with the values
obtained in this study, the SSA-SVM model exhibited compa-
rable performance.

While for the prediction of No, to the authors' knowledge, it
was performed for the rst time in this study.
RSC Adv., 2023, 13, 802–807 | 805
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Fig. 5 Comparison of SSA-SVM predicted values and experimental data.

Table 1 R2 and RMSE results of the two models

HHV No

SVM SSA-SVM SVM SSA-SVM

R2 (training) 0.9013 0.9272 0.8838 0.9379
RMSE (training) 4.3346 1.1184 0.395 0.1046
R2 (testing) 0.8284 0.9111 0.8274 0.918
RMSE (testing) 7.8543 1.2745 0.467 0.16
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Fig. 6 illustrates the data points of HHV and No obtained from
SVM and SSA-SVM prediction and their comparison with the
experimental values. It is obviously that the curve behaviours of
Fig. 6 Comparison between the actual and SVM/SSA-SVM predicted
targets of testing set.

806 | RSC Adv., 2023, 13, 802–807
SSA-SVM predicted data weremore consistent to the actual values
for both HHV and No. Therefore, SSA optimization was an effi-
cient method to improve the prediction ability of SVM model.

Conclusions

In this study, an innovative SVMmodel with RBF kernel function
hybridized with SSA optimization technique was developed to
predict the HHV and No values of torreed biomass for the fuel
purpose based on the feedstock properties and the torrefaction
conditions. Comparing with the original SVM model, the SSA
optimizedmodel exhibited a higher prediction precision for both
HHV andNo. Higher R2 values (>0.91) were obtained for SSA-SVM
model and the values of MASE were also fairly acceptable, indi-
cating that SSA optimization signicantly improved the perfor-
mance of SVM model. The high predictive precision of the SSA-
SVM model was further demonstrated by the agreement
between experimental data and predicted values.
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