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Mycoplasma pneumoniae (MP) is one of the most common pathogenic organisms causing upper and lower
respiratory tract infections, lung injury, and even death in young children. Toll-like receptors (TLRs) play an
important role in innate immunity by allowing the host to recognize pathogens invading the body. Previous
studies demonstrated that TLR4 is a potential therapeutic target for the treatment of MP pneumonia.
Therefore, the present study aimed to screen biologically active ingredients that target the TLR4 receptor
pathway. We first used molecular docking to screen out the active compounds inhibiting the TLR4
pathway, and then used regression and classification machine learning algorithms to establish
a quantitative structure—activity relationship (QSAR) model to predict the biological activity of the
screened compounds. A total of 78 molecules were used in QSAR modelling, which were retrieved from
the ChEMBL database. The QSAR models had acceptable correlation coefficients of R? on the training
and testing dataset in the range of 0.96 to 0.91 and 0.93 to 0.76, respectively. The multiclass
classification models showed accuracy on training and testing data within ranges of 1.0 to 0.70, 0.96 to

Received 1st October 2022 0.63, and log loss ranges from 0.27 to 8.63, respectively. In addition, molecular descriptors and
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fingerprints have been studied as structural elements involved in increased and decreased inhibitory

DOI: 10.1035/d2ra06178¢ activities. These results provide a quantitative analysis of QSAR and classification models applicable for
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1. Introduction

Mycoplasmas are highly pleomorphic microorganisms, contain
a very small genome ranging from 0.58-2.20 Mb and cannot
flourish without cholesterol.* As a human pathogen, Mycoplasma
pneumoniae (MP) lack a cell wall and has a specialized tip
organelle responsible for its cytoadherence.”? MP causes asthma,
bronchitis, pneumonia, and pharyngitis in humans. Young chil-
dren and young adults are most likely to be affected by the MP
infection.® There were outbreaks of MP infections worldwide
from 2010 to 2012 in different regions of the World.** The
pathophysiological changes that take place because of MP
infection are attributed to several factors, including membrane
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high-throughput screening, as well as insights into the mechanisms of inhibition of TLR4 antagonists.

lipoproteins, polysaccharides, and viral nucleases.® Previous
studies demonstrated that pattern recognition receptors (PRRs)
on immune cells detect pathogen-associated molecular patterns
(PAMPs) on the surface of pathogens when they invade the host.”
The toll-like receptor family (TLRs) is a family of type I trans-
membrane transport receptors that are primarily expressed on
the surface of epithelial cells and immune cells. They play an
important role in the early recognition and inflammatory
response of the host against pathogens.®* Among the TLRs, TLR4
is the first in the TLR family. It can recognize pathogenic
microorganisms, triggering the production of cytokines by cells,
chemokines, adhesion factors, and acute phase proteins that
regulate inflammatory responses,’ which plays an important role
in the occurrence of inflammation, especially the activation of the
immune system.' A previous study had demonstrated that
exposure of mouse macrophages to MP lipids activated the TLR4
signaling pathway, resulting in the expression of tumor necrosis
factor (TNF)-o and interleukin-1p mediated by autophagy and
nuclear factor kappa B (NF-kB)." Accordingly, these findings
suggest that TLR4 is not only involved in the body's ability to
resist pathogen invasion, but that it may also play an important
role in the development and occurrence of inflammation-
mediated injuries. Thus, the inhibition of TLR4 in MP infec-
tions needs to be further explored. Meanwhile, anti-inflammatory
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compounds that target the TLR4 signaling pathway have received
much attention, and it has become a research hotspot in this
field, which can help in discovering new therapeutic targets.
Recently, more and more active compounds in natural prod-
ucts have been found to inhibit the TLR4 pathway. Studies
revealed that natural products are rich in molecules that possess
the potential to inhibit the TLR4 protein and have attracted the
attention of researchers.” Furthermore, TLR4 inhibition
mediated by small molecules led to an array of research focusing
on the molecular mechanism of action of TLR4 inhibitors."®
However, future studies are needed to confirm these findings.
Besides, the emergence of antibiotic resistance represents
another challenge in the context of the treatment of MP infec-
tions." It is therefore crucial to find alternatives to antibiotics to
prevent the emergence of resistance against anti-mycoplasma
drugs. Hence, active ingredients of natural products could be
used to modulate the host immune inflammatory response. The
active ingredients of natural products require more experimental
data on its toxicology and pharmacology before its use in clinical
trials, which is a lengthy process. To screen TLR4 inhibitors in
a limited period of time, it is necessary to use fast, accurate, and
reliable screening methods based on detailed study of TLR4
inhibition and regulation. In this context, modern machine
learning technologies make better use of information obtained
from several sources to predict the bioactivities of drugs for
several diseases, thus facilitating the discovery of new drugs
more efficiently. In recent years, computer-aided drug screening
is advancing towards practicality and is emerging as a core
technology for innovative drug research. Several drug libraries
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were screened in a very short time-period, leading to the
discovery of many active compounds in traditional Chinese
medicines and the successful repurposing of several approved
drugs.'® Based on previous research, virtual screening paved
the way for the future development of improved chemical
analogs for use in treating a wide variety of human and animal
diseases through medicinal chemistry structure-activity rela-
tionships and drug screenings.”® Molecular docking and quan-
titative structure activity relationship (QSAR) models provide
structural information and insight into TLR4 inhibitors that can
be used to guide more effective drug development, including
screening and rational drug discovery of TLR4 inhibitors.
Therefore, the objective of the present study was to identify lead
compounds that can inhibit the TLR4 protein for the treatment
of MP pneumonia. The regression and classification QSAR
models were developed from a set of known chemical TLR4
inhibitors. These QSAR models will be used to predict and
classify the bioactive compounds based on their predicted
bioactivity (pICs,) values and provide theoretical foundations to
enable the development of potent drugs from natural products
for the prevention and treatment of MP-pneumonia. The flow
chart for the experimental process is shown in Fig. 1.

2. Materials and methods

2.1. Molecular docking

The set of 50.2 K Discovery Diversity Set (DDS) compounds were
used for docking to the crystal structure of human TLR4 (PDB ID:
4G8A), which is taken from the RCSB PDB database. The
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structure of each ligand as well as the structure of the protein
were both preprocessed prior to docking. The docking process
was visualized with PyMol (version 11.4) using Schrodinger
Maestro (version 11.4). Schrédinger's Protein Preparation Wizard
tool was used to prepare the protein structure.® The water
molecules have been deleted, and the hydrogens, resides and side
chains have been added. Using the force field (OPLS2005, RMSD
is 0.30 A), the energy optimization was carried out in order to
minimize the protein structure.”»* Maestro (version 11.4) was
used to generate the receptor grid, selecting amino acid residues
with hydrogen and ionic bonding Glu42/Asp60/Arg87/Glu135/
Ser183/Arg234/Arg264/Asn265/Glu266/Arg289 based on the
complex formed by the TLR4 with the extracellular adaptor MD-2
(a glycoprotein) and the hydrophobic portion of lipid poly-
saccharide (LPS), and the grid size was set to 20 A x 20 A x 20 A
so that new compounds could be attached to the same binding
site and co-crystallized ligands could be excluded.”* In Schro-
dinger Maestro, the LigPrep module was used to prepare the
ligand structure. After the ligands were loaded and optimized,
and the 3D structure was obtained.” For docking, the prepared
molecules were imported into Glide. In the generated grid of the
target protein, the ligand molecules are docked through
geometric and energy matching. In the Glide module, standard
precision (SP) was utilized with the high-throughput screening
(HTVS) setting, and the top 10% of compounds were selected.
Thereafter, extra precision (XP) screenings were performed in the
Glide module and the top 10% of small molecules were selected
for further screening.”*?® Best docking pose of each ligand was
kept for the further analysis.*

2.2. Dataset

From the ChEMBL database (version 29),* we compiled a list of
78 TLR4 inhibitors along with their ICs, values. CHEMBL is
a searchable database of more than 2 million compounds,
molecule bioactivities, and information on bioactive molecules
exhibiting drug-like properties. In ESI S1t (Excel sheet), the list of
TLR4 inhibitory molecules used in the QSAR model, simplified
molecular input line entry system (SMILES) notation, pICs, and
ChEMBL ID as well as Lipinski's descriptors are presented. For
a more uniform distribution of the data, the ICs, values were
converted to the pICs, by taking the negative logarithm of the ICs,
values by using the equation pICs, = —log 10 (ICs,). Here, pICs is
the negative logarithm of ICso. As this study is primarily con-
cerned with developing regression and classification models of
biological activity. Thus, the ICs, values were divided into three
classes (high (<1 pM), moderate (=3 uM and >1 puM) and low (>3
uM)) for a clear distinction between the potency of these
compounds. The geometry is optimized using MOPAC (Molecular
Orbital Package) using the AM1 method, the 3D coordinates are
preserved, and the energy is minimized in Merck Molecular Force
Field (MMFF94) for all ligands before descriptors and molecular
fingerprints are calculated. Molecular descriptors were calculated,
and the data was curated based on the calculated descriptors.
Model building relies on qualitative and/or quantitative chemical
information that can be obtained from molecular fingerprints.
The PaDel molecular fingerprints and descriptors were calculated
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using ChemDes web-based platform.*" To clean the initial data
collected from the ChEMBL database, data preprocessing has
been performed as described previously.**?* As part of the data
curation process, some key steps are performed including (i)
structural cleaning and conversion, (ii) removal of duplicates, (iii)
removal of mixtures and inorganics, (iv) normalization of specific
chemotypes, and (v) manual verification of the data. All other
inhibitory targets except for TLR4, as well as the pICs, values for
each, were removed from the data. Molecules with missing values
for the pICs, and SMILES notation, as well as duplicate value
entries, were removed. The feature selection process is also
known as variable selection or attribute selection. Predictive
modeling involves automatic selection of attributes most relevant
to the problem. As a first step, all the descriptors and molecular
fingerprints were checked manually for any missing values, and
all the columns containing zero values were removed from the
files using a Python script. The fingerprints were then combined
into a single csv (Comma Separated Values) file. A variation
selection method was initially applied in order to remove the
redundant features from the list of combined features.

2.3. Constructing regression and classification models

In QSAR modeling, Random Forest (RF) regression and classifi-
cation algorithms are frequently used since they provide good
predictive performance and high model interpretability. The RF
algorithm is an ensemble of regression and classification trees.*®
It is a robust algorithm with higher performance in the presence
of very high-dimensional parameters, spaces, and outliers than
other machine learning algorithms.”” In addition, random
sampling reduces overfitting, and the RF algorithm recognizes
important features that affect the QSAR model, allowing for
further evaluation of the model and improved prediction accu-
racy. The dataset is divided into two main subsets, the training
subset (70%) and the test subset (30%). The training subset of the
data is used to train the model, whereas the test subset is used to
cross-validate the model. First, the model was evaluated using 5-
fold cross-validation, providing a more general model;* then, the
model's hyperparameters were tuned using the Optune frame-
work (Optune-A hyperparameter optimization framework).*® For
the training, testing, and cross-validation sets of compounds, the
performance of regression models was assessed using root mean
squared error (RMSE), mean absolute error (MAE), and squared
correlation coefficient (R?). The predictability of the model was
also assessed by calculating the residual error between the pre-
dicted and experimental pICs, values. The performance of the
classification model was evaluated in terms of classification
accuracy, RMSE, MAE, and Log loss over the training, testing, and
validation sets of compounds. Additionally, the RF model was
compared with Decision Tree Regression (DTR), AdaBoost
Regression (ABR), Gradient Boosting Regression (GBR) and Extra
Trees Regression (ETR) models trained on the same data. RF
classification model was also compared with KNeighbors classi-
fier, Support Vector Classifier (SVC), Decision Tree Classifier,
AdaBoost Classifier, Gradient Boosting Classifier, Linear
Discriminant Analysis and Quadratic Discriminant Analysis, on
both training and testing data. The R?, accuracy, RMSE, MAE, Log
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Loss, and the performance of these models are analyzed and
compared. For these compounds, a set of descriptors and
fingerprints was selected in the same manner as for the finger-
prints that were used to build the QSAR model. Based on these
features, pICs, values were predicted for DDS set of compounds.

2.4. Statistical analysis for assessing predictive models

For the training, testing, and cross-validation sets of compounds,
the performance of regression models was evaluated using the
root mean squared error (RMSE), mean absolute error (MAE), and
squared correlation coefficient (R*). The predictive performance
of the model was further examined by calculating the residual
error between the predicted and experimental pICs, values. While
the performance of the classification model for the training,
testing, and validation set of compounds was evaluated in terms
of classification accuracy, RMSE, MAE, and log loss.
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2.5. Prediction of small molecule compounds

Based on 50.2 K DDSs of compounds screened by docking, the
top 30 compounds were selected. ChemDes online website was
used to compute chemical descriptors and molecular finger-
prints for all these compounds using canonical smiles format. A
set of fingerprints and descriptors were selected for these
compounds, like those on which the QSAR model was based.
Using these fingerprints, the pICs, values and potencies of DDS
compounds were predicted.

3. Results and discussion
3.1. Molecular docking

The docking technique is a computational method for pre-
dicting the orientation of a ligand or protein when bound to an
enzyme or receptor protein.*’ In the field of drug discovery and
design, docking is extremely wuseful as it provides

3D

6LU-266

SER-183
|
9/ ﬁr

Fig. 2 2D and 3D representation of the docked compounds. Panel (A) and (B) represents top 2 top 2 compounds ((R)-2-(3-3-carbamoyl-5-
methylphenylsulfonamido) tetrahydrofuran-3-yl)acetic acid and N-(2-oxo-2-((6R)-4-oxo-3,9-diazabicyclo[4.2.1lnonan-9-yl)ethyl)-1H-indole-
2-carboxamide, respectively. The hydrogen bonds and their lengths (A) are displayed in these cartoons.
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4.845185655

5.121293699
5.121293699

6.795880017

4.938421827
4.52083702

5.323176653
5.316126193

—4.278
—4.260

264.28

1-(2-Morpholino-2-oxoethyl)-3-(pyridin-3-yl)urea
(3R,4R)-1-((3-Carbamoylphenethyl)carbamoyl)-4-

methylpiperidine-3-carboxylic acid

29
30

4.632121561

6.476253533

333.38
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understanding of the best binding affinity of the potent
ligand.** Here, docking of the DDS compounds to TLR4 receptor
protein provides insights and highlights important protein-
ligand interactions. The 2D and 3D docking poses of the
representative top 2 compounds are represented in Fig. 2. It has
been noted that longer bond results in weaker hydrogen
bonding and vice versa. Compound 1 (Fig. 2(A)) formed five
hydrogen bonds with TLR4 protein, showing that the carboxyl
group forms two hydrogen bonds with ASP181 and ASN156 as
hydrogen bond donor and acceptor, respectively, with distances
of 1.7 A and 1.8 A, respectively. Further, the NH of the sulfon-
amide forms a hydrogen bond with SER183 at a distance of 1.9 A
and the NH, group forms two hydrogen bonds with ASN265 and
GLU266 with distances of 1.7 A and 2.1 A, respectively.
Compound 2 (Fig. 2(D)) forms 4 hydrogen bonds with the TLR4
protein that is the NH on the bridged ring acts as a hydrogen
bond donor to form a hydrogen bond with SER184 with
a distance of 2.0 A and the carbonyl group acts as a hydrogen
bond acceptor to form a hydrogen bond with SER184 with
a distance of 2.1 A. Besides, the NH form a hydrogen bond with
GLU266 with a distance of 1.9 A and the NH of indole form
a hydrogen bond with GLU266 with a distance of 1.8 A.
Furthermore, the docking scores of the top 30 compounds of
DDS set of compounds along with their prediction results are
shown in Table 1. It is worthy to mention here that docking
results needs further verification by biological testing to further
confirm and modify the experimental process for these potent
ligands for the treatment of MP pneumonia.

3.2. Exploring the chemical space of TLR4 inhibitory
compounds

The QSAR paradigm is based on the link between the molecular
structure of compounds and their respective biological activi-
ties. Molecular descriptors play a critical role in providing
analytical descriptions of the physicochemical properties of
molecules. In order to adequately account for these structural
features, it is of utmost importance to select appropriate
descriptors for a QSAR analysis. Todeschini et al** have
compiled a handbook providing comprehensive coverage of
molecular descriptors. This study selected a subset of molecular
descriptors and fingerprints representative of the general
characteristics of molecules (ie., flexibility, molecular size,
solubility, polarity, electronic properties, and charge, as well as
chemical reactivity) that are mostly correlated with bioactivities.
Using such descriptors, we can explore the chemical space of
inhibitors as mentioned earlier.** Lipinski's rule-of-five (Ro5)
descriptors are used to examine the general chemical space of
the investigated data set. According to previous studies have
suggested that chemical space analysis provides a mechanistic
explanation of the correlation between MW, ALog P, number of
hydrogen bond donors and number of hydrogen bond accep-
tors of a compound and its degree of potency and pICs, values.*
In order to visualize the relative distribution of the bioactivity
classes and Ro5, scatter and box plots were created, as shown in
Fig. 3(A-G). The results showed that 60% of compounds have
molecular weight of less than 500 Da (Fig. 3(G)). Whereas the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Panels (A—F) show exploratory TLR4 inhibitors data analysis and panel (G) shows chemical space analysis. The scatter plot showed the

diversity of ALog P versus MW of TLR4 inhibitory compounds.

ALog P for the majority of compounds varies between 2 and 7.
Molecular lipophilicity can be measured by ALog P where a high
ALog P value indicates high lipophilicity whereas a low value
suggests low lipophilicity. The ALog P is a computational esti-
mator of the logarithm of the partition coefficient between
water and octanol, which has been indispensable in deter-
mining molecular hydrophobicity. The boxplots indicate
distribution and frequency of high-, moderate- and Low-class
compounds over the Ro5 (Fig. 3 (A-D)). The Ro5 index may be
used to distinguish compounds based on their pharmacological
effects based on their molecular properties, namely the octanol-
water partition coefficient (logP < 5), the molecular weight
(<500), the number of hydrogen bond donors (>5), and the
number of hydrogen bond acceptors (<10). The Ro5 were found
to be of limited use in contributing to our understanding of the
targets-ligands relationship (i.e., their affinity towards the
target) as they were based solely on general ligand properties.
Oprea et al. demonstrated that the Ro5 criteria are not effective
in discriminating between drugs and non-drugs based on the

Table 2 Performance summary of different regression models

availability of more than 90% of the chemical reagents listed in
the Available Chemical Directory that meets Ro5 criteria.*> The
Ro5 criteria, however, do not eliminate the possibility that they
may be used to narrow the pharmacokinetic space for thera-
peutically relevant compounds. In addition, Benet et al. have
demonstrated that a QSAR model developed using the Ro5
criteria can effectively predict drug disposition characteristics
for drugs that meet or do not meet the Ro5.*°

3.3. Regression QSAR models of TLR4 inhibitors

The development of QSAR models was conducted using curated
data sets containing 78 structurally diverse compounds span-
ning several scaffolds to predict TLR4 inhibitory activity. The
molecular features of compounds are described using several
1D and 2D descriptors and fingerprint types. Several rounds of
data splitting were used to test the generalization and intra-
polation abilities of QSAR model. This model was designed
using a data split ratio of 70/30, in which 70% of the data set was
used as the internal set, while 30% of the data set was used as

Models R2 (train) RMSE (train) MAE (train) R2 (test) RMSE (test) MAE (test) R2 (CV) RMSE (CV) MAE (CV)
RFR 0.91 0.36 0.25 0.89 0.39 0.3 0.71 0.65 0.68
ETR 0.96 0.23 0.06 0.76 0.53 0.41 0.76 0.56 0.41
DTR 0.96 0.22 0.04 0.82 0.53 0.42 0.63 0.69 0.51
ABR 0.91 0.36 0.26 0.89 0.39 0.29 0.74 0.59 0.42
GBR 0.96 0.23 0.06 0.93 0.29 0.21 0.79 0.51 0.36

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Plot of experimental versus predicted plCsg values of TLR4 inhibition for QSAR regression models generated by RF (A), ETR (B), DTR (C),
ABR (D) and GBR (E) for the testing set (24 compounds). The X-axis shows compounds. The Y-axis on the left represent the plCsg values and the

Y-axis on the right shows residual error.

the external set. In the first subset of 70% of the data, the model
was internally validated by using it both as the training set as
well as the cross-validation set, and its performance was eval-
uated according to R?, RMSE, and MAE. This second set of data
containing 30% of the bioactivity data was used for external
validation, and the performance of the models was based on R?,
RMSE, and MAE. Table 2 summarizes the results of the models

constructed using the RF algorithm. The descriptors and
fingerprints including feature importance score on which the
final RF model was trained and tested is provided in ESI S2.}
The feature importance score was calculated from the RF
algorithm based on its built-in function for determining feature
importance. The descriptors and fingerprints which have
a score greater than 0.00011 were included in the training of the

Table 3 Performance summary of RF classification model on train, test, and validation data

Accuracy
Accuracy (train) RMSE (train) MAE (train)  Accuracy (test) RMSE (test) MAE (test) (CV) RMSE (CV) MAE (CV) Log loss
1 0 0 0.96 0.2 0.04 0.82 0.46 0.19 0.27
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model. While the descriptors and fingerprints whose score is
below 0.00011 were discarded because these descriptors and
fingerprints do not affect the model performance significantly
based on our pre-experiments. The predictive power of the
model was assessed according to the thresholds suggested by
previous studies,”*® in which acceptable models possess R>
(train) > 0.6 and R* (test) > 0.5. Meanwhile, it is necessary to
develop a generalized QSAR model that is capable of automat-
ically identifying informative features from a large pool of
chemical descriptors that will result in a better comprehension
of the mechanism of chemical compounds. The model has to be
simple, user-friendly, and consistent with acceptable prediction
results. Thus, the RF algorithm was utilized since it is easily able
to calculate the relative importance of molecular fingerprints
used during model construction. Further, the RF method was
employed in order to select informative molecular descriptors
because of its built-in function for measuring the importance of
descriptors. Additionally, an insight into the applicability
domain of the TLR4 QSAR model is established in the current
study for the prediction of pICs, values for DDS set of

© 2023 The Author(s). Published by the Royal Society of Chemistry

compounds. In the present study, it was taken into account the
robustness of the model, goodness-of-fit and predictability were
used to determine how well the model was performing. In this
study, the model was further evaluated against several other
algorithms and developed QSAR models for the prediction of
potent compounds. The performance summary of the RF
regression model and its comparison with other models (extra-
trees regression (ETR), decision tree regression (DTR), adaboost
regression (ABR), gradient boosting regression (GBR)) is shown
in Table 2. While the difference (residual error) between the
predicted and experimental bioactivity is represented in Fig. 4.
From these results, it has been suggested that these models
performed better on training, testing and validation data. The
comparison results showed that the proposed models are quite
promising and hold potential for the prediction of TLR4
inhibitory compounds. To the best of our knowledge, this is the
first study that proposed QSAR models for TLR4 receptor as
a target for MP pneumonia. In a previous study, novel antago-
nists of Toll-Like Receptor 4 (TLR4) were identified using
structure and ligand-based virtual screening. They noted that

RSC Adv, 2023, 13, 2057-2069 | 2065
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Table 4 Classification report of RF classification model on the test and
cross validation data

Precision Recall F1-score Support

Classification report of RF model on test data

0 0.888889 1 0.941176 8

1 1 0.933333 0.965517 15

2 1 1 1 1
Accuracy 0.958333 0.958333 0.958333 0.958333
Macro avg. 0.962963 0.977778 0.968898 24
Weighted avg. 0.962963 0.958333 0.95884 24

Classification report of RF model on cross validation data

0 0.736842 0.777778 0.756757 18

1 0.844828 0.924528 0.882883 53

2 1 0.142857 0.25 7
Accuracy 0.820513 0.820513 0.820513 0.820513
Macro avg. 0.860557 0.615054 0.62988 78
Weighted avg. 0.833834 0.820513 0.79698 78

three in silico hits exhibited promising anti-TLR4 activities with
micromolar ICs, values, and significantly reduced the produc-
tion of TNF-a..* Incredibly, several TLR4 antagonists are already
being investigated as potential anti-sepsis drugs. The most
advanced of these compounds, TAK-242 and eritoran, have
shown promising results in preclinical studies. These two
strategies failed to meet their primary objective which was to
reduce the mortality rate in patients with sepsis.’”*' However,
a critical need remains for the identification of new TLR4
antagonists that can serve as novel therapeutics.

3.4. Classification QSAR models of TLR4 inhibitors

The models were constructed in a similar manner to those for
regression, with the exception that quantitative values were
replaced by semi-quantitative labels (high, moderate and low)
for bioactivity. We present a simple and general-purpose RF
method for predicting the low, medium, and high-class DDS set
of compounds. The analysis of the training, testing, and cross
validation performance of the RF classification model is pre-
sented in Table 3. The performance of machine learning models
was evaluated by evaluation metrics such as sensitivity and
specificity including the classification accuracy, confusion
matrixes, true positive rates for a given model and false positive
rates as mentioned previously.”” Confusion matrixes are very
popular in solving classification problems. Fig. 5(A and B)

View Article Online
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depicts the confusion matrix related to the test and 5-fold cross
validation. An important tool for evaluating a machine learning
model's performance is the receiver operating characteristic
curve (ROC curve). ROC curves demonstrate the correlation
between true positive rates (TPR) for a given model and false
positive rates (FPR). The Fig. 5(C) shows the multiclass ROC
curves for the RF classifier. On a class-by-class basis, the clas-
sification report presents a summary of the principal classifi-
cation metrics. Table 4 provides a classification report that
includes precision, recall, and F1-scores on both test data and
cross validation for each of the three classes. A deeper under-
standing of the classifier behavior over global accuracy may be
gained by assessing the behavior of a specific class within
a multiclass problem. All the evaluating parameters (classifi-
cation report, performance summary, ROC curve, and confu-
sion matrix) confirmed that the developed RF classification
model performed better on training, testing, and validation
data. For further verification, it is necessary to compare the
proposed method with other existing methods. The developed
RF model was evaluated against a variety of different classifiers
including KNeighbors, support vectors, decision trees, ada-
boost, gradient boosting, linear discriminant analysis, and
quadratic discriminant analysis. The performance accuracy and
log loss of each classifier are illustrated in Fig. 5(D) and (E)
respectively. The performance summary of all these classifiers is
presented in Table 5. The results clearly indicate that the RF
classifier outperforms all other data-based classifiers both on
the test and on the trained data. It is evident from the
comparison results that the proposed RF classifier, as presented
in this study, is quite promising. It has the potential to be
a useful tool for discriminating low, moderate, and high
potency compounds. Furthermore, the proposed RF model can
be viewed as complementary to the existing method in the same
area.

3.5. Predictions of DDS set of compounds

To predict the bioactivity of compounds, we applied the final
selected QSAR models as prediction models. The top 30
compounds selected from DDS set on the basis of docking
scores and their predicted pICs, bioactivities derived from
machine learning models are summarized in Table 1, respec-
tively. RF model has been compared with several other models,
in order to reduce redundancy in the predicted results. A
comparison of the results generated by the proposed models

Table 5 Performance summary of different classifiers on the train and test data

Models Accuracy (train) ~ RMSE (train)  MAE (train)  Accuracy (test) =~ RMSE (test) = MAE (test)  Log loss
RF model 1 0 0 0.96 0.2 0.04 0.27
KNeighbors classifier 0.76 0.64 0.3 0.75 0.5 0.25 5.95
SvC 0.7 0.54 0.29 0.63 0.61 0.37 0.87
Decision-tree classifier 1 0 0.35 0.88 0.35 0.13 4.31
AdaBoost classifier 0.98 0.14 0.02 0.92 0.46 0.13 0.54
Gradient boosting classifier 1 87.5 0 0.88 0.35 0.13 0.97
Linear discriminant analysis 0.98 0.27 0.04 0.71 0.54 0.29 5.79
Quadratic discriminant analysis 1 0 0 0.75 0.5 0.25 8.63
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suggests that these models have promising results and can be
used to predict compounds that inhibit TLR4. This is the very
first study that comes to our knowledge that proposes QSAR
study to be used as a target in MP pneumonia based on a TLR4
receptor. Additionally, these results can be also used as refer-
ences to find the structures of compounds that are potentially
TLR4 modulating as well as saving time and money compared
to the traditional biological screening procedures. In addition,
previous studies have explored the importance of these QSAR
models for in silico prediction of novel compounds that can be
used to predict the activity of a target or receptor when this is
a computationally intensive process that requires learning from
bioactivity data.>*"*

4. Conclusion

The pathological process of MP pneumonia has been identified
as being associated with TLR4 and has been described as one of
the most difficult and threatening diseases of the human pop-
ulation. TLR4 can be successfully inhibited therapeutically for
the prevention of MP. A widespread use of traditional antibi-
otics in clinical settings has led to an increase in drug resistance
and other adverse effects. Thus, natural products may have the
potential to be used to modulate the host immune inflamma-
tory response in the prevention of TLR4-driven diseases. Hence,
regulating the host immune inflammatory response by means
of natural products might represent a new strategy for pre-
venting MP infection. As a result, the project can serve as
a theoretical base for the treatment of TLR4-related illnesses by
regulating the immune response of the host species. Hence, the
present research aims to screen medicinal compounds to find
new candidate drugs to treat TLR4-mediated inflammatory
diseases. Recently, machine learning is reshaping research in
various fields.””"*® Furthermore, molecular docking analysis of
the inhibitors and key residues in the binding pocket of the
TLR4 protein also suggested the presence of several hydrogen
bonds and hydrophobic interactions between inhibitors and
key residues. Nevertheless, further research will be performed
to test the screened and selected candidates, and in-depth
molecular research will be conducted in order to understand
the mechanism of action, to provide new ideas for new anti-
inflammation medications targeting TLR4. This study explores
the relationship between structure and activity for a library of 78
compounds from the ChEMBL database that are known TLR4
inhibitors. Using SMILES-based descriptors, we propose
a simple method for constructing both regression and classifi-
cation QSAR models. For the numerical description of the
compounds, several 1D and 2D chemical descriptors and
molecular fingerprints were employed. By analyzing the calcu-
lated molecular descriptors, the chemical space of TLR4
inhibitors was explored thus providing important insights into
their molecular characteristics. Presented models have the
advantage of being simple and easy to use and interpret. Key
features that are correlated with pICs, values, as determined by
the RF algorithm. In the future, such information can be used to
guide the design of novel molecular structures that act as TLR4
inhibitors. These classification and regression QSAR models

© 2023 The Author(s). Published by the Royal Society of Chemistry
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have demonstrated robust statistical results and are interpret-
able, which strongly supports their use for rapid screening of
TLR4 inhibitors.
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