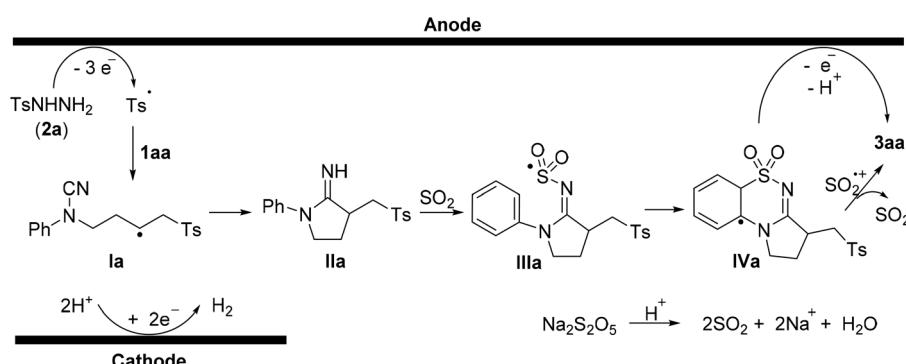


CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Org. Chem. Front.*, 2023, **10**, 1592


DOI: 10.1039/d3qo90021e
rsc.li/frontiers-organic

Correction: Electrochemical tandem cyclization to access sulfonylated fused sultams via SO_2 insertion with sodium metabisulfite

Yun-Hai Sun,^a Cheng-Jing Li,^a Ji-Ming Xi,^a Zhong-Lin Wei^a and Wei-Wei Liao^{*a,b}

Correction for 'Electrochemical tandem cyclization to access sulfonylated fused sultams via SO_2 insertion with sodium metabisulfite' by Yun-Hai Sun et al., *Org. Chem. Front.*, 2023, **10**, 705–711, <https://doi.org/10.1039/D2QO01821G>.

The authors regret that the proposed mechanism of anodic oxidation of $\text{Na}_2\text{S}_2\text{O}_5$ generating a sulfur dioxide radical cation was incorrect in Scheme 7 of the original article. In this work, the cyclic voltammetry (CV) experiments indicated that the solution of $\text{Na}_2\text{S}_2\text{O}_5$ in $\text{CH}_3\text{CN}/\text{H}_2\text{O}$ displayed an obvious oxidative peak at 1.46 V (1.31 V in the presence of MsoH) (Fig. 1), while the mixture of $\text{Na}_2\text{S}_2\text{O}_5$ and **2a** displayed an obvious oxidative peak at 1.48 V under acidic conditions. Although the mechanism is vague at present, it is likely that the anodic oxidation of SO_2 , which is generated from inorganic sulfite ($\text{Na}_2\text{S}_2\text{O}_5$), may generate a sulfur dioxide radical cation instead of directly removing one electron from the dianion $\text{S}_2\text{O}_5^{2-}$, and the sulfur dioxide radical cation could subsequently oxidize **2a** to produce the corresponding arylsulfonyl radical as an alternative possible way. We are sorry that this led to some misunderstandings. The revised Scheme 7 is presented below in this correction notice, in which the anodic oxidation of $\text{Na}_2\text{S}_2\text{O}_5$ generating a sulfur dioxide radical cation was removed.

Scheme 7 Proposed mechanism.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: wliao@jlu.edu.cn

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China

