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Galvinoxyl-inspired dinitronyl nitroxide: structural,
magnetic, and theoretical studies†
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Masaya Enomoto *

A novel galvinoxyl-inspired dinitronyl nitroxide (1) has been synthesized. Structural analysis revealed that 1

exhibited a resonance structure, resulting from p-benzoquinonediimine N,N’-dioxide and N-phenyl nitr-

oxide moieties. The magnetic study revealed an intramolecular exchange-coupling constant J/kB of −761
(3) K in H = −J (S1·S2 + S2·S3), indicating a ground doublet state. Theoretical calculations suggested not

only the strong intramolecular antiferromagnetic coupling but also a unique electron configuration owing

to a remarkable spin polarization effect.

Introduction

Organic radicals have many uses in the fields of spin
trapping,1,2 spin labeling,3,4 dynamic nuclear polarization,5,6

organic catalysts,7,8 photochromic materials,9,10 and molecular
magnetic materials.11–16 An understanding of not only the
physical properties but also the chemical stability of these
unique radical-based materials is required. There are two
approaches to stabilize radical species: (i) delocalization of the
radical spin on the π-conjugated system and (ii) steric protec-
tion around the radical centre with bulky substituents.17

Galvinoxyl reported by Coppinger is well known as a stable
radical (Fig. 1a).18 The unpaired electron is delocalized
throughout the molecule, and the tert-butyl groups play a role
in steric protection. These factors impart both thermodynamic
and kinetic stabilities to the molecule. As shown in Fig. 1a, gal-
vinoxyl can be illustrated as a triradical, but it behaves as a
monoradical species due to strong intramolecular antiferro-
magnetic coupling. Such triradicals with a doublet ground
state (S = 1/2) have been reported several times.19–22

Interestingly, galvinoxyl exhibits a difference in the spin polar-
ization of the α and β spins owing to the strong intramolecular
antiferromagnetic coupling; namely, the β-HOMO level is elev-
ated to the α-SOMO level, where the SOMO and HOMO rep-
resent singly and doubly highest occupied molecular orbitals,
respectively.23,24 This electron configuration is known as a
partial SOMO–HOMO inversion (SHI),24 as shown in Fig. 1b.

Owing to the thermal stability and the unique electron struc-
ture, several galvinoxyl analogues have been reported where
the chemical modification is mainly at the methine
position.25–36

In this study, we have synthesized a galvinoxyl-inspired
dinitronyl nitroxide, 2,7-bis(N-tert-butyl-N-oxylamino)-10′-
methyl-9,9′(10H,10′H)spirobiacridin-10-oxyl (1). The N-oxy-acri-
dine side of 1 is an isoelectronic structure with galvinoxyl
(Fig. 1c); namely, two oxygen and methine sites in galvinoxyl
are replaced by nitroxides/nitrones. The NO site is more
thermodynamically stable than phenoxy (>C–O•) due to a local

Fig. 1 Resonance and equilibrium schemes of (a) galvinoxyl and (c)
dinitronyl nitroxide 1. (b) Illustration for three electronic configurations,
non-SHI, partial SHI, and SHI.

†Electronic supplementary information (ESI) available. CCDC 2256749. For ESI
and crystallographic data in CIF or other electronic format see DOI: https://doi.
org/10.1039/d3qo00591g
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resonance structure of the >N–O• and >N•+–O− forms. This
allows the removal of the tert-butyl substituents used in galvi-
noxyl, and a six-membered ring can be created in the central
moiety. The latter improves the planarity of the whole mole-
cule, resulting in strong intramolecular antiferromagnetic
coupling. For 1, the formation of the spiro structure with
N-methyl-9(10H)acridine not only forms the central six-mem-
bered ring but also introduces steric protection. According to
Iwamura’s work, the 1,4-phenylene bisnitroxide moiety could
be stabilized as a quinoid form, p-benzoquinonediimine N,N′-
dioxide.37 Therefore, 1 should favour the dinitronyl nitroxide
monoradical structure (the left side in Fig. 1c). In fact, mag-
netic and theoretical studies of 1 exhibited the ground doublet
state (S = 1/2). The MO diagram exhibited the partial SHI state
as well as galvinoxyl, owing to the remarkable spin polariz-
ation effect.

Results and discussion
Synthesis and characterization

Compound 1 was synthesized by following the procedure
shown in Scheme S1.† Black platelet polycrystals of 1 were
obtained by recrystallization from CH2Cl2 and n-hexane.
Product 1 was characterized through spectroscopic and X-ray
crystallographic analyses. The decomposition temperature of 1
was 168 °C, where the thermal stability of 1 is similar to that
of galvinoxyl (153 °C).18

The X-band electron spin resonance (ESR) spectrum of 1 in
a toluene solution at room temperature (rt) is shown as a red
line in Fig. 2. The spectrum was a major triplet splitting with
several minor ones, indicating the hyperfine structures for one
14N and three 1H atoms. This pattern indicates that 1 in solu-
tion exhibits dinitronyl nitroxide as shown in Fig. 1c. It was
also found that the radical spin could be localized in one ben-
zenoid moiety. This finding is also reported in the study of
galvinoxyl.26,38,39 When bulky substituents such as tert-butyl or
1-adamantyl are introduced at the methine site of galvinoxyl,
two phenyl rings are twisted, resulting in the unpaired electron

being confined to one phenoxy ring. By means of simulation
using the EasySpin software,40 the hyperfine constants, g
values, and the linewidth of peak-to-peak (lwpp) were deter-
mined as aN = 1.17 mT, aH1 = 0.252 mT, aH2 = 0.182 mT, aH3 =
0.087 mT, gxx = 2.0037, gyy = 2.0069, gzz = 2.0096, and lwpp =
0.164 mT. The simulation spectrum (a black line in Fig. 2),
derived from the above parameters, well reproduced the experi-
mental one. For 1, two N–O sites could be twisted along a
single bond relative to the acridine ring, leading to a situation
similar to that of the galvinoxyl derivative with bulky
substituents.

Time-dependent ESR measurements were performed under
ambient conditions to assess the stability of 1 in solution
(Fig. S1a†). The time dependence of the maximum intensities
in the central peak is shown in Fig. S1b.† Fitting of the data
shows an exponential decay of the ESR intensity, but the inten-
sities did not reach zero for the measurement times. The
hyperfine structure (aH) gradually disappeared, resulting in a
simplified triplet splitting pattern. This finding can be attribu-
ted to the infiltration of O2 into the solution during storage.

Single-crystal X-ray crystallography

The crystal structure of 1 was evaluated at 93 K, and it crystal-
lized in a monoclinic P1̄ space group (Table S1†). There were
two crystallographically independent molecules in a unit cell
(Fig. 3a). Two independent molecules (1a and 1b) are rep-
resented in Fig. 3b and c, respectively. There were disordered
CH2Cl2 crystal solvents, which were accounted for in the
SQUEEZE/PLATON program, and the electron count was 72
electrons per formula unit. This value is close to the 1.7
CH2Cl2 solvents (71 electrons). The N1–O1, N2–O2, and N3–O3

Fig. 2 X-Band ESR spectrum of 1 in a degassed toluene solution at
298 K. The top and bottom spectra represent the experimental and
simulation, respectively. For the optimized parameters in the simulation,
see the text.

Fig. 3 Crystal structures of (a) asymmetry units in the unit cell and
molecular structures of (b) 1a and (c) 1b. Thermal ellipsoids for non-
hydrogen atoms are drawn at the 50% probability level. The H atoms
and solvent molecules are omitted for clarity.
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bond lengths of 1a are 1.285(2), 1.295(2), and 1.281(2) Å,
respectively, and the N5–O4, N6–O5, and N7–O6 bond lengths
of 1b are 1.285(3), 1.287(3), and 1.284(2) Å, respectively. These
bond lengths are shorter than the average of about 1.45 Å for
hydroxylamine compounds,41–47 indicating successful oxi-
dation. Three N–O sites in 1 show either nitroxides or nitrones,
as shown in Fig. 1b. However, since both nitrones and nitrox-
ides have an N–O length of about 1.3 Å,16,19,37,48–85 the bond
length between the N and neighbouring sp2 carbon atoms is
important to determine the electron state of the N–O site. In
fact, there is a difference in the N–Csp2 length; the average
lengths for nitrones are 1.31 Å (N–O: 1.29 Å),48–53 those for aryl
tert-butyl nitroxides are 1.43 Å (N–O: 1.29 Å),16,19,37,45,54–71 and
those for 10-oxy-9(10H)acridines are 1.41 Å (N–O: 1.29 Å).72–75

The compound 4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl,
known as nitronyl nitroxide, has both nitrone and nitroxide
moieties and thus an N–Csp2 length of 1.34 Å (N–O:
1.28 Å),41,54,55,76–85 which is intermediate between those of
nitrone and nitroxide species. For 1a and 1b, the N–Csp2

lengths are 1.380(3)–1.387(3) and 1.373(3)–1.396(4) Å, respect-
ively. These values are close to those of nitronyl nitroxides,
indicating a dinitronyl nitroxide structure (the left-side struc-
tures in Fig. 1b).

Dinitronyl nitroxide 1 possesses benzenoid and quinoid
substructures, and the quinoid one shows bond alternation
and reduction of aromaticity. In fact, 1,4-phenylene bis(tert-
butyl nitroxide) (2) shows alternating C–C bond lengths
(Table 1).37 On the other hand, chemical modifications shifted
the equilibrium in favour of the benzenoid form due to (i)
linker elongation and (ii) steric hindrance. For example, the
former are 4,4′-biphenyl- and 4,4″-1,1′:4′,1″-terphenylene bis
(tert-butyl nitroxide) compounds (3 and 4, respectively),86 and
the latter is 2,3,5,6-tetramethoxy-1,4-phenylene bis(tert-butyl
nitroxide) (5).37 Selected bond lengths and torsion angles of 1a
and 1b are summarized in Table 1. For comparison purpose,
the data of 2–5 are also listed. A harmonic oscillator model for
aromaticity (HOMA) value is useful for clarifying comparisons
of bond lengths.87,88 Four phenyl rings, C1–C6 (A) and C7–C12

(B) for 1a and C35–C40 (C) and C41–C46 (D) for 1b, show
HOMA values of 0.844, 0.853, 0.806, and 0.922, respectively.
For 1a, the values are intermediate between those of the
quinoid form 2 and the benzenoid forms 3–5, indicating the
delocalized radical spin throughout the acridine moiety. On
the other hand, the HOMA values of the C and D rings in 1b
are smaller and larger, respectively, compared to 1a. This
finding implies that the C and D rings favour the quinoid and
benzenoid forms, respectively. This situation is also supported
by the large torsion angle between the D ring and the N–O
site.

The nearest intermolecular NO⋯NO distance is 3.943(2) Å
of O2⋯O2a. This value is larger than the sum of the van der
Waals radii of O/O of 3.04 Å,89 indicating no direct radical–
radical contact. On the other hand, three O atoms, O2, O5b,
and O6c, face each other around the C5 atom, as shown in
Fig. S2.† The O2⋯O5, O5⋯O6, and O6⋯O2 distances of 4.007
(3), 4.055(3), and 4.330(2) Å, respectively, are larger than the
sum of vdW radii (O/O; 3.04 Å), while the O2⋯C5, O5⋯C5,
and O6⋯C5 distances of 2.700(2), 3.058(3), and 3.237(2) Å,
respectively, are smaller than it (C/O; 3.22 Å). These contacts
between three O atoms through an H atom on the C5 atom
could induce magnetic interaction.

Magnetic properties

Magnetic susceptibility was measured for the polycrystal
sample 1 at 2–350 K (Fig. 4a). Note that the molecular weight
is calculated excluding the crystalline solvent because the exact
amount of solvent cannot be calculated due to the gradual de-
sorption of the solvent during storage. Upon cooling from
350 K, the χmT value gradually decreased to a plateau at
100–10 K. This antiferromagnetic behaviour implies a depopu-
lation from the quartet excited state (S = 3/2) to the doublet
ground state (S = 1/2). On the other hand, the plateau value of
about 0.32 cm3 K mol−1 was smaller than the calculated χmT
value of 0.378 cm3 K mol−1 derived from S = 1/2 and g =
2.0067, where the g value is from the ESR study. This differ-
ence implies the presence of the residual crystal solvents in

Table 1 Selected structural parameters and HOMA values for 1a, 1b, and 2–5

1a 1b 2 (n = 1)a,b

3 (n = 2)c 4 (n = 3)c 5b

A B C D a b

O–N/Å 1.285(2) 1.281(2) 1.285(3) 1.284(2) 1.290(5) 1.287(6) 1.284(1) 1.291(1) 1.269(5)
N–Cα/Å 1.384(2) 1.380(3) 1.373(3) 1.386(4) 1.353(6) 1.362(7) 1.411(1) 1.413(2) 1.428(5)
Cα–Cβ/Å 1.412(2) 1.413(3) 1.407(4) 1.411(4) 1.422(6) 1.417(6) 1.406(1) 1.404(2) 1.393(7)
Cβ–Cγ/Å 1.367(3) 1.368(3) 1.364(3) 1.362(4) 1.360(7) 1.358(7) 1.380(1) 1.385(2) 1.397(5)
Cγ–Cδ/Å 1.411(2) 1.406(2) 1.416(3) 1.405(3) 1.424(6) 1.423(6) 1.416(1) 1.405(2) 1.384(6)
|∠O–N–Cα–Cβ|/° 7.4(3) 2.8(3) 6.4(3) 24.3(3) 1.2(6) 3.3(7) 7.3(1) 15.3(2) 84.5(5)
HOMAd 0.844 0.853 0.806 0.922 0.722 0.745 0.925 0.955 0.990

a Compound 2 has two crystallographically independent molecules in the unit cell (molecules a and b). b Ref. 37. c Ref. 86. d Ref. 87 and 88.
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the sample. Upon further cooling from 10 K, the χmT value
decreased sharply, indicating intermolecular antiferro-
magnetic coupling. The experimental data of 1 were analysed
with eqn (1) based on the linear three S = 1/2 centre model, Ĥ
= −J (Ŝ1·Ŝ2 + Ŝ2·Ŝ3).

90

χmT ¼ NAμB
2g2

4kB

1þ exp J=kBTð Þ þ 10 exp 3J=2kBTð Þ
1þ exp J=kBTð Þ þ 2 exp 3J=2kBTð Þ

T
T � θ

f ð1Þ

AWeiss mean-field parameter θ and a parameter f are intro-
duced in order to estimate the intermolecular interaction in
the low-temperature region and the amount of the residual
CH2Cl2 as a crystal solvent, respectively. The g value was set at
2.0067. The best-fit curve was achieved with J/kB = −761(3) K, θ
= −1.22(3) K, and f = 0.8668(9) (a black line in Fig. 4a). The J
value was negative, indicating the doublet ground state arising
from the through-bond antiferromagnetic interaction, while
the magnitude of J is discussed in the theoretical calculations
below. The θ value was negative and small due to indirect con-
tacts (Fig. S4†). From the f value of 0.8668(9), we estimated the
amount of the CH2Cl2 crystal solvent required for the calcu-
lated molecular weight, resulting in 0.991 molecules. This
value is less than the 1.7 molecules observed in the above
structural study, suggesting desorption of the solvent during
storage. Above 330 K, the experimental χmT deviated from the
fitting line (the inset of Fig. 4a), and this may be triggered by
the desorption of the residual crystal solvents.

The field-dependence of the magnetization curve at 2 K is
shown in Fig. 4b. The M value was not saturated and reached
0.814μB at 7 T. Compared to the black solid line in Fig. 4b,
which is derived from the Brillouin function with S = 1/2 and
g = 2.0067, there is a difference in the scale of the experimental
and simulation curves. Therefore, the black dashed line in
Fig. 4b is drawn, considering the purity factor f = 0.8668. The
magnitude of M in the simulation is well in agreement with
the experimental curve, whereas the experimental curve is

within the simulation. This result indicates an antiferro-
magnetic interaction, supporting the negative θ constant.

Theoretical studies

The density functional theory (DFT) calculations on 1a and 1b
were performed using the atomic coordination determined
from the crystallographic study. For reducing calculation cost,
the N-methyl acridine ring and tert-butyl groups were replaced
with H atoms and methyl groups, respectively. The calculated
spin densities of the doublet (d) and quartet (q) states for 1a
and 1b have been mapped onto the molecular skeleton shown
in Fig. 5. There is a difference in the maps of the doublet state
in 1a and 1b. For 1a, the red and blue lobes, which represent
positive and negative spin densities, appeared alternately
along the π-conjugation system owing to the spin polarization
(Fig. 5a). On the other hand, for 1b, two-coloured lobes
appeared alternately only on the left-hand six-membered ring,
while on the right-hand one, the spin density is strongly loca-
lized at the N–O site. The quartet and doublet energy states for
1a were Eq = −969.95114196 au with 〈S2〉q = 3.7501 and Ed =
−969.97229443 au with 〈S2〉d = 0.8284, respectively. Those
parameters for 1b were Eq = −969.94969131 au with 〈S2〉q =
3.7501, and the Ed energy was −969.96185149 au with 〈S2〉d =
0.8112. The ΔEq–d values of 1a and 1b were determined to be
+0.5756 and +0.3309 eV, respectively. The exchange-coupling
constant J/kB values for 1a and 1b are also −1589 and −908 K,
respectively, calculated by the approximate spin-projection
method,91 J = (Ed − Eq)/(〈S

2〉q − 〈S2〉d). These findings indicate
that both 1a and 1b show the ground doublet state.

The molecular orbitals (MOs) of the doublet state for 1a
and 1b are shown in the left and right columns of Fig. 6,
respectively. The α- and β-MO1–3 levels in 1a and 1b are
obviously separated from the other MO levels, and thus these
MOs play the key role in determining the spin state. For 1a,
α-MO2 and β-MO2 (−5.53 and −2.94 eV), α-MO1 and β-MO3
(−2.79 and −5.42 eV), and α-MO3 and β-MO1 (−5.77 and −2.42
eV) are paired, respectively, according to the comparison of

Fig. 4 (a) Temperature dependence of χmT for 1, measured at B = 0.5 T.
A solid line shows the fitting curve. The inset shows an enlarged view of
the 280 to 350 K region. (b) M vs. B at 2.0 K. The solid line shows the
Brillouin function with S = 1/2 and g = 2.0067. The dashed line is multi-
plied by 0.8668.

Fig. 5 Spin-density maps illustrating the DFT results for the (a) doublet
and (b) quartet states of 1a and the (c) doublet and (d) quartet states of
1b. Those atomic positions were taken from the crystallographic study.
Blue and red lobes indicate positive and negative spin densities, respect-
ively, with the isocontour of 0.002 e Å−3.
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those MO maps shown in Fig. 6. The orbital lobes of β-MO3
are positioned to avoid those of α-MO2, reducing electron
repulsion; namely, there is a remarkable effect of spin polariz-
ation. This situation implies intramolecular antiferromagnetic
coupling between the terminal and central N–O sites, provid-
ing a partial SHI state like galvinoxyl. On the other hand, there
is a difference in the MO diagram of 1b and 1a. According to
the structural study, the unpaired electron of 1b is localized on
the N7–O6 site with the C42–C47 (D) ring. Those MO maps
shown in Fig. 6 imply that α-MO1 and β-MO3 (−2.73 and −5.61
eV), α-MO2 and β-MO1 (−5.03 and −2.19 eV), and α-MO3 and
β-MO2 (−6.10 and −3.24 eV) are paired. For the occupied MOs,
α-MO2, α-MO1, and β-MO3, the arrangement of the molecular
lobes on the left-side ring is affected by spin polarization,
which is supported by the quinoid form observed in the struc-
tural study. However, only the α spin exists on the right-side
ring. These results suggest that the radical spin is localized at
the N–O site on the right-side ring. The differences in spin
densities and MOs of 1a and 1b were caused by the degree of
tilt of the N–O site to the acridine ring.

Conclusions

We have prepared the novel galvinoxyl-inspired dinitronyl nitr-
oxide 1, which shows a ground doublet state (S = 1/2) as con-
firmed by magnetic measurements. Compound 1a shows high
coplanarity between the acridine and N–O sites. The unpaired
electron is delocalized throughout the acridine ring, resulting
in thermodynamic stability similar to that of galvinoxyl. DFT
calculations reveal strong intramolecular antiferromagnetic
coupling and a remarkable spin polarization effect. On the
other hand, in 1b, one N–O site is twisted relative to the acri-
dine ring, and the radical spin is localized to one phenyl ring.

According to the ESR study, in solution, the radical spin loca-
lizes either on the phenyl rings due to the configuration of the
N–O sites or the N-methyl acridine sites. Therefore, these
studies on 1 reveal that the SOMO and HOMO electronic con-
figurations are highly responsive to the conformation of the
N–O sites. This highly responsive electronic structure makes it
possible to produce a switching material that is triggered by
the external environment.
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