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Base-catalyzed addition of silylacetylenes to
ketones: a route to protected tertiary propargyl
alcohols†

Krzysztof Kuciński, * Alicja Łuczak, Aliaksei Mankouski and
Grzegorz Hreczycho

The base-catalyzed addition of alkynylsilanes to ketone derivatives enables the formation of various silyl-

protected propargylic alcohols. Commercially available and inexpensive potassium bis(trimethylsilyl)amide

(KHMDS) serves as an efficient transition metal-free catalyst and permits the functionalization of a variety

of derivatives, including pharmaceuticals and biorelevant compounds. Overall, the presented system

complements classical routes to protected tertiary propargylic alcohols that mainly rely on stoichiometric

processes or fluoride-mediated reactions.

Introduction

Propargyl alcohols are ubiquitous building blocks in chemical
synthesis, being highly valued for their widespread application
as valuable synthetic intermediates or medicinally relevant
molecules themselves.1–15 They participate in a diverse array of
transformations, owing this to their multifunctionality, and
thereby being the subject of numerous studies. Protected pro-
pargyl alcohols can be accessed via well-developed stoichio-
metric methods, including mainly the use of a combination of
propargyl alcohol, chlorosilane and organolithium reagent
(Fig. 1).16 Such approaches are not without some disadvan-
tages, including the need for an excess of both corrosive halo-
silane and hazardous n-butyllithium, little accessibility to com-
mercial propargyl alcohol derivatives (compared with ubiqui-
tous ketones), and the purification requiring high amounts of
solvents (column chromatography). Moreover, the final isolat-
ing yields could be improved. For example, the reaction of
1-diphenyl-2-propyn-1-ol (Merck – 25 g per 139 €) gave the
desired product in 81% yield, whereas our methodology using
benzophenone as the starting reagent (Merck – 25 g per 11 €)
led to identical product 3t in 97% yield. Furthermore, an ana-
logous stoichiometric reaction utilizing ketones requires a two-
step pathway (the reaction with in situ generated (trimethyl-
silyl)acetylide followed by the subsequent O-silylation).17 On
the other hand, the concept of using silylacetylenes and
ketones as the substrates has also been studied in the presence

of fluorine reagents (e.g., tetrabutylammonium fluoride –

TBAF,18–20 cesium fluoride – CsF,21 etc.22,23). However, also
these strategies have several drawbacks including lower selecti-
vity and efficiency (formation of byproducts19,21,22 and moder-
ate yields19,21,24,25), the need for expensive crown ethers
(CsF),21 and narrow substrate scope.

In this context, it is also worth noting the classical alkynyla-
tion of carbonyl compounds for the generation of unprotected
propargylic alcohols, originally discovered by Alexei Favorskii
in the early 1900s.26 Here, besides stoichiometric approaches,
several catalytic protocols were developed as well.27–37

The application of Earth-abundant species as catalysts have
gained recent significant attention in organic chemistry.38–49

Considering our recent success in activating organometalloids
under sustainable catalysis,50–56 we reasoned that an appropri-
ate catalytic manifold could provide an efficient platform to
generate diversified libraries of protected propargyl alcohols.
To address the limitations of previously mentioned methods,
herein we report the KHMDS-catalyzed addition of silylacety-
lenes to ketones. Examples of biorelevant molecules trans-
formed to the corresponding protected alkynols include
camphor (topical medication), (R)-(−)-carvone (food additive),
nabumetone (nonsteroidal anti-inflammatory drug), etc.
Thereby, the mentioned late-stage functionalization may lead
to potentially biologically interesting compounds.

Results and discussion

In optimization studies, summarized in Table 1, we investi-
gated the addition of bis(trimethylsilyl)acetylene to
acetophenone.

†Electronic supplementary information (ESI) available: Characterization data
including NMR spectra. See DOI: https://doi.org/10.1039/d3qo00579h
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After several attempts, the ideal reaction conditions were
identified (Table 1, entry 1), giving product 3a in a 95% iso-
lated yield. Control reactions revealed that the reaction does
not proceed without the catalyst (entry 2). Instead, it was
found that the reaction still works fine under solvent-free reac-
tion conditions (entry 3). To ensure full conversion of 1a, it is
needed to use an excess of 2a (entries 1, 5, and 6). What is
more, such an excess of bis(trimethylsilyl)acetylene (BTMSA)
excludes the formation of small amounts of diadduct. Please
note, that 2a can be readily recovered. For details, please see
Fig. 8 (part D). Next, the attempt to replace the silylating
source with trimethylsilylacetylene gave an inferior result
(entry 7). Further experiments showed that other main-group
mediators were mostly inactive under the tested conditions
(entries 9–12). Considering the Favorskii reaction, we also
checked simple phenylacetylene as the reaction partner with
1a in the presence of KHMDS. However, no product was
observed after 2 and 24 h (entry 14).

Next, a variety of different ketones were tested to evaluate
the generality and functional-group tolerance of our protocol
(Fig. 2). A wide range of 1-substituted ethanones worked
efficiently under the reaction conditions (3a–3i). As an initial
example 3a, ketones bearing electron-donating alkyl groups
were readily converted (3b–3c), as well as phenanthrene deriva-
tive 3e (70% yield). Gratifyingly, halogenated acetophenones
were readily adopted in this protocol (3g–3j, 76–79% yield),
however, they required a higher amount of the catalyst
(6 mol%). Moreover, other useful derivatives were also well tol-
erated, and led to protected alkynols 3k–3m in good to excel-
lent yields (79–99%). Notably, 5-hexen-2-one also participated
effectively in this reaction (3n, 75% yield), while preserving the
ene-functionality untouched. Encouraged by these results, we
then investigated the use of heterocyclic ketones. All of them
afforded the expected products in good yields (3o–3p,
62–70%). Subsequently, we tested our methodology on var-
iously substituted propyl ketones. Simple nonan-3-one, as well
as propiophenone and its fluoro-substituted derivative reacted
well, providing 3q, 3r, and 3s respectively in high yields
(70–99%). Gratifyingly, two different benzophenones as well as
cyclohexyl ketones were also readily adopted in this protocol
(3t–3w, 94–99% yield). Finally, cyclohexanone was also well tol-
erated, and led to protected alkynol 3x in excellent yield (91%).

Having demonstrated the unique robustness and versatility
of our strategy, we sought to explore the late-stage functionali-
zation of biorelevant compounds including drugs. Pleasingly
then, camphor, (R)-(−)-carvone, and nabumetone were isolated
in good to excellent yield (4a–4c; 72–96%; Fig. 3). Intrigued by
the high efficiency and selectivity of the transformation, we
next pursued the development of further applications of our
catalytic system. Encouragingly, this strategy can also be
applied to silylacetylenes other than bis(trimethylsilyl)acety-
lene (2a).

As shown in Fig. 4, the addition of 1-phenyl-2-trimethyl-
silylacetylene (2b), ((2-fluorophenyl)ethynyl)-trimethylsilane
(2c), 2-((trimethylsilyl)ethynyl)pyridine (2d), and trimethyl
(thiophen-3-ylethynyl)silane (2e) was performed, successfully

Table 1 Optimization of addition of silylacetylene 2a to ketone 1a a

Entry Variation from standard conditions Conversion of 1a a [%]

1 No change 99 (95)
2 No catalyst 0c

3 Under solvent-free conditions 58b

4 1 mmol of 2a 19
5 2 mmol of 2a 90
6 Trimethylsilylacetylene instead of 2a 80b

7 1.5 mol% of KHMDS 60b

8 3 mol% of KOH at 80 °C 0b

9 3 mol% of t-BuOK at 80 °C 20b

10 3 mol% of KF at 80 °C 0b

11 3 mol% of NaHMDS at 80 °C 0b

12 In toluene 0
13 In 1,4-dioxane 30b

14 Phenylacetylene instead of 2a 0c,d

a Conversion determined via GC, with n-dodecane as internal standard.
Isolated yield in parenthesis. b After 2 h. c After 24 h. d Solvent-free
cond.

Fig. 1 Context of the investigation.

Organic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2023 Org. Chem. Front., 2023, 10, 2752–2759 | 2753

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
10

:2
5:

21
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3qo00579h


providing protected alkynols 5a–5j, in very good yields (up to
99%).

With these outcomes in mind, and given the similarity of
aldehydes, we hypothesized that the presented addition reac-
tion might allow convenient access to various protected sec-
ondary alkynols. In contrast to ketones, the reactions with the
corresponding aldehydes were less selective and efficient, and
somehow, this is in accordance with TBAF-mediated protocol
(Fig. 5).19

For instance, the reaction of 3.0 eq. of 2a with 1.0 eq. of
benzaldehyde led to the mixture of mono- and diadduct (4 : 3).
Notably, in the case of more sterically hindered ketones, we
observed only traces of the above-mentioned diadducts (<1%).

Fig. 2 Substrate scope for the addition of bis(trimethylsilyl)acetylene to ketones in the presence of KHMDS.

Fig. 3 Late-stage functionalization of biorelevant ketones.

Fig. 4 Substrate scope for the addition of different silylacetylenes to
ketones in the presence of KHMDS.

Research Article Organic Chemistry Frontiers
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Their formation suggests that protected secondary alkynols
can serve as competitive substrates toward bis(trimethylsilyl)-
acetylene. The same result was obtained for the reaction of 3.0
eq. of 2a with 1.0 eq. of 4-bromobenzaldehyde. Specifically, a
mixture of mono- and diadduct was also observed (1 : 4).
Considering this, we decided to check the influence of higher
amounts of BTMSA.

Indeed, when 6.0 eq. of 2a was used, we observed the corres-
ponding products 7a and 7b exclusively. Unfortunately, the alde-
hydes with the electron-withdrawing group still gave the mixture
of mono- and diadduct. What is more, picolinaldehyde, 4-nitro-
benzaldehyde, and decanal were non-reactive. Next, we were won-
dering that reaction of benzaldehyde with 1-phenyl-2-trimethyl-
silylacetylene (2b) should resolve the issue of selectivity.
Surprisingly, we did not observe any conversion of benzaldehyde.
The reason for the observed difference is not apparent at the
moment. However, further investigations involving aldehydes
and silylacetylenes are ongoing in our laboratory.

The key goals of this study were to simplify the synthesis
and isolation of the protected tertiary alkynols, as well as show
the scalability of the proposed methodology. Therefore, our
protocol was successfully scaled up to a 10 mmol scale yielding
98% (2.84 g) of product 3a (Fig. 6).

Once the scope of carbonyls was identified, our KHMDS-pro-
moted addition was compared with other established methods
leading to protected/unprotected tertiary alkynols (Fig. 7).

Admittedly, all mentioned strategies are not without their
own disadvantages. In the case of this protocol, the main
drawback is the low reactivity of aldehydes, unlike ketones. But
apart from that, several salient benefits of our strategy should
be outlined. First of all, this is the first chemoselective method
utilizing BTMSA as the substrate – leading exclusively to mono-
adduct products. There are two important facets. Firstly, bis
(trimethylsilyl)acetylene is commercially available and in-
expensive. Secondly, its use leads to O- and C-protected alky-
nols in a one-step procedure. Furthermore, the addition of
BTMSA into carbonyls followed by selective deprotection can
lead to terminal alkynols. Thus, being an indirect addition of
acetylene. The other noteworthy feature of our strategy is the
remarkable reactivity of ketones. It enabled the synthesis of a
variety of protected tertiary alkynols including biorelevant
compounds such as pharmaceuticals. Moreover, this protocol
was scaled up to a 10 mmol scale. This once again makes it
clear that the proposed methodology has significant appli-
cation potential. Lastly, considering its operational simplicity,
this reaction system provides a sustainable alternative to exist-

Fig. 5 Initial reaction between aldehydes and BTMSA under standard
conditions.

Fig. 6 Scaled up synthesis of 3a.

Fig. 7 Applications of varied addition methods leading to protected or
unprotected alkynols.
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ing synthetic solutions. Notably, the exclusion of column
chromatography leads to savings in many areas (e.g., solvents,
silica, time consumption, etc.).

In the end, we turned our attention to further applications
of our methodology, as well as its sustainability and mechanis-
tic insights (Fig. 8–10).

The KF/methanol system usually results in the deprotection
of trimethylsilyl moiety, while the bulky triisopropylsilyl group
remains untouched. By subjecting 2.5 mmol of potassium flu-
oride to the solution of 3a (Fig. 8A) or 5k (Fig. 8B) in methanol,
the quantitative amounts of unprotected alkynol 8a and
C-protected alkynol 8b were isolated. We could then success-
fully transform the silyl-protected alkynols into different pro-
ducts, thus showing the possibility to synthesize more
complex products with challenging substitution patterns.
Furthermore, the broader utility of our strategy is highlighted
by the facile conversion of previously obtained O-silylated
alkynol 5e to a highly important enyne derivative (Fig. 8C). To
the best of our knowledge, this is the first example of direct
elimination of –OTMS group from alkynols leading to enynes
(please note that recently, Vasilyev reported on similar acid-
mediated elimination of TMS ethers of CF3-benzyl alcohols).

57

To date, unprotected alkynols were generally converted to
enynes by using methanesulfonyl chloride/triethylamine
system. Lastly, our initial idea was to deliver a sustainable syn-
thetic protocol. Thus, an excess of silylacetylene (mainly 2a)

could be regarded as a significant drawback of our method-
ology. Fortunately, this issue should not be considered proble-
matic because bis(trimethylsilyl)acetylene (as well as 1-phenyl-
2-trimethylsilylacetylene) can be readily recovered at the iso-
lation stage (Fig. 8D).

Next, to get some mechanistic insights into this base cataly-
sis, we conducted preliminary experiments. For instance, the
addition was performed in the presence of a typical radical
scavenger such as TEMPO (100 mol%), giving the desired
product (with almost the same efficiency), thereby implying
that radical pathways were likely not operative. Moreover, we
monitored the reaction system using real-time in situ FT-IR
spectroscopy. The kinetic plots obtained for the addition of
BTMSA (2a) to 2-methylacetophenone (1b) confirmed a rapid
disappearance of the distinguishing band at 1689 cm−1 of the
carbonyl moiety (Fig. 9, top) with the simultaneously increased
intensity of the Si–O band at 1115 cm−1 (Fig. 9, bottom).

Fig. 8 Potential pathways for derivatizations and rationale for the
excess amount of silylacetylene.

Fig. 9 Illustrations of carbonyl band disappearance (top) recorded
using realtime FT-IR spectroscopy during the addition of 2a to 1b at
80 °C.

Fig. 10 Plausible mechanism for KHMDS-catalyzed addition of silylace-
tylenes to carbonyls.
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Previously, Scheidt presented very convincing evidence for
hypervalent silicon intermediates resulting from the reversible
addition of potassium ethoxide. Considering this, we per-
formed 29Si NMR analysis of the mixture containing stoichio-
metric amounts of BTMSA and KHMDS (ratio 1 : 1) in aceto-
nitrile-d3. In this particular experiment, we still observe the
signal corresponding to BTMSA (−19.2 ppm, lit. val. =
−19.2 ppm in CDCl3). Moreover, two additional signals
appeared at −17.3 ppm and 7.5 ppm. The former could be
assigned to trimethylsilylacetylene. However, 1H NMR analysis
excluded such a situation (no signal for the acetylenic proton,
lit. val. = 2.3 ppm (ref. 58)), suggesting more likely the presence
of different, hypervalent silylacetylene species. However, in the
case of pentacoordinated silicon species it is not so clear.
Especially, there is little knowledge concerning pentavalent
trialkylsilyl species resulting from the reversible addition of
disilazide anion. In general, all the previous protocols for the
base-catalyzed addition of silylacetylenes to carbonyls were
assuming the intermediacy of hypervalent silicon species. In
our specific case, it is also the most probable pathway. Thus, a
plausible catalytic cycle is presented in Fig. 10.

Conclusions

In conclusion, the base-catalyzed addition of silylacetylenes to
ketones has been enabled using commercially available
reagents. The employment of inexpensive potassium bis(tri-
methylsilyl)amide as the catalyst and bis(trimethylsilyl)-acety-
lene not only provides a mild and economical alternative to
canonical catalysis by fluoride anions, but also represents a
highly chemoselective approach with an exceptional scope that
is currently absent in other methods. Hence, late-stage deriva-
tization of biorelevant compounds, as well as selective protode-
silylation and OTMS elimination, further demonstrated the
synthetic potential of the transformation. The scalability and
practicality of this reaction were also demonstrated by both
gram-scale and recovery experiments. We expect that our strat-
egy will streamline the synthesis of different organosilicons
and enable the development of new synthetic pathways invol-
ving potassium bis(trimethylsilyl)amide and bis(trimethyl-
silyl)acetylene as the reagents.‡
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