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Stereoselective synthesis of five- and six-
membered carbocycles via Matteson
homologation/ring closing metathesis†

Thorsten Kinsinger and Uli Kazmaier *

The Matteson homologation is found to be a versatile tool for the stereoselective synthesis of polyun-

saturated alkyl boronic esters, which are excellent precursors for the construction of five- and six-mem-

bered carbocycles via ring-closing metathesis. The high diversity of the Matteson reaction allows for the

preparation of highly substituted cyclic boronic esters, which are also suitable for further homologations.

Introduction

Highly substituted and functionalised carbocycles are wide-
spread in a broad range of natural products, e.g. terpenoids,
with interesting biological properties. Common structural
motifs are substituted saturated or unsaturated cyclopentanes
and -hexanes, as well as combinations of both (Fig. 1).1

Therefore, straightforward and extremely flexible strategies for
synthesising these challenging structures are highly desirable.
The ring-closing metathesis of functionalised and substituted
dienes has been developed as a suitable approach, and many
examples have been reported over the last few decades.2

We recently reported the synthesis of allyl boronic esters3

via Matteson homologation,4 which could provide suitable
candidates for ring-closing metathesis as long as a second
double bond could be incorporated during further homologa-
tion steps.5 Donald Matteson described this interesting reac-
tion initially in the early 1960s6 and developed it in the 1980s7

as a valuable tool in organic synthesis.8

Typically, a chiral alkyl boronic ester A is reacted with
deprotonated dichloromethane in the presence of zinc
chloride, generating an α-chloroboronic ester B in a highly
stereoselective fashion (Scheme 1A). The addition of a suitable
nucleophile onto the boron atom generates a boronate
complex, which undergoes a 1,2-shift of the nucleophile to the
α-position, replacing the chlorine in a SN2-fashion.

5 Ongoing
homologation allows the highly stereoselective synthesis of
substituted and functionalised carbon chains. Common
nucleophiles are alkoxides9 or organometallic compounds,

such as alkyl-lithium or -magnesium reagents.10 In addition,
allyl zinc reagents are well-suited to introduce unsaturated sub-
stituents,11 as well as vinyl organometallics.3,12

In contrast to alkyl nucleophiles, which are generally not
problematic, vinyl nucleophiles tend to undergo various side
reactions, such as vinylboronic ester (C) formations
(Scheme 1B).13 However, under optimised conditions, where
the vinyl Grignard reagent is added in the presence of ZnCl2,
these side reactions can be suppressed almost completely, and
allyl boronic ester D is obtained in high yields (Scheme 1C).3

We are now interested in such allylboronic esters being
further homologated and, in particular, if they allow the intro-
duction of a second double bond, generating suitable sub-
strates for ring-closing metatheses. Hoffmann and others14

have used chiral allyl boronic esters intensively in carbonyl
allylations for polyketide syntheses. However, to our knowl-
edge, few examples of Matteson homologations of allyl boronic
esters have been reported, probably because of several
issues.13,15 For example, Brown et al. reported side reactions,
such as allyl migration,16 and Hirschhäuser et al. obtained
lowdiastereoselectivity.17

Results and discussion

In recent years, we have applied the Matteson homologation
successfully in several syntheses of natural products, in par-

Fig. 1 Selected terpenoid marine natural products.
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ticular, peptides18 and peptide/polyketides conjugates.19

Because of our additional interest in the class of terpenoids,
we also investigated methylallylboronic ester 1, which was con-
verted into the corresponding α-chloro boronic ester 2 under
our previously optimised conditions (Scheme 2). To this end,
dichloromethane was deprotonated with BuLi at −100 °C, and
the addition of 1, as well as two equivalents of ZnCl2, resulted
in the formation of 2, which was not isolated. The nucleophile,
either deprotonated p-methoxybenzylalcohol (at 0 °C) or

methyl Grignard reagent (at −78 °C), was added, and the
mixture was warmed to room temperature over 24 h. Under
these conditions, both desired products 3a and 3b could be
obtained in high yields without forming side products.

The next homologation step proceeded without any pro-
blems, and we could obtain the two products 4a and 4b with an
inverted substitution pattern. For the introduction of the second
double bond, we used vinyl magnesium bromide in the third
homologation step.3 In this case, the corresponding
α-chloroboronic ester of the first step was isolated and reacted in
the presence of exactly one equiv. ZnCl2 with vinyl magnesium
bromide. Even with an excess of Grignard reagent, excellent
yields of the desired allyl boronic esters 5a and 5b were obtained
without the formation of vinylboronic ester as the commonly
observed side product. Ring-closing metathesis was performed at
40 °C using second-generation Grubbs catalyst20 generating cyclo-
hexene derivatives 6 containing three stereogenic centres and a
threefold substituted double bond. Clearly, the substitution
pattern of the linear precursor had no significant influence on
the homologation or the cyclisation step.

To also acquire access to fourfold substituted cyclohexenes,
we started with the known α-chloroboronic ester 7,3,11 which
was reacted with (Z)-1-propenyl magnesium bromide
(Scheme 3). The Grignard reagent was freshly prepared from
pure (Z)-1-bromopropene, but the desired boronic ester 8 was
obtained as a 9 : 1 (Z/E) mixture. During the formation of the
Grignard reagent, partial (Z/E)-isomerisation occurred.
However, in our case, this phenomenon was completely irrele-
vant because the methyl substituent would be finally removed
in the metathesis step. For this reason, the commercially avail-
able E/Z mixture of 1-bromopropene can also be used as an
alternative to pure (Z)-1-bromopropene.

Scheme 1 Matteson homologations.

Scheme 2 Synthesis of threefold substituted cyclohexenes 6. Scheme 3 Synthesis of tetrafold substituted cyclohexene 12.
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The prolongation of the alkyl chain was performed as
described, but interestingly, the (Z/E)-ratio changed slightly in
the subsequent homologation step. This result was rather sur-
prising since the reaction conditions should not cause an iso-
merisation of the double bond.

One explanation might be that the homologation of allyl-
boronic ester 8 does not proceed in a SN2- but a SN′-fashion, at
least in part. While SN′ substitution did not change the substi-
tution pattern in this case, it can influence the double-bond
geometry via allyl migration. Since the double bond configur-
ation did not matter in our case, we proceeded with the follow-
ing two homologation steps to boronic ester 11. Its ring-
closing metathesis provided the highly substituted cyclohexene
12 as a single stereoisomer in almost quantitative yield.

The corresponding five-membered ring systems also
became available by simply reducing the number of homologa-
tion steps (Scheme 4). The enantiomer of 9 (ent-9), obtained
from the boronic ester (S)-7 containing the enantiomeric chiral
ligand, was directly converted into the allylboronic ester 13,
which was cyclised to cyclopentene 14 in comparable yield.

Finally, we looked more closely at the isomerisation of the
double bond in the homologation of allylboronic ester 8. We
assumed that at least a partial SN′ might occur during homolo-
gation. In principle, this might also happen with boronic ester
1 but, in this case, does not influence product formation.

To investigate this option, we synthesised α-methylated
boronic ester 16 starting form known dichloroboronic ester 15
(Scheme 5).14 This smart approach allowed the synthesis of
both diastereomeric boronic esters simply by changing the
order of nucleophile introduction. We used vinylmagnesium
bromide in the first step and methylmagnesium bromide in
the second. Therefore, the configuration at the α-position was
the opposite of that in the previous example (8), where the
methyl group was incorporated first. However, unexpectedly, in
the next homologation step, the expected homologation
product was not formed at all, but the derivative with a linear
side chain and a terminal methyl group at the double bond
developed instead. In this case, the homologation proceeded
exclusively in a SN′ mode, giving rise to the trans-configured
product 17 exclusively. This SN′ reaction was already observed
for the formation of the corresponding α-chloroboronic ester
intermediate, whereas the second step (nucleophile addition)
proceeded in the expected way. Further homologation and

ring-closing metathesis provided the double-substituted cyclo-
pentene 19, again in excellent yield.

In all examples investigated, the resulting metathesis pro-
ducts were also allylboronic esters. Therefore, we exemplarily
undertook a subsequent homologation step with 19 to ensure
the cyclic alkenes could be prolonged predictably.
Furthermore, the accustomed high yield could be obtained,
indicating that this protocol is well suited for synthesising
complex carbocyclic structures. More detailed investigations
concerning the allyl migration during the homologation of
allylboronic esters are currently underway.

Conclusions

In conclusion, we showed that the high diversity of the
Matteson homologation along with the functional group toler-
ance of the ring-closing metathesis generates an effective tool
for the stereoselective synthesis of complex natural products
and related structures. No stereoisomers formed in any reac-
tion step, except during allyl migration. However, this isomeri-
sation is not reflected in the final products.
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