MATERIALS CHEMISTRY

FRONTIERS

REVIEW

View Article Online

Cite this: Mater. Chem. Front.. 2023, 7, 5744

Received 9th June 2023, Accepted 9th August 2023

DOI: 10.1039/d3gm00657c

rsc.li/frontiers-materials

Nitrides: a promising class of nonlinear optical material candidates†

Xin Zhao, pac Chensheng Lin, page Haotian Tian, ac Chao Wang, ac Ning Yed and Min Luo ** **

Nonlinear optical (NLO) materials play a crucial role in all-solid-state lasers, as their frequency conversion effects enable the expansion of the limited and fixed frequency outputs of lasers to encompass both ultraviolet and infrared regions. Nitrides have emerged as highly promising NLO candidate materials, primarily due to their potentially large second-order NLO coefficients and extensive band gaps. In recent years, nitride NLO crystals have garnered significant interest from researchers, leading to the discovery of several NLO nitrides. This review provides a comprehensive overview of both reported and potential NLO nitrides, with a particular focus on their crystal structures, in order to gain a deeper understanding of the correlations between their structure and properties. Potential NLO nitrides are analyzed using density functional theory (DFT) as a basis. Additionally, this review addresses the existing challenges and offers insights into the prospective advancements in the field of NLO nitrides, fostering further discussion and exploration.

1. Introduction

Nonlinear optical (NLO) crystals have garnered significant attention due to their crucial role in advancing laser science and technology. 1-7 The conversion of laser frequency can be achieved through various up- and down-conversion processes in NLO crystals, such as second-order harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), optical parametric oscillation (OPO), and optical parametric amplification (OPA).8 Over the past few decades, several promising deep-ultraviolet (DUV), ultravioletvisible (UV-Vis), and infrared (IR) crystals have been discovered and extensively researched, such as KBe₂BO₃F₂ (KBBF), LiB₃O₅ (LBO), 10 β -BaB $_2$ O $_4$ (β -BBO), 11 KH $_2$ PO $_4$ (KDP), 12 KTiOPO $_4$ (KTP), ¹³ AgGaS₂(AGS), ¹⁴ AgGaSe₂(AGSe)¹⁵ and ZnGeP₂(ZGP). ¹⁶ In general, an outstanding NLO crystal should exhibit a comprehensive set of performance characteristics, including: (i) a strong second-order harmonic generation (SHG) response, (ii) a high laser damage threshold (LDT) inherently related to

Over the past decades, the exploration of inorganic NLO crystals in the DUV and UV-Vis regions has mainly focused on borates, carbonates, nitrates, phosphates and sulfates. 17-22 Borates have been extensively synthesized and reported as UV and DUV NLO crystals due to their remarkable structural diversity, which combines various structural motifs such as BO_3^{3-} , BO_4^{5-} , $B_2O_5^{4-}$, $B_3O_6^{3-}$ and $B_3O_7^{5-}$ anionic groups, resulting in exceptional properties. Carbonates and nitrates have exhibited significant SHG responses and birefringence, attributed to their π -conjugated planar triangles. Phosphates and sulfates, on the other hand, possess broad band gaps and optical transparency, but their hyperpolarizabilities and optical anisotropy are weaker. As regarding the study of IR NLO materials, inorganic chalcogenides,²³ halides,²⁴ and pnictides^{25,26} have been widely acknowledged as promising systems for IR NLO materials. Among these, chalcogenides have received the most attention due to their comprehensive NLO properties. Generally, halides exhibit excellent IR transparency and large band gaps resulting in high laser damage threshold (LDT). However, their SHG coefficients are typically much smaller compared to chalcogenides and pnictides. In contrast, pnictides tend to have larger effective nonlinear coefficients (d_{eff}) but smaller band gaps $(E_{\rm g} < 2.5 \text{ eV})$ when compared to chalcogenides and halides.

Nitrides are considered multifunctional materials with widespread applications in various fields, such as semiconductors, catalysis, energy storage, and spintronics.27-29 In fact, nitrides

wide band gaps (E_g) of materials, (iii) a wide optical transparency range, (iv) appropriate birefringence (Δn) for achieving the phase-matching behavior, and (v) favourable physical and chemical properties.

^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: lm8901@fjirsm.ac.cn

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China

[†] Electronic supplementary information (ESI) available: The method of theoretical calculation, band structure (HSE06), PDOS, calculated frequency-dependent coefficients and calculated refractive index dispersion curves of compounds. See DOI: https://doi.org/10.1039/d3qm00657c

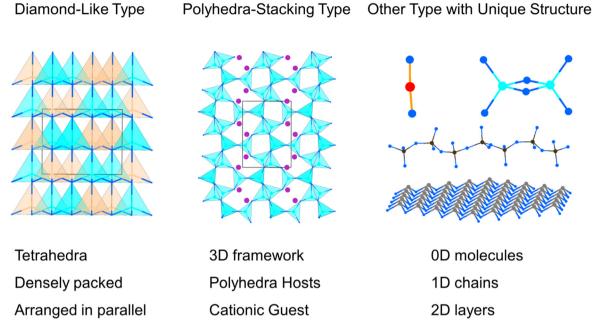


Fig. 1 Schematic representation of the three categories of NLO nitrides according to structural features

hold great potential as a system for developing NLO crystals, owing to their several advantages: (i) a wide band gap and high thermal conductivity, which contribute to a high LDT in crystals; (ii) excellent thermal stability; (iii) broad transparency windows ranging from the UV to mid-IR region. Consequently, nitrides have garnered significant interest among researchers, and several nitrides have been investigated as NLO materials through experimental approaches and computational tools, such as Zn_2NX (X = Cl, Br), $MoZn_3N_4$, $TiZnN_2$ and $AGeN_2$ (A = Sr, Ba). 30-33 However, NLO nitrides with outstanding properties remain scarce, and the structure-property relationships in NLO nitrides have not been thoroughly explored. Therefore, a comprehensive study of the characteristics and structure-property correlations in NLO nitrides is urgently needed. In this work, we summarize and categorize recently reported and potential NLO nitrides into three groups based on their structural features: (i) 19 diamond-like (DL) type NLO nitrides; (ii) 19 polyhedra-stacking type NLO nitrides; and (iii) 7 other NLO nitrides with distinctive structures, the structural features of the three categories of NLO nitrides are illustrated in Fig. 1. A detailed analysis of these compounds' crystal structures, NLO properties, and structure-property correlations was provided. Furthermore, the current challenges and future directions for the development of NLO nitrides were discussed.

2. Diamond-like type NLO nitrides

Diamond-like (DL) structures represent a rich source of noncentrosymmetric (NCS) structures found in nature. These DL compounds have garnered significant interest as potential mid-IR NLO candidates due to several key advantages: (i) their intrinsic NCS crystal structures and diverse building motifs,

which are formed by MQ₄ (M = Si, Ge, Sn, Ga, In, Zn, Cd, Hg, Cu, Ag and Li; Q = S, Se, N and P) tetrahedra, (ii) their broad IR transparency range, which is attributed to the covalent M-Q bonds; and (iii) the fundamental building blocks of [MQ4] tetrahedra in DL structures, which are consistently interconnected through an aligned arrangement.34 This alignment is anticipated to lead to an additive superposition of the microscopic second-order susceptibility, thereby facilitating a strong SHG response. As a result, numerous DL metal chalcogenides and pnictides with exceptional NLO performance have been reported, such as Li₄MgGe₂S₇, HgCuPS₄, Li₂ZnGeS₄, MnSiP₂, $M_{3}^{II}P_{n}I_{3}$ (M_{3}^{II} = Zn and Cd, P_{n} = P and As) and $Mg_{2}In_{3}Si_{2}P_{7}$. DL nitrides, when employed as NLO materials, may offer the following benefits: (i) large NLO coefficients ascribed to the parallel alignment of [MN₄] tetrahedra; (ii) wide band gaps and high thermal conductivity, which contribute to a significant LDT; and (iii) stable physical and chemical properties.

2.1. GaN and AlN

Group-III nitrides are promising materials for various technological applications, such as short-wavelength light-emitting diodes, semiconductor lasers, and optical detectors.41 The linear and nonlinear optical properties of GaN and AlN have been both theoretically and experimentally studied in the past decades. 42,43 GaN and AlN crystalized in the hexagonal crystal system with space group of $P6_3mc$, and the structure of AlN was shown in Fig. 2a. The [AlN₄] tetrahedra were interconnected by sharing corners and aligned along the c-axis. The experimental optical band gaps of GaN and AlN were 3.50 and 6.20 eV, 44,45 respectively, and their band gaps between valence bands and conduction bands are mainly dominated by the covalent Al-N and Ga-N bands (Fig. S9a and b, ESI†). As listed in Table 1, the calculated NLO coefficients were $d_{31} = 2.42$, $d_{33} = -3.64$ pm V⁻¹

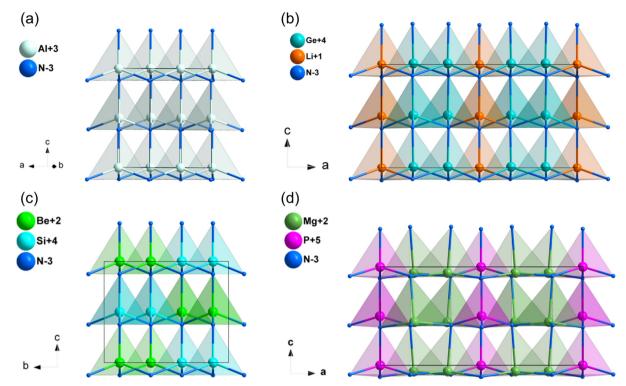


Fig. 2 Crystal structure of AlN (a), LiGe₂N₃ (b), BeSiN₂ (c) and Mg₂PN₃ (f)

Table 1 The NLO data of diamond-like type Nitrides

Compounds	Space group	Band gap (eV)				Δn^a	
		$\overline{\text{GGA}^a}$	HSE06 ^a	Exp.b	NLO coefficients ^{a} (pm V ^{-1})	At 1064 nm	At 2050 nm
GaN	P6 ₃ mc	1.93	2.87	3.5	$d_{31} = 2.42, d_{33} = -3.64$	0.017	0.015
AlN	$P6_3mc$	3.86	5.12	6.2	$d_{31} = 0.23, d_{33} = 0.86$	0.023	0.022
LiSi ₂ N ₃	$Cmc2_1$	5.16	6.45	6.4	$d_{31} = 1.01, d_{32} = 0.24, d_{33} = -0.32$	0.043	0.042
LiGe ₂ N ₃	$Cmc2_1$	1.45	2.57	3.9	d_{31} = 4.14, d_{32} = 5.30, d_{33} = -2.60	0.071	0.069
BeSiN ₂	$Pna2_1$	5.22	6.53		$d_{31} = 0.74, d_{32} = 0.91, d_{33} = 0.45$	0.031	0.030
$MgSiN_2$	$Pna2_1$	4.18	5.49	4.8	$d_{31} = 0.52, d_{32} = 1.86, d_{33} = 0.32$	0.017	0.017
MgGeN ₂	$Pna2_1$	2.21	3.35	3.2	$d_{31} = 6.05, d_{32} = 5.59, d_{33} = -12$	0.032	0.033
ZnSiN ₂	$Pna2_1$	3.41	4.58	3.7	$d_{31} = -3.01, d_{32} = -6.05, d_{33} = 7.61$	0.051	0.049
$ZnGeN_2$	$Pna2_1$	2.01	3.01	3.2	$d_{31} = -4.82, d_{32} = -5.2, d_{33} = 8.13$	0.039	0.038
Zn_3MoN_4	$Pmn2_1$	1.91	2.77	2.4	d_{31} = 13.4, d_{32} = 14.57	0.098	0.088
Mg_2PN_3	$Cmc2_1$	3.20	4.43	5.0	d_{31} = 1.99, d_{32} = 2.73, d_{33} = -2.33	0.072	0.071
Zn_2PN_3	$Cmc2_1$	2.83	4.00	3.7	d_{31} = 4.43, d_{32} = 6.70, d_{33} = -9.03	0.003	0.003
Mg_2SbN_3	$Cmc2_1$	1.45	2.51		$d_{31} = 0.26, d_{32} = 1.50, d_{33} = 3.47$	0.031	0.027
LiPN ₂	$I\bar{4}2d$	3.93	5.21	_	$d_{14} = d_{36} = 0.20$	0.022	0.016
CuPN ₂	$I\bar{4}2d$	2.12	3.19		$d_{14} = d_{36} = -8.26$	0.019	0.018
Zn ₂ NCl	$Pna2_1$	2.25	3.31	3.21	d_{31} = 5.14, d_{32} = 7.30, d_{33} = 12.89	0.065	0.062^{b}
Zn_2NBr	$Pna2_1$	2.38	3.09	2.28	d_{31} = 4.51, d_{32} = 6.35, d_{33} = 11.15	0.071	0.069^{b}
LiSiON	$Pca2_1$	5.48	7.03	_	$d_{31} = 1.33, d_{32} = -2.40, d_{33} = -0.14$	0.044	0.043
Li ₂ P ₂ ON	$Cmc2_1$	5.21	6.82	_	$d_{31} = 0.18, d_{32} = 0.33, d_{33} = 0.75$	0.045	0.044

for GaN, and $d_{31} = 0.23$, $d_{33} = 0.86$ pm V⁻¹ for AlN, and the calculated birefringence is 0.017 for GaN and 0.023 for AlN at 1064 nm.

2.2. LiSi₂N₃ and LiGe₂N₃

Both LiSi₂N₃ 46 and LiGe₂N₃ 47 crystalized in the space group of Cmc2₁. Taking LiGe₂N₃ as an example, the [LiN₄] tetrahedra and [GeN₄] tetrahedra connected through sharing N atoms, the

[LiN₄] and [GeN₄] tetrahedra in LiGe₂N₃ are perfectly aligned parallel to the c-axis (Fig. 2b). However, [SiN₄] tetrahedra in LiSi₂N₃ are at an acute angle to the c-axis (Fig. S1a, ESI†). As shown in Table 1, the experimental band gaps of LiSi₂N₃ and LiGe₂N₃ are 6.40 and 3.90 eV, 48 and their band gaps between valence bands and conduction bands are mainly dominated by the covalent Si-N and Ge-N bands (Fig. S9c and d, ESI†). The calculated NLO coefficients were $d_{31} = 1.01$, $d_{32} = 0.24$,

 $d_{33} = -0.32 \text{ pm V}^{-1} \text{ for LiSi}_2N_3$, and $d_{31} = 4.14$, $d_{32} = 5.3$, $d_{33} =$ -2.60 pm V⁻¹ for LiGe₂N₃. Additionally, their calculated birefringence is about 0.043 (LiSi₂N₃) and 0.071 (LiGe₂N₃) at 1064 nm.

2.3. $A-M^{IV}-N_2$ (A = Be, Mg, Zn; M^{IV} = Si, Ge) system

BeSiN₂, 49 MgSiN₂, MgGeN₂, 50 ZnSiN₂ and ZnGeN₂ 51 are isostructural and their space group is Pna21, thus BeSiN2 was chosen for the analysis of their structural features. Both [BeN₄] and [SiN₄] tetrahedra in BeSiN₂ are arranged along the same direction and connected by sharing corners (Fig. 2c). The calculated band gap of BeSiN2 is 6.53 eV (HSE06), and the experimental band gaps are 4.80, 3.20, 3.70 and 3.20 eV for MgSiN₂, MgGeN₂, ZnSiN₂ and ZnGeN₂, respectively. Their band gaps between valence bands and conduction bands are mainly dominated by the covalent A-N and MIV-N bands (Fig. S9e, f and S10a-c, ESI†). In addition, the calculated NLO coefficients and birefringence of A-M^{IV}-N₂ (A = Be, Mg, Zn; M^{IV} = Si, Ge) system were listed in Table 1. The results show that MgGeN₂ $(E_g = 3.2 \text{ eV}, d_{33} = -12 \text{ pm V}^{-1})$ exhibits balanced NLO properties.

2.4. Zn₃MoN₄

The compound Zn₃MoN₄⁵² crystallizes the space group of Pmn2₁ and its structure is displayed in Fig. 3a. The crystal structure of Zn₃MoN₄ is formed by stacking [ZnN₄] and [MoN₄] tetrahedra along the c-axis, and these tetrahedra are connected by sharing tetrahedral vertices. As shown in Table 1, the calculated band gap by HSE06 is 2.77 eV for Zn₃MoN₄, and

the band gap between valence bands and conduction bands is mainly dominated by the covalent Mo-N bands (Fig. S10d, ESI†). Moreover, the calculated NLO coefficients are d_{31} = 13.4, $d_{32} = 14.57$ and $d_{33} = -26.04$ pm V⁻¹, and the d_{33} coefficient is about 1.7 times that of AGS (15.3 pm V^{-1}). According to the results, its calculated birefringence is about 0.098 at 1064 nm, illustrating that Zn3MoN4 could achieve phase-matching behavior in the IR NLO application.

2.5. A-M-N (A = Li, Cu, Mg, Zn; M = P, Sb) system

Mg₂PN₃, Zn₂PN₃ and MgSbN₃. Mg₂PN₃, ⁵³ Zn₂PN₃⁵⁴ and $MgSbN_3^{55}$ crystalized in the same space group $Cmc2_1$. Taking Mg₂PN₃ as an example, its crystal structure featured densely packed layers consisting of [MgN₄] and [PN₄] tetrahedra, which were all oriented towards the c-axis (Fig. 2d). The experimental band gaps were 5.0 and 3.7 eV for Mg₂PN₃ and Zn₂PN₃, ⁵⁶ and the calculated band gap of MgSbN₃ was 2.51 eV (HSE06). The band gaps of Mg₂PN₃ and MgSbN₃ between valence bands and conduction bands are mainly dominated by the covalent Mg-N, P-N and Sb-N bands, while the band gap of Zn₂PN₃ is mainly contributed by Zn-N bonds (Fig. S10e, f and S11a, ESI†). Furthermore, the calculated NLO coefficients are $d_{31} = 1.99$, $d_{32} = 2.73$, $d_{33} = -2.33$ pm V⁻¹ for Mg₂PN₃, $d_{31} = 4.43$, $d_{32} = 6.70$, $d_{33} = -9.03 \text{ pm V}^{-1} \text{ for } Zn_2PN_3, \text{ and } d_{31} = 0.26, d_{32} = 1.50, d_{33} = 0.00, d_{33} = 0.00, d_{33} = 0.00, d_{33} = 0.00, d_{34} = 0.00, d_{34}$ 3.47 pm V⁻¹ for MgSbN₃, respectively. In addition, the calculated birefringence of Mg₂PN₃, Zn₂PN₃ and MgSbN₃ is 0.072, 0.003 and 0.031 at 1064 nm, respectively (Table 1).

LiPN₂ and CuPN₂. LiPN₂⁵⁷ and CuPN₂⁵⁸ are isostructural with the space group of I42d. LiPN₂ was chosen as an example

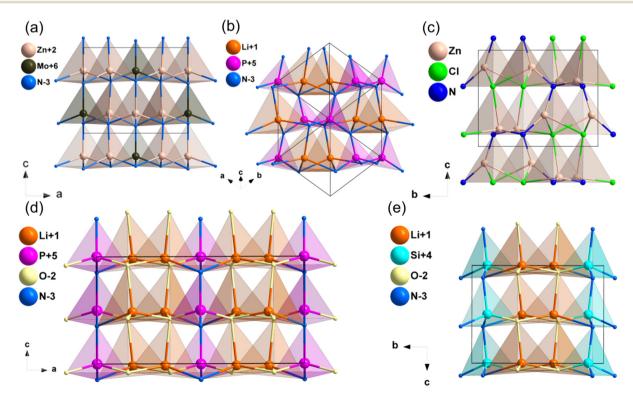


Fig. 3 Crystal structure of Zn₃MoN₄ (a), LiPN₂ (b), Zn₂NCl (c), Li₂PO₂N (d) and LiSiON (e).

to describe the structure (Fig. 3b), which was composed of [LiN₄] and [PN₄] tetrahedra, and they were arranged in nearly the same direction. As shown in Table 1, the HSE06 band gaps of LiPN₂ and CuPN₂ were 5.21 and 3.19 eV, respectively, which were larger than LiGaS₂ (3.62 eV), and their band gaps between valence bands and conduction bands are mainly dominated by the Li-N, Cu-N and P-N bands (Fig. S11b and c, ESI†). The NLO coefficients of LiPN₂ and CuPN₂ were calculated to be d_{14} = $d_{36} = 0.20 \text{ pm V}^{-1} \text{ (LiPN}_2) \text{ and } d_{14} = d_{36} = -8.26 \text{ pm V}^{-1} \text{ (CuPN}_2),$ and their calculated birefringence is 0.022 and 0.019 at 1064 nm, respectively.

2.6. Diamond-like nitrides with mixed anions

 Zn_2NX (X = Cl, Br). Zn_2NX (X = Cl, Br) were synthesized and reported as mid-IR NLO materials in 2021 by our group.³⁰ These two compounds are isostructural and crystallize in space group Pna2₁. In the structure of Zn₂NCl, the distorted [ZnN₂Cl₂] tetrahedra are connected to each other via sharing N and Cl atoms and stacked along the same direction (Fig. 3c). The two compounds exhibit excellent mid-IR NLO performances. The experimental band gaps are 3.21 and 3.28 eV for Zn₂NCl and Zn₂NBr, both of which are larger than 3.00 eV. The two compounds exhibit large SHG responses which are 0.9 and 0.8 times that of AGS at 2050 nm, respectively. They also have high LDTs of 20.7 and 25.9 times that of AGS respectively. All the mentioned above mid-IR NLO properties are listed in Table 1. These results showed that Zn_2NX (X = Cl, Br) are potential candidates as good IR NLO materials.

LiSiON. LiSiON⁵⁹ crystallizes in space group Pca2₁ and its crystal structure is displayed in Fig. 3e. The [SiN₃O] and [LiNO₃] tetrahedra with mixed anions were interconnected via sharing the N and O atoms, which were aligned in nearly the same direction. The calculated results of LiSiON are given in Table 1, the HSE06 band gap is 7.03 eV, which is mainly dominated by the covalent Si-O and Si-N bands (Fig. S11d, ESI†). LiSiON has three independent non-vanishing NLO tensor components (d_{31}, d_{32}, d_{33}) , and the calculated value are $d_{31} = 1.33$, $d_{32} =$ -2.40 and $d_{33} = -0.14$ pm V⁻¹. LiSiON exhibits a large birefringence with the calculated value of 0.044 at 1064 nm.

Li₂PO₂N. The compound Li₂PO₂N⁶⁰ crystallizes in space group Cmc2₁. In the structure of Li₂PO₂N, [PN₂O₂] tetrahedra are stacked parallel to the c-axis, and [LiNO₃] tetrahedra are at an acute angle to the c-axis, both of which are connected by sharing N and O atoms (Fig. 3d). The HSE06 band gap of Li₂PO₂N is 6.82 eV, which is mainly dominated by the covalent P-O and P-N bands (Fig. S11e, ESI†). The calculated NLO coefficients are $d_{31} = 0.18$, $d_{32} = 0.33$ and $d_{33} = 0.75$ pm V⁻¹. Notably, the computational birefringence of Li₂PO₂N is 0.045 at 1064 nm (Table 1).

3. Polyhedra-stacking type NLO nitrides

The design of polyhedra-stacking type compounds serves as a prevalent and effective approach for discovering exceptional NLO crystals. These compounds are characterized by a threedimensional (3D) framework formed through the combination of $[MQ_4]$ (M = Ag, Cd, Ga, P, S,Ge, etc. Q = P, O, S and Se) with highly electropositive alkali earth elements (Li, Na, K, Rb, Cs) and alkali metals (Mg, Ca, Sr, Ba), or rare earth elements (La, Sc, Y, Lu) possessing a full shell. Polyhedra-stacking type NLO nitrides offer two primary advantages. Firstly, the structural frameworks of these compounds exhibit a wide variety, presenting opportunities for the development of innovative structures. Secondly, the structure of these compounds possesses the potential for rational adjustment, allowing for the achievement of a balance between a robust SHG response and a broad bandgap. This can be accomplished by modifying the cations to enable parallel alignment of the [MQ4] tetrahedra.

3.1. Alkali metal-based polyhedra-stacking type NLO nitrides

NaSi₂N₃ and NaGe₂N₃. NaSi₂N₃⁶¹ and NaGe₂N₃⁶² are isostructural and their space group is Cmc21. In their structure, the adjacent [Si/GeN₄] tetrahedra connected by sharing N atoms to form a layer in b-c plane, the structural framework made up by connecting layers and Na⁺ filled in the holes (Fig. 4). The calculated band gaps by HSE06 are 5.31 eV for NaSi₂N₃ and 4.17 eV for NaGe₂N₃, which are mainly dominated by the covalent Si/Ge-N bonds and ionic Na-N interactions (Fig. S12a and b, ESI†). The calculated NLO coefficients are $d_{31} = 0.33$, $d_{32} = 0.73$, $d_{33} = -0.65$ pm V⁻¹ for NaSi₂N₃ and $d_{31} = 4.74$, $d_{32} = 1.59$, $d_{33} = -4.36$ pm V⁻¹, respectively. In addition, their calculated birefringence is 0.064 and 0.048 at 1064 nm, respectively. All the above results are listed in Table 2.

NaPN₂. NaPN₂^{63,64} crystallizes in the tetragonal space group $I\bar{4}2d$. In this structure, [PN₄] tetrahedra attached by sharing corners and expanded in the space to form the structural framework, while Na⁺ filled in the intervals to balance the residual charge (Fig. 5a). As listed in Table 2, the calculated band gap of NaPN2 is 6.16 eV (HSE06), which is mainly dominated by the covalent P-N bonds and ionic Na-N interactions (Fig. S11f, ESI†). The calculated NLO coefficient is $d_{14} = d_{36} = -1.97$ pm V⁻¹, and the birefringence of NaPN₂ was calculated to be 0.042 at 1064 nm.

3.2. Alkaline earth metals-based polyhedra-stacking type NLO nitrides

CaGeN₂. CaGeN₂⁶⁵ crystallizes in tetragonal space group I42d. In the structural framework of CaGeN2, [GeN4] tetrahedra interconnected by vertex-sharing and arranged along the same direction (Fig. 5d). CaGeN₂ has a wider HSE06 band gap of 4.31 eV compared to ZnGeN2 (3.01 eV), which is mainly dominated by the covalent Ge-N bonds (Fig. S12c, ESI†). The calculated NLO coefficient d_{14} and birefringence are -5.74 pm V⁻¹ and 0.060 at 1064 nm, respectively (Table 2).

CaP₂N₄ and SrP₂N₄. CaP₂N₄⁶⁶ and SrP₂N₄⁶⁷ are isostructural and they crystallized in the polar space group P63. Taking CaP₂N₄ as an example, the [PN₄] tetrahedra stacked according to the symmetry of 63 screw axis and connected via vertexsharing, while Ca²⁺ are added into the holes to balance the framework (Fig. 5c, e and f). Their computational band gaps are

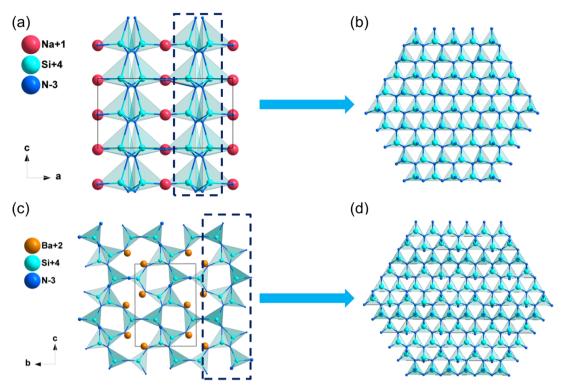


Fig. 4 Crystal structure of NaSi₂N₃ (a) and (b) and Ba₂Si₅N₈ (c) and (d).

Table 2 The NLO data of polyhedra-stacking type nitrides

Compounds	Space group	Band gap (eV)				Δn^a	
		$\overline{\text{GGA}^a}$	HSE06 ^a	Exp.b	NLO coefficients a (pm V $^{-1}$)	At 1064 nm	At 2050 nn
NaSi ₂ N ₃	$Cmc2_1$	4.02	5.31	_	$d_{31} = 0.33, d_{32} = 0.73, d_{33} = -0.65$	0.064	0.063
NaGe ₂ N ₃	$Cmc2_1$	2.88	4.17	_	$d_{31} = 4.74, d_{32} = 1.59, d_{33} = -4.36$	0.048	0.047
$NaPN_2$	$I\bar{4}2d$	4.77	6.16	_	$d_{14} = d_{36} = -1.9$	0.042	0.042
CaGeN ₂	$I\bar{4}2d$	3.16	4.31	_	$d_{14} = d_{36} = -5.7$	0.060	0.061
CaP_2N_4	$P6_3$	4.37	5.77	_	$d_{31} = -0.02, d_{33} = 0.58$	0.008	0.007
SrP_2N_4	$P6_3$	3.35	4.59	_	$d_{31} = 0.29, d_{33} = 0.94$	0.014	0.013
Sr ₂ Si ₅ N ₈	$Pmn2_1$	3.25	4.45	_	$d_{31} = 1.01, d_{32} = 0.24, d_{33} = -0.32$	0.023	0.023
Ba ₂ Si ₅ N ₈	$Pmn2_1$	2.92	4.03	_	$d_{31} = 1.01, d_{32} = 0.24, d_{33} = -0.32$	0.024	0.023
SrSi ₇ N ₁₀	Pc	4.05	5.27	_	$d_{11} = -0.22, d_{12} = 0.57, d_{13} = 3.44$	0.018	0.018
					$d_{31} = -0.49, d_{32} = 4.21, d_{33} = 0.44$		
BaSi ₇ N ₁₀	Pc	3.93	5.17	_	$d_{11} = -0.23, d_{12} = 0.57, d_{13} = -4.64$	0.011	0.011
					$d_{31} = -0.52, d_{32} = -3.77, d_{33} = 0.41$		
SrSi ₆ N ₈	Imm2	3.21	4.46	_	$d_{31} = -1.18, d_{32} = -0.30, d_{33} = 3.82$	0.043	0.042
α-Ca ₂ Si ₅ N ₈	Cc	3.47	4.72	_	$d_{11} = -0.23, d_{12} = 0.21, d_{13} = -0.08$	0.009	0.009
					$d_{31} = -0.10, d_{32} = -0.47, d_{33} = 0.05$		
β-Ca ₂ Si ₅ N ₈	$P2_1$	2.65	3.74	_	$d_{14} = 0.35, d_{21} = -1.90, d_{22} = -0.71, d_{23} = -3.04$	0.016	0.015
Ca ₃ Al ₂ N ₄	$P2_{1}2_{1}2_{1}$	2.26	3.29	_	$d_{14} = -0.28$	0.031	0.029
SrAlSi ₄ N ₇	$Pna2_1$	2.83	4.04	_	$d_{31} = -1.02, d_{32} = 1.43, d_{33} = -1.34$	0.028	0.027
SrYSi ₄ N ₇	$P6_3mc$	2.98	4.21	3.3-3.5	$d_{31} = -1.25, d_{33} = 6.45$	0.012	0.011
CrB ₄ O ₅ N	$P6_3mc$	1.96^{b}	_	_	$0.8 \times SiO_2^b$	_	_
LaSi ₃ N ₅	$P2_{1}2_{1}2_{1}$	3.38	4.53	_	$d_{14} = 2.50$	0.037	0.036
$Pb_2Si_5N_8$	$Pmn2_1$	2.18	3.17	_	$d_{31} = 6.46, d_{32} = -3.71, d_{33} = -11.84$	0.064	0.042

^a This work. ^b Other work from ref. 74, 76.

5.77 and 4.59 eV (HSE06), respectively, which are mainly dominated by the covalent P-N bonds (Fig. S12d and e, ESI†). The calculated NLO coefficients are $d_{31} = -0.02$, $d_{33} = 0.58$ pm V⁻¹ for CaP_2N_4 and $d_{31} = 0.29$, $d_{33} = 0.94$ pm V^{-1} for SrP_2N_4 (Table 2), respectively. In addition, the calculated birefringence of CaP_2N_4 and SrP_2N_4 is 0.008 and 0.014 at 1064 nm.

 $Sr_2Si_5N_8$ and $Ba_2Si_5N_8$. $Sr_2Si_5N_8$ and $Ba_2Si_5N_8^{68}$ are isostructural and crystallized in the orthorhombic space group Pmn2₁. In their structure, [SiN₄] tetrahedra interconnected *via* corners sharing to form interlayers in a-c plane, which consist of the structural framework through [SiN₄] tetrahedra, and Sr²⁺/Ba²⁺ are accessed to empty positions to balance the framework

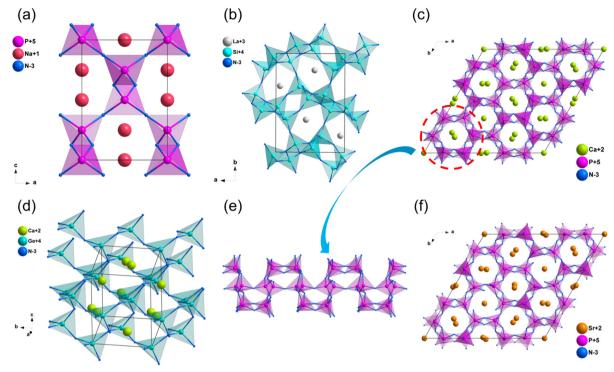


Fig. 5 Crystal structure of NaPN₂ (a), LaSi₃N₅ (b), CaP₂N₄ (c) and (e), SrP₂N₄ (f) and CaGeN₂ (d).

(Fig. 4c and d). The optical properties of Sr₂Si₅N₈ and Ba₂Si₅N₈ were calculated and listed in Table 2, the calculated band gaps are 4.45 eV for Sr₂Si₅N₈ and 4.03 eV for Ba₂Si₅N₈ (HSE06), which are mainly dominated by the covalent Si-N bonds (Fig. S12f and S13a, ESI†). The calculated NLO coefficients are d_{31} = 1.7, d_{32} = 1.73, $d_{33} = 0.76 \text{ pm V}^{-1} \text{ for } Sr_2Si_5N_8 \text{ and } d_{31} = -1.22, d_{32} = 0.76 \text{ pm V}^{-1}$ -0.91, $d_{33} = -0.4$ pm V⁻¹ for Ba₂Si₅N₈. In addition, the calculated birefringence are 0.023 (Sr₂Si₅N₈) and 0.024 (Ba₂Si₅N₈) at 1064 nm, respectively.

SrSi₇N₁₀ and BaSi₇N₁₀. SrSi₇N₁₀⁶⁹ and BaSi₇N₁₀⁷⁰ are isostructural and their space group is Pc. In their structure, the structural framework is formed by layers (in a-c plane) and chains (parallel to c-axis) with Sr²⁺/Ba²⁺ filled in the holes, where the layers are made up of corner-shared [SiN₄] tetrahedra as well as the chains constructed of corner- and prism-shared [SiN₄] tetrahedra (Fig. 6a and b). The calculated band gaps of SrSi₇N₁₀ and BaSi₇N₁₀ are 5.27 and 5.17 eV, respectively, which are mainly dominated by the covalent Si-N bonds (Fig. S13b and c, ESI†). Moreover, the calculated NLO coefficients are d_{11} = -0.22, $d_{12} = 0.57$, $d_{13} = 3.44$, $d_{31} = -0.49$, $d_{32} = 4.21$, $d_{33} =$ 0.44 pm V⁻¹ for SrSi₇N₁₀ and $d_{11} = -0.23$, $d_{12} = 0.57$, $d_{13} =$ -4.64, $d_{31} = -0.52$ pm V⁻¹, $d_{32} = -3.77$, $d_{33} = 0.41$ pm V⁻¹ for BaSi₇N₁₀. The calculated birefringence of SrSi₇N₁₀ and BaSi₇N₁₀ is 0.018 and 0.011 at 1064 nm, respectively.

 $SrSi_6N_8$. The synthesis and crystal structure of $SrSi_6N_8^{71}$ were first reported in 2005 by Schnick et al. SrSi₆N₈ crystallize in the orthorhombic space group Imm2. As described in Fig. 6, the structural framework is constructed by [SiN₄] tetrahedra and $[N_3Si\text{-}SiN_3]$ entities, which are bridged through N atoms with Sr²⁺ distributed in the holes. Interestingly, [N₃Si-SiN₃] entities contain additional Si-Si single bonds, which might enhance the SHG performance of SrSi₆N₈. The HSE06 band gap of SrSi₆N₈ is 4.46 eV, and the band gap between valence bands and conduction bands is mainly dominated by the covalent Si-N bonds (Fig. S13d, ESI†). The calculated NLO coefficient are $d_{31} = -1.18$, $d_{32} = -0.3$, $d_{33} = 3.82$ pm V⁻¹. Notably, the computational birefringence of SrSi₆N₈ is 0.043 at 1064 nm (Table 2).

 α -Ca₂Si₅N₈ and β -Ca₂Si₅N₈. α -Ca₂Si₅N₈^{72,73} and β -Ca₂Si₅N₈⁷⁴ are isomers, where the former crystallizes in the monoclinic space group Cc and the latter crystallizes in the monoclinic space group P2₁. As can be seen in Fig. 7, both α-Ca₂Si₅N₈ and β-Ca₂Si₅N₈ have a structural framework similar to Ba₂Si₅N₈, including layers made up of [SiN₄] tetrahedra and the ways they connected. The HSE06 band gaps are 4.72 and 3.74 eV for α-Ca₂Si₅N₈ and β-Ca₂Si₅N₈, respectively, which are mainly dominated by the covalent Si-N bonds (Fig. S13e and f, ESI†). The calculated NLO coefficients are $d_{11} = -0.23$, $d_{12} = 0.21$, $d_{13} = 0.21$ -0.08, $d_{31} = 0.1$, $d_{32} = -0.47$, $d_{33} = 0.05$ pm V⁻¹ for α -Ca₂Si₅N₈ and $d_{21} = -1.99$, $d_{22} = -0.71$, $d_{23} = -3.04$, $d_{14} = 0.35$ pm V⁻¹ for β-Ca₂Si₅N₈. Furthermore, the calculated birefringence of α -Ca₂Si₅N₈ and β -Ca₂Si₅N₈ is 0.009 and 0.016 at 1064 nm.

Ca₃Al₂N₄. The compound Ca₃Al₂N₄⁷⁵ crystallizes in orthorhombic space group P2₁2₁2₁. In the structure, [AlN₄] tetrahedra are connected by sharing corners and prisms to form chains, which extend into the space to constitute the framework with Ca²⁺ dispersed in the intervals to stabilize the structure (Fig. 8a and b). The calculated band gap of Ca₃Al₂N₄ is 3.29 eV (HSE06), which is mainly dominated by the covalent Al-N bonds and ionic Ca-N interactions (Fig. S14a, ESI†).

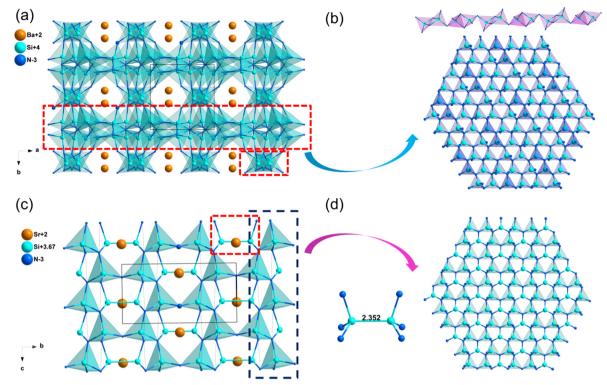


Fig. 6 Crystal structure of $BaSi_7N_{10}$ (a) and (b) and $SrSi_6N_8$ (c) and (d).

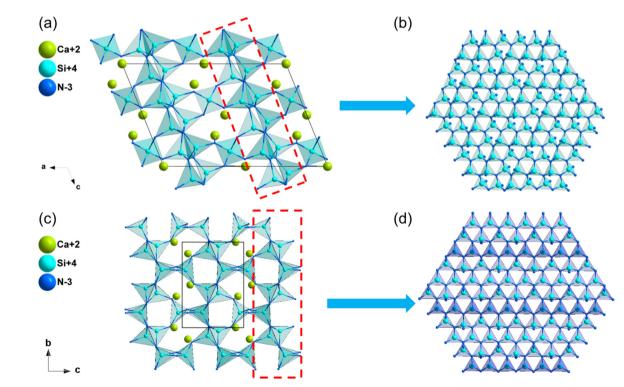
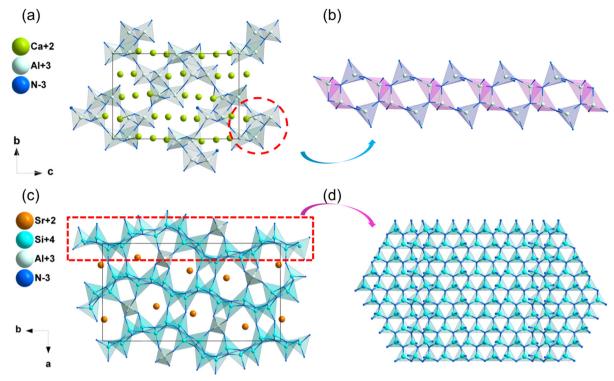



Fig. 7 Crystal structure of α -Ca₂Si₅N₈ (a) and (b) and β -Ca₂Si₅N₈ (c) and (d).

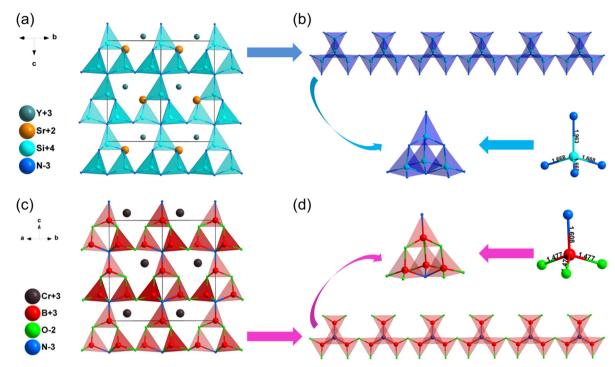
The calculated NLO coefficient is $d_{14} = -0.28$ pm V⁻¹. In addition, the birefringence of Ca₃Al₂N₄ is calculated to be 0.031 at 1064 nm. All these results were listed in Table 2.

SrAlSi₄N₇. The compound SrAlSi₄N₇ was first synthesized and studied in 2009 by Schnick et al.76 SrAlSi₄N₇ crystallize in the polar space group Pna21, its structure featured layers

Crystal structure of Ca₃Al₂N₄ (a) and (b) and SrAlSi₄N₇ (c) and (d)

consisting of [SiN₄] tetrahedra, which were linked inside the layers by sharing N atoms. And the layers are attached using [AlN₄] tetrahedra and N atoms as bridges to form the structural framework of SrAlSi₄N₇, where Sr²⁺ are added into the pores to balance the framework (Fig. 8c and d). The band gap calculated by HSE06 of SrAlSi₄N₇ is 4.04 eV, which is mainly dominated by the covalent Si-N bonds (Fig. S13b, ESI†). The calculated NLO coefficients are $d_{31} = -1.02$, $d_{32} = 1.43$, $d_{33} = -1.37$ pm V⁻¹, respectively. In addition, the birefringence of SrAlSi₄N₇ is calculated to be 0.028 at 1064 nm. All the above results were listed in Table 2.

SrYSi₄N₇. The synthesis and crystal structure of the compound SrYSi₄N₇ were reported in 2004.⁷⁷ SrYSi₄N₇ crystallizes in the hexagonal space group P63mc and features C2-type supertetrahedra.⁷⁸ The structural framework of SrYSi₄N₇ is assembled from layers constructed by [Si₄N₁₁] C₂-type supertetrahedra, which are connected by sharing the corners of the bottom [SiP₄] tetrahedra, and Sr²⁺ cations as well as [YN₆] octahedra are filled in the pores (Fig. 9a and b). The experimental band gap of SrYSi₄N₇ is 3.3-3.5 eV, while the calculated band gap is 4.21 eV (HSE06), which is mainly dominated by the covalent Y-N and Si-N bonds (Fig. S14c, ESI†). Moreover, the calculated NLO coefficients of SrYSi₄N₇ are $d_{31} = -1.25$ and $d_{33} = 6.45 \text{ pm V}^{-1}$. The birefringence of SrYSi₄N₇ is calculated to be 0.012 at 1064 nm.


3.3. Other polyhedra-stacking type NLO nitrides

CrB₄O₅N. The synthesis and physical properties (including SHG performance) of CrB₄O₅N were investigated in 2021 by

Huppertz et al. 79 CrB₄O₅N crystallizes in hexagonal space group P63mc. Interestingly, the structure of the chromium oxonitridoborate CrB₄O₅N is similar to that of the nitridosilicates SrYSi₄N₇. The structural framework of CrB₄O₅N could be regarded that the [Si₄N₁₁] C₂-type supertetrahedra were replaced by [B₄O₉N₂] C₂-type supertetrahedra(Fig. 9c and d). The calculated band gap of CrB₄O₅N is 1.96 eV (GGA), and the frontier orbitals (top of valence band and bottom of conduction band) of this compound are mainly occupied by the Cr-3d, indicating that the optical band gap is mainly decided on the Cr-3d orbital. Furthermore, the SHG response of CrB₄O₅N was about 0.8 times that of quartz.

LaSi₃N₅. LaSi₃N₅ was first synthesized and studied in 1995.⁸⁰ LaSi₃N₅ crystallizes in orthorhombic space group P2₁2₁2₁ and its crystal structure is depicted in Fig. 5b. In this structure, the [SiN₄] tetrahedra are interconnected by sharing N atoms and extend in space with La³⁺ added into the intervals to build the framework of LaSi₃N₅. The calculated results demonstrate that LaSi₃N₅ owns a wide band gap 4.53 eV (HSE06), which is mainly dominated by the covalent La-N bonds (Fig. S14d, ESI†). The NLO coefficient based on the DFT calculation for LaSi₃N₅ is d_{14} = 2.50 pm V^{-1} , and LaSi₃N₅ exhibits large birefringence with the calculated value of 0.037 at 1064 nm.

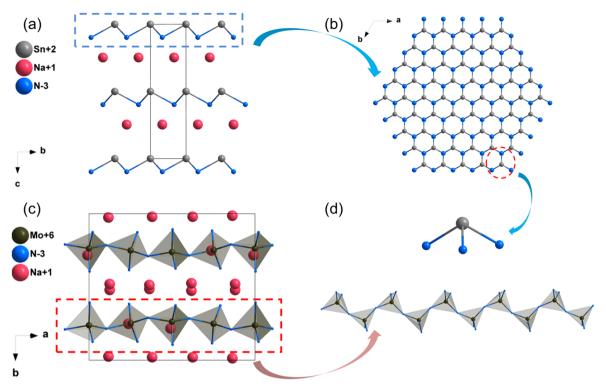
Pb₂Si₅N₈. The compound Pb₂Si₅N₈⁸¹ crystallizes in orthorhombic space group Pmn2₁. Pb₂Si₅N₈ is isomorphic to Sr₂Si₅N₈ and Ba₂Si₅N₈, and features layers consisting of [SiN₄] tetrahedra. Notably, cations filled in the structural framework of Pb2Si5N8 are different from that of Sr2Si5N8 and Ba2Si5N8 (Fig. S1b, ESI†), because Pb2+ contains activated lone pair

Crystal structure of SrYSi₄N₇ (a) and (b) and CrB₄O₅N (c) and (d)

electrons, which could improve the SHG response for Pb2Si5N8 compared with $Sr_2Si_5N_8$ and $Ba_2Si_5N_8$. $^{82-84}$ The calculated band gap of Pb₂Si₅N₈ is 3.17 eV (HSE06), which is mainly dominated by the covalent Si-N bonds (Fig. S14e, ESI†). Its calculated NLO coefficients are $d_{31} = 6.46$, $d_{32} = -3.71$, $d_{33} = -11.84$ pm V⁻¹, and the largest NLO tensor of Pb2Si5N8 is larger than that of $Sr_2Si_5N_8$ (-1.22 pm V⁻¹) and $Ba_2Si_5N_8$ (1.73 pm V⁻¹). Furthermore, the birefringence of Pb₂Si₅N₈ is calculated to be 0.064 at 1064 nm.

4. Other NLO nitrides with featured structures

The structures of some nitrides exhibit low-dimensional special features, such as zero-dimensional (0D) molecules, onedimensional (1D) chains and two-dimensional (2D) layers, and excellent properties may be realized in these nitrides with unique structures. Low-dimensional units, including [BN2] entities in Ba₃B₂N₄, [Si₂N₆] dual-tetrahedra in Ba₂Si₂N₆, $[MoN_4]_n/[WN_4]_n$ chains in Na_3MoN_3/Na_3WN_3 , $[SnN_3]_n$ layers in NaSnN and $[ZrN_6]_n$ layers in $ZnZrN_2$ are discussed in detail in this section. Results indicated that these NLO nitrides with lowdimensional structures exhibited large NLO coefficients and birefringence.


NaSnN

The synthesis and physical properties (including SHG performance) of compound NaSnN were first reported in 2005 by Clarke et al, 85 and the NLO properties were study by Lin et al. based on the first-principles calculations recently.86 NaSnN

crystallizes in hexagonal space group P63mc, and its structural framework built by infinite two-dimensional (2D) layers with Na⁺ dispersed between layers, which are made up of [SnN₃] triangular pyramids connecting each other through N atoms (Fig. 10a and b). In addition, the activated lone pair electrons in Sn²⁺ could enhance the second-order NLO response. The band gap by HSE06 of NaSnN is 1.70 eV, and the band gap between valence bands (VB) and conduction bands (CB) is dominated by the ionic Na-N coupling and covalent Sn-N hybridization. Moreover, the calculated NLO coefficients and birefringence are d_{13} = $d_{23} = -2.7$; $d_{33} = 27$ pm V⁻¹ and 0.629 at 2.0 μ m, respectively. All these results were listed in Table 3. The SHG-weighted density of NaSnN suggested that the [SnN₃]_∞ backbone with the lone electron pairs effect leading to the large NLO coefficients.

Na₃MoN₃ and Na₃WN₃

 $Na_3MoN_3^{\ 87}$ and $Na_3WN_3^{\ 88}$ are isostructural and crystallize in the monoclinic space group Cc. Their crystal structure featured one-dimensional (1D) infinite chains parallel to each other, constructed by vertex-sharing [MoN₄] tetrahedra, and Na⁺ are distributed between chains to balance the charge (Fig. 10c and d). Their computational band gaps are 2.1 and 2.41 eV (HSE06), respectively. The band gaps of Na3MoN3 and Na3WN3 between valence bands and conduction bands are dominated by the ionic Na-N bands and covalent Mo/W-N bands (Fig. S14f and S15a, ESI†). The calculated NLO coefficients are $d_{11} = 11.98$, $d_{12} = -5.98$, $d_{13} = -6.04$, $d_{31} = -5.74$, $d_{32} = -3.42$, $d_{33} =$ -1.52 pm V⁻¹ for Na₃MoN₃ and $d_{11} = 11.98$, $d_{12} = -5.98$, $d_{13} = -6.04$, $d_{31} = -5.74$, $d_{32} = -3.42$, $d_{33} = -1.52$ pm V⁻¹ for Na₃WN₃ (Table 3), respectively. In addition, the calculated birefringence of Na₃MoN₃ and Na₃WN₃ is 0.119 and 0.079 at 1064 nm.

Crystal structure of NaSnN (a), (b) and (d) Na₃MoN₄ (c) and (d)

Table 3 The NLO data of other nitrides with featured structures

Compounds	Space group	Band gap (eV)				Δn^a	
		$\overline{\text{GGA}^a}$	HSE06 ^a	Exp.b	NLO coefficients ^{a} (pm V ^{-1})	At 1064 nm	At 2050 nm
NaSnN	P6 ₃ mc	1.07	1.70	_	$d_{31} = d_{32} = -2.7, d_{33} = -27^{b}$	0.578^{a}	0.629^{b}
Na_3MoN_3	Cc	1.25	2.10	_	$d_{11} = 11.98, d_{12} = -5.98, d_{13} = -6.07$	0.119	0.086
				_	$d_{31} = -5.74, d_{32} = -3.42, d_{33} = -1.52$		
Na_3WN_3	Cc	1.51	2.41	_	d_{11} = 6.21, d_{12} = -4.51, d_{13} = -3.04	0.079	0.042
				_	$d_{31} = -0.65, d_{32} = -3.93, d_{33} = -1.49$		
$Ba_3B_2N_4$	$P2_{1}2_{1}2_{1}$	2.45	3.41	_	$d_{14} = d_{25} = d_{36} = -1.18$	0.189	0.182
Ba ₅ Si ₂ N ₆	$P2_{1}2_{1}2_{1}$	1.45	2.32	_	$d_{14} = d_{25} = d_{36} = 1.88$	0.104	0.096
$ZrZnN_2$	P3m1	1.98^{b}	3.11^{b}	_	$d_{15} = 10.06, d_{33} = 2.15^b$	0.276^{b}	_
$MoSi_2N_4$	_	1.78^{b}	2.24^{b}	_	$300 imes ext{SiO}_2$	_	_

^a This work. ^b Other work from ref. 29, 83, 91–93.

$Ba_3B_2N_4$

The compound Ba₃B₂N₄⁸⁹ crystallizes in the orthorhombic space group P2₁2₁2₁. The structural framework of Ba₃B₂N₄ was made up of dumbbell-shaped [BN2] entities with Ba2+ cations filled in the framework. Moreover, the dumbbell-shaped [BN2] entities were almost parallel to the b-axis (Fig. 11a). According to calculated results, the HSE06 band gap of $Ba_3B_2N_4$ is 3.41 eV, and the band gap between valence bands and conduction bands is mainly dominated by the ionic Ba-N bands (Fig. S15b, ESI†). The calculated NLO coefficient is $d_{14} = -1.18$ pm V⁻¹. Furthermore, the birefringence of Ba₃B₂N₄ is calculated to be 0.189 at 1064 nm.

Ba₅Si₂N₆

The synthesis and crystal structure of compound Ba₅Si₂N₆⁹⁰ was reported in 1996 by DiSalvo et al. Ba₅Si₂N₆ crystallizes in the orthorhombic space group P2₁2₁2₁. In this structure, the isolated prism-sharing [Si₂N₆] dual-tetrahedra are the backbone of the structural framework of Ba₅Si₂N₆, and Ba²⁺ are dispersed in intervals between these tetrahedra to balance the charge (Fig. 11b). The calculated results implied that Ba₅Si₂N₆ owns a wide band gap of 2.32 eV (HSE06), and the band gap between valence bands and conduction bands is mainly dominated by the ionic Ba-N bands (Fig. S15c, ESI†). The calculated NLO coefficient is $d_{14} = 1.88$ pm V⁻¹. Moreover, the calculated birefringence of Ba₅Si₂N₆ is 0.104 at 1064 nm.

ZrZnN₂

ZrZnN₂ with high thermal conductivity has been studied as an IR NLO material by Yang et al. recently.32 ZrZnN2 crystalizes in the trigonal space group P3m1, in this structure, [ZrN₆] octahedra are connected by edge-sharing to build octahedral

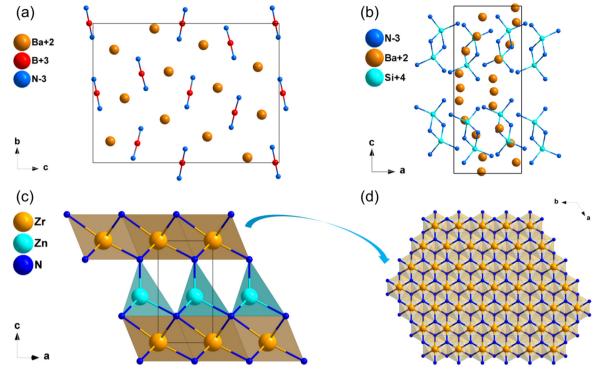


Fig. 11 Crystal structure of Ba₃B₂N₄ (a), Ba₅Si₂N₆ (b) and ZrZnN₂ (c) and (d).

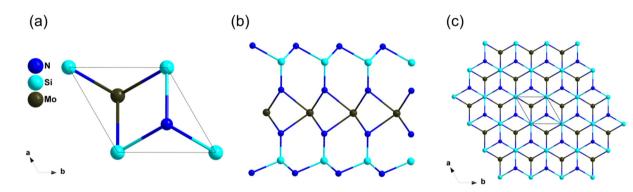


Fig. 12 The atomic structure of MoSi₂N₄

layers, which are stacked in the c direction and connected by [ZnN₄] tetrahedral (Fig. 11c and d). The band gap of ZrZnN₂ based on HSE06 is 3.11 eV, which is larger than that of AgGaS₂ (2.73 eV). Furthermore, ZrZnN₂ show balanced optical performance with the NLO coefficient of about 0.9 \times AGS and the birefringence is of 0.276 at 1064 nm. Both [ZrN₆] octahedra and [ZnN₄] tetrahedra contributed to the NLO properties, including wide band gap and large NLO coefficients.

MoSi₂N₄

The growth of centimeter-scale monolayer films of MoSi₂N₄ was achieved in 2020 by Hong et al,91 and the NLO properties were further studied by Lin et al. based on the first-principles calculations recently. 91,92 The atomic structure of MoSi₂N₄ was shown in Fig. 12, its structure features infinite two-dimensional (2D) N-Si-N-Mo-N-Si-N layers, which can be viewed as a MoN2 layer sandwiched between two Si-N bilayers. The experimental optical band gap of monolayer MoSi₂N₄ film is 1.94 eV, and the band gap between valence bands (VB) and conduction bands (CB) is dominated by Mo-N bonds and Mo4+ nonbonding states. Furthermore, the SHG response of MoSi₂N₄ was about 300 times that of quartz, and the SHG response of MoSi₂N₄ mainly comes from the inner Mo-N bands of MoN2 layers.

Conclusions and outlooks

In this review, we systematically summarize the potential and recent advancements in nitride-based NLO crystals, which include 45 nitrides. These crystals are classified into three categories based on their structural features: diamond-like type NLO nitrides, polyhedra-stacking type NLO nitrides, and other NLO nitrides with unique structures. We consistently discuss their crystal structures, physical properties, and structure–property relationships. Our findings indicate that nitrides possess wide band gaps and transparency windows, ranging from the ultraviolet to the infrared region. Notably, several NLO nitrides exhibit outstanding NLO properties including BeSiN $_2$, LiSi $_2$ N $_3$, LiSiON, LiPO $_2$ N, Zn $_3$ MoN $_4$, Zn $_2$ NX (X = Cl, Br), NaPN $_2$, Pb $_2$ Si5N $_8$, NaSnN, Na $_3$ MoN $_4$ and ZrZnN $_2$. Furthermore, approximately 40% of these NLO nitrides contain elemental silicon, suggesting that Si-based nitrides warrant further exploration as NLO materials. However, the investigation of NLO nitrides is far from complete and faces numerous challenges, such as difficult synthesis conditions and unclear property influencing mechanisms. Consequently, the following aspects should be considered for the further application and development of NLO nitrides:

- 1. The development of new synthetic methods and advanced equipment technology is necessary to obtain more NLO nitrides with exceptional properties. Currently, most non-centrosymmetric nitrides are obtained using traditional solid-state synthesis technology under high temperature and pressure conditions. Advanced equipment technology is crucial for meeting these demanding conditions. Additionally, the ammonothermal method and salt-flux method may be effective ways to synthesize more NLO nitrides. Moreover, since high-performance NLO nitrides are predominantly available in powder or micron-sized crystal forms, further research on large-size crystal growth is needed.
- 2. A deeper understanding of the chemical bonding mechanisms between nitrides and pnictides is essential. Nitrogen and phosphorus belong to the same main group VA, while homocationic and homo-anionic bonds often form in pnictide crystal structures, they do not in nitrides. These homoatomic bonds significantly impact linear optical and NLO properties. Therefore, studying the bonding habits of nitrides and pnictides is crucial for designing excellent NLO materials.
- 3. Prioritizing the exploration of mixed-anion inorganic nitrides as NLO materials is recommended. Combining different anions into one structure can effectively enhance NLO properties. Consequently, halogens (Cl, Br, I) and phosphorus (P) can be introduced into nitrides to form $[MN_yX_{4-y}]$ (M = mental elements, X = Cl, Br, I, P) mixed anionic tetrahedra. These distorted tetrahedra possess large anisotropic polarizability and strong hyperpolarizability, which can improve the SHG response and birefringence.
- 4. Developing metal nitrides with triangular anionic groups MN_3 (M = Sb, Te, Sn) is suggested. MN_3 groups possess stereochemically active lone-pair electrons, and compounds containing these electrons exhibit significant SHG response and birefringence, as seen in NaSnN. Therefore, more in-depth investigations should be conducted to design NLO nitrides with triangular anionic groups.

Author contributions

Xin Zhao performed the theoretical calculation, data analysis, and paper writing; Chensheng Lin and Haotian Tian offered

help in theoretical calculation; Chao Wang offered help in analyzing data; Ning Ye and Min Luo guided and revised the manuscript. All authors contributed to the general discussion.

Conflicts of interest

There are no conflicts to declare. The authors declare no competing financial interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22222510, 21975255 and 21921001), Natural Science Foundation of Fujian Province (2023J02026), the Foundation of Fujian Science & Technology Innovation Laboratory (2021ZR202), Youth Innovation Promotion Association CAS (2019303).

References

- 1 Z. H. Yang and S. L. Pan, Computationally assisted multistage design and prediction driving the discovery of deepultraviolet nonlinear optical materials, *Mater. Chem. Front.*, 2021, 5, 3507–3523.
- 2 S. Cho and K. M. Ok, LiRE(SO₄)₂ (RE = Y, Gd, Eu): noncentrosymmetric chiral rare-earth sulfates with very large band gaps, *Mater. Chem. Front.*, 2022, 7, 65–71.
- 3 L. Kang, F. Liang, X. X. Jiang, Z. S. Lin and C. T. Chen, First-Principles Design and Simulations Promote the Development of Nonlinear Optical Crystals, *Acc. Chem. Res.*, 2020, 53, 209–217.
- 4 F. Xu, G. Zhang, M. Luo, G. Peng, Y. Chen, T. Yan and N. Ye, A Powder Method for The High-efficacy Evaluation of Electro-optic Crystals, *Natl. Sci. Rev.*, 2020, 8, nwaa104.
- 5 X. M. Liu, L. Kang, P. F. Gong and Z. S. Lin, LiZn(OH)CO₃: A Deep-Ultraviolet Nonlinear Optical Hydroxycarbonate Designed from a Diamond-like Structure, *Angew. Chem.*, *Int. Ed.*, 2021, **60**, 13574–13578.
- 6 C. Wu, C. B. Jiang, G. F. Wei, X. X. Jiang, Z. J. Wang, Z. S. Lin, Z. P. Huang, M. G. Humphrey and C. Zhang, Toward Large Second-Harmonic Generation and Deep-UV Transparency in Strongly Electropositive Transition Metal Sulfates, *J. Am. Chem. Soc.*, 2023, 145, 3040–3046.
- 7 L. Wu, H. Fan, C. Lin and M. Luo, Compounds consisting of coplanar π -conjugated B_3O_6 typed structures: An emerging source of ultraviolet nonlinear optical materials, *Chin. J. Struct. Chem.*, 2023, 42, 100019.
- 8 F. J. Duarte, Tunable laser optics: Applications to optics and quantum optics, *Prog. Quantum Electron.*, 2013, 37, 326–347.
- 9 C. T. Chen, G. L. Wang, X. Y. Wang and Z. Y. Xu, Deep-UV nonlinear optical crystal KBe₂BO₃F₂ discovery, growth, optical properties and applications, *Appl. Phys. B: Lasers Opt.*, 2009, **97**, 9–25.

- 10 C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li and S. J. Lin, New Nonlinear-optical crystal – LiB₃O₅, J. Opt. Soc. Am. B, 1989, 6, 616-621.
- 11 D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey, Springer-Science and Business Media, New York, 2005.
- 12 W. L. Smith, KDP and ADP transmission in vacuum ultraviolet, Appl. Optics, 1977, 16, 1798.
- 13 K. Kato, Parametric oscillation at 3.2 μm in KTP pumped at 1.064 µm, IEEE J. Quantum Electron., 1991, 27, 1137-1140.
- 14 A. O. Okorogu, S. B. Mirov, W. Lee, D. I. Crouthamel, N. Jenkins, A. Y. Dergachev, K. L. Vodopyanov and V. V. Badikov, Tunable middle infrared down-conversion in GaSe and AgGaS₂, Opt. Commun., 1998, 155, 307-312.
- 15 G. D. Boyd, F. G. Storz, J. H. McFee and H. M. Kasper, Linear and Nonlinear Optical Properties of Some Ternary Selenides, IEEE J. Quantum Electron., 1972, 8, 900-908.
- 16 G. D. Boyd, E. Buehler and F. G. Storz, Linear and Nonlinear Optical Properties of ZnGeP2 and CdSe, Appl. Phys. Lett., 1971, 18, 301-304.
- 17 M. Mutailipu and S. L. Pan, Emergent Deep-Ultraviolet Nonlinear Optical Candidates, Angew. Chem., Int. Ed., 2020, 59, 20302-20317.
- 18 T. T. Tran, H. W. Yu, J. M. Rondinelli, K. R. Poeppelmeier and P. S. Halasyamani, Deep Ultraviolet Nonlinear Optical Materials, Chem. Mater., 2016, 28, 5238-5258.
- 19 W. Q. Huang, S. G. Zhao and J. H. Luo, Recent Development of Non-pi-Conjugated Deep Ultraviolet Nonlinear Optical Materials, Chem. Mater., 2022, 34, 5-28.
- 20 P. F. Gong, X. M. Liu, L. Kang and Z. S. Lin, Inorganic planar pi-conjugated groups in nonlinear optical crystals: review and outlook, Inorg. Chem. Front., 2020, 7, 839-852.
- 21 H. Su, Z. Yan, X. Hou and M. Zhang, Fluorooxoborates: A precious treasure of deep-ultraviolet nonlinear optical materials, Chin. J. Struct. Chem., 2023, 42, 100027.
- 22 B. Zhang and Z. Chen, Recent advances of inorganic phosphates with UV/DUV cutoff edge and large second harmonic response, Chin. J. Struct. Chem., 2023, 42, 100033.
- 23 L. Gao, J. Huang, S. Guo, Z. Yang and S. Pan, Structureproperty survey and computer-assisted screening of midinfrared nonlinear optical chalcohalides, Coord. Chem. Rev., 2020, 421, 213379.
- 24 P. Gong, F. Liang, L. Kang, X. Chen, J. Qin, Y. Wu and Z. Lin, Recent advances and future perspectives on infrared nonlinear optical metal halides, Coord. Chem. Rev., 2019, 380, 83-102.
- 25 H. D. Yang, M. Y. Ran, W. B. Wei, X. T. Wu, H. Lin and Q. L. Zhu, The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks, Chem. - Asian J., 2021, 16, 3299-3310.
- 26 J. Chen, X. Jiang, Q. Wu, Z. Lin, M. Luo and N. Ye, Pnictides: An emerging class of infrared nonlinear optical material candidates, J. Alloys Compd., 2022, 901, 163384.
- 27 W. H. Sun, C. J. Bartel, E. Arca, S. R. Bauers, B. Matthews, B. Orvananos, B. R. Chen, M. F. Toney, L. T. Schelhas, W. Tumas, J. Tate, A. Zakutayev, S. Lany, A. M. Holder and

- G. Ceder, A map of the inorganic ternary metal nitrides, Nat. Mater., 2019, 18, 732-739.
- 28 S. Yourdkhani, T. Korona and N. L. Hadipour, Structure and Energetics of Complexes of B₁₂N₁₂ with Hydrogen Halides-SAPT (DFT) and MP2 Study, J. Phys. Chem. A, 2015, 119, 6446-6467.
- 29 G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag and T. Frauenheim, Boron-nitrogen analogues of the fullerenes: Electronic and structural properties, Chem. Phys. Lett., 1997, 268, 352-358.
- 30 X. Zhao, C. Lin, J. Chen, M. Luo, F. Xu, S. Yang, S. Shi, B. Li and N. Ye, Halonitrides Zn2NX (X = Cl, Br): Novel Mid-Infrared Nonlinear Optical Materials, Chem. Mater., 2021, 33, 1462-1470.
- 31 J. Huang, S. Shu and G.-M. Cai, Screening Nitrides with High Debye Temperatures as Nonlinear Optical Materials, J. Phys. Chem. C, 2022, 126, 7047-7053.
- 32 D. Chu, Y. Huang, C. Xie, E. Tikhonov, I. Kruglov, G. Li, S. Pan and Z. Yang, Unbiased Screening of Novel Infrared Nonlinear Optical Materials with High Thermal Conductivity: Long-neglected Nitrides and Popular Chalcogenides, Angew. Chem., Int. Ed., 2023, 62, e202300581.
- 33 J. B. Huang, C. W. Xie, L. Wei, Q. Bian, Z. H. Yang and S. Pan, Predicting Diamond-like Nitrides as Infrared Nonlinear Optical Materials with High Thermal Conductivity, Chem. Mater., 2022, 34, 10059-10067.
- 34 F. Liang, L. Kang, Z. Lin, Y. Wu and C. Chen, Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures, Coord. Chem. Rev., 2017, 333, 57-70.
- 35 A. Abudurusuli, J. B. Huang, P. Wang, Z. H. Yang, S. L. Pan and J. J. Li, Li4MgGe2S7: The First Alkali and Alkaline-Earth Diamond-Like Infrared Nonlinear Optical Material with Exceptional Large Band Gap, Angew. Chem., Int. Ed., 2021, 60, 24131-24136.
- 36 M. Y. Li, Z. J. Ma, B. X. Li, X. T. Wu, H. Lin and Q. L. Zhu, HgCuPS₄: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure, Chem. Mater., 2020, 32, 4331-4339.
- 37 Y. Huang, K. Wu, J. N. Cheng, Y. Chu, Z. H. Yang and S. L. Pan, Li₂ZnGeS₄: a promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response, Dalton Trans., 2019, 48, 4484-4488.
- 38 T. T. Yu, S. P. Wang, X. Zhang, C. N. Li, J. Qiao, N. Jia, B. Han, S. Q. Xia and X. T. Tao, MnSiP₂: A New Mid-IR Ternary Phosphide with Strong SHG Effect and Ultrabroad Transparency Range, Chem. Mater., 2019, 31, 2010-2018.
- 39 J. Chen, C. Lin, D. Zhao, M. Luo, G. Peng, B. Li, S. Yang, Y. Sun and N. Ye, Anionic Aliovalent Substitution from Structure Models of ZnS: Novel Defect Diamond-like Halopnictide Infrared Nonlinear Optical Materials with Wide Band Gaps and Large SHG Effects, Angew. Chem., Int. Ed., 2020, 59, 23549-23553.
- 40 J. Chen, H. Chen, F. Xu, L. Cao, X. Jiang, S. Yang, Y. Sun, X. Zhao, C. Lin and N. Ye, Mg₂In₃Si₂P₇: A Quaternary

- Diamond-like Phosphide Infrared Nonlinear Optical Material Derived from ZnGeP₂, *J. Am. Chem. Soc.*, 2021, **143**, 10309–10316.
- 41 R. A. Ferreyra, C. Zhu, A. Teke and H. Morkoç, in *Springer Handbook of Electronic and Photonic Materials*, ed. S. Kasap and P. Capper, Springer International Publishing, Cham, Switzerland, 2nd edn, 2017, Part D, 743–801.
- 42 V. I. Gavrilenko and R. Q. Wu, Linear and nonlinear optical properties of group-III nitrides, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2000, **61**, 2632–2642.
- 43 J. Chen, Z. H. Levine and J. W. Wilkins, Calculated second harmonic susceptibilities of BN, AlN, and GaN, *Appl. Phys. Lett.*, 1995, **66**, 1129–1131.
- 44 P. B. Perry and R. F. Rutz, The optical absorption edge of single crystal AlN prepared by a close spaced vapor process, *Appl. Phys. Lett.*, 1978, **33**, 319–321.
- 45 B. Monemar, Fundamental energy gap of GaN from photoluminescence excitation spectra, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1974, **10**, 676–681.
- 46 M. Orth and W. Schnick, On $LiSi_2N_3$ Synthesis and crystal structure refinement, *Z. Anorg. Allg. Chem.*, 1999, **625**, 1426–1428.
- 47 J. Hausler, R. Niklaus, J. Minar and W. Schnick, Ammonothermal Synthesis and Optical Properties of Ternary Nitride Semiconductors Mg-IV-N₂, Mn-IV-N₂ and Li-IV₂-N₃ (IV = Si, Ge), *Chem. Eur. J.*, 2018, 24, 1686–1693.
- 48 Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeka and M. Mitomo, Crystal, electronic structures and photoluminescence properties of rare-earth doped LiSi₂N₃, *J. Solid State Chem.*, 2009, **182**, 301–311.
- 49 P. Eckerlin, Zur Kenntnis des Systems Be₃N₂-Si₃N_{4·4}. Die Kristallstruktur von BeSiN₂, *Z. Anorg. Allg. Chem.*, 1967, 353, 225–236.
- 50 J. David, Y. Laurent and J. Lang, Structure of MgSiN₂ and Mg GeN₂, *Bull. Mineral.*, 1970, **93**, 153–159.
- 51 J. Hausler, S. Schimmel, P. Wellmann and W. Schnick, Ammonothermal Synthesis of Earth-Abundant Nitride Semiconductors ZnSiN₂ and ZnGeN₂ and Dissolution Monitoring by In Situ X-ray Imaging, *Chem. Eur. J.*, 2017, 23, 12275–12282.
- 52 E. Arca, S. Lany, J. D. Perkins, C. Bartel, J. Mangum, W. H. Sun, A. Holder, G. Ceder, B. Gorman, G. Teeter, W. Tumas and A. Zakutayev, Redox-Mediated Stabilization in Zinc Molybdenum Nitrides, J. Am. Chem. Soc., 2018, 140, 4293–4301.
- 53 V. SchultzCoulon and W. Schnick, Mg₂PN₃ and Ca₂PN₃ Phosphorus(v) nitrides with infinite chains of corner sharing PN4 tetrahedra, *Z. Anorg. Allg. Chem.*, 1997, **623**, 69–74.
- 54 S. J. Sedlmaier, M. Eberspacher and W. Schnick, High-Pressure Synthesis, Crystal Structure, and Characterization of Zn₂PN₃ A New catena-Polynitridophosphate, *Z. Anorg. Allg. Chem.*, 2011, 637, 362–367.
- 55 K. N. Heinselman, S. Lany, J. D. Perkins, K. R. Talley and A. Zakutayev, Thin Film Synthesis of Semiconductors in the Mg–Sb–N Materials System, *Chem. Mater.*, 2019, 31, 8717–8724.

- 56 M. Mallmann, C. Maak, R. Niklaus and W. Schnick, Ammonothermal Synthesis, Optical Properties, and DFT Calculations of Mg₂PN₃ and Zn₂PN₃, *Chem. Eur. J.*, 2018, 24, 13963–13970.
- 57 R. Marchand, P. Lharidon and Y. Laurent, Crystallochemical Study of LiPN₂ A Structure Derived from Cristobalite, *J. Solid State Chem.*, 1982, 43, 126–130.
- 58 F. J. Pucher, F. Hummel and W. Schnick, CuPN₂: Synthesis, Crystal Structure, and Electronic Properties, *Eur. J. Inorg. Chem.*, 2015, 1886–1891.
- 59 Y. Laurent, J. Guyader and G. Roult, Time-of-flight neutron diffraction study of α-LiSiON, *Acta Crystallogr.*, *Sect. B: Struct. Sci.*, 1981, 37, 911–913.
- 60 K. Senevirathne, C. S. Day, M. D. Gross, A. Lachgar and N. A. W. Holzwarth, A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure, *Solid State Ion.*, 2013, 233, 95–101.
- 61 H. Jacobs and H. Mengis, Preparation and Crystal-Structure of a Sodium SiliconI-nitride, NaSi₂N₃, *Eur. J. Solid State Inorg. Chem.*, 1993, **30**, 45–53.
- 62 J. Guyader, P. L. Haridon, Y. Laurent, R. Jacquet and G. Roult, A new nitrogen tetrahedron NaN₄: Preparation and structure of NaGe₂N₃, *J. Solid State Chem.*, 1984, 54, 251–255.
- 63 K. Landskron, S. Schmid and W. Schnick, High-pressure synthesis, crystal structure, and properties of NaPN₂, *Z. Anorg. Allg. Chem.*, 2001, **627**, 2469–2472.
- 64 Z. Li, A. Tudi, P. Ren, Y. Yang, T. Iitaka, T. Tohyama, Z. Yang, S. Pan and H. Su, NaPN₂: Deep-ultraviolet nonlinear optical material with unprecedented strong secondharmonic generation coefficient, *Phys. Rev. Mater.*, 2019, 3, 025201.
- 65 Y. Laurent, M. Maunaye, J. Guyader and J. Lang, Étude structurale de CaGeN₂ et Ca_{1-x}GeN₂, *Bull. Mineral.*, 1971, 347–352.
- 66 F. J. Pucher, A. Marchuk, P. J. Schmidt, D. Wiechert and W. Schnick, Luminescent Nitridophosphates CaP₂N₄:Eu²⁺, SrP₂N₄:Eu²⁺, BaP₂N₄:Eu²⁺, and BaSr₂P₆N₁₂:Eu²⁺, *Chem. – Eur. J.*, 2015, 21, 6443–6448.
- 67 F. W. Karau, L. Seyfarth, O. Oeckler, J. Senker, K. Landskron and W. Schnick, The stuffed framework structure of SrP₂N₄: Challenges to synthesis and crystal structure determination, *Chem. Eur. J.*, 2007, **13**, 6841–6852.
- 68 T. Schlieper, W. Milius and W. Schnick, Nitridosilicates 2. High-temperature Syntheses and Crystal-structure of $Sr_2Si_5N_8$ and $Ba_2Si_5N_8$, *Z. Anorg. Allg. Chem.*, 1995, **621**, 1380–1384.
- 69 G. Pilet, H. A. Hoppe, W. Schnick and S. Esmaeilzadeh, Crystal structure and mechanical properties of SrSi₇N₁₀, Solid-State Sci., 2005, 7, 391–396.
- 70 H. Huppertz and W. Schnick, Edge-sharing SiN₄ tetrahedra in the highly condensed nitridosilicate BaSi₇N₁₀, *Chem. – Eur. J.*, 1997, 3, 249–252.
- 71 F. Stadler, O. Oeckler, J. Senker, H. A. Hoppe, P. Kroll and W. Schnick, SrSi₆N₈ – A reduced nitridosilicate with a Si–Si bond, *Angew. Chem., Int. Ed.*, 2005, 44, 567–570.

- 72 T. Schlieper and W. Schnick, Nitridosilicates 1. Hightemperature Syntheses and Crystal-structure of Ca₂Si₅N₈, Z. Anorg. Allg. Chem., 1995, 621, 1037-1041.
- 73 P. Bielec, O. Janka, T. Block, R. Pottgen and W. Schnick, Fe₂Si₅N₈: Access to Open-Shell Transition-Metal Nitridosilicates, Angew. Chem., Int. Ed., 2018, 57, 2409-2412.
- 74 P. Bielec and W. Schnick, Increased Synthetic Control-Gaining Access to Predicted Mg₂Si₅N₈ and β-Ca₂Si₅N₈, Angew. Chem., Int. Ed., 2017, 56, 4810-4813.
- 75 M. Ludwig, J. Jager, R. Niewa and R. Kniep, Crystal structures of two polymorphs of Ca₃Al₂N₄, *Inorg. Chem.*, 2000, 39, 5909-5911.
- 76 C. Hecht, F. Stadler, P. J. Schmidt, J. S. A. der Guenne, V. Baumann and W. Schnick, SrAlSi₄N₇:Eu²⁺ - A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra, Chem. Mater., 2009, 21, 1595-1601.
- 77 Y. Q. Li, C. M. Fang, G. de With and H. T. Hintzen, Preparation, structure and photoluminescence properties of Eu²⁺ and Ce³⁺-doped SrYSi₄N₇, J. Solid State Chem., 2004, 177, 4687-4694.
- 78 Z. Qian, Q. Bian, H. P. Wu, H. W. Yu, Z. S. Lin, Z. G. Hu, J. Y. Wang and Y. C. Wu, β-BaGa₄Se₇: a promising IR nonlinear optical crystal designed by predictable structural rearrangement, J. Mater. Chem. C, 2021, 10, 96-101.
- 79 B. Fuchs, D. Johrendt, L. Bayarjargal and H. Huppertz, The First High-Pressure Chromium Oxonitridoborate CrB₄O₆Nan Unexpected Link to Nitridosilicate-Chemistry, Angew. Chem., Int. Ed., 2021, 60, 21801-21806.
- 80 M. Woike and W. Jeitschko, Preparation and Crystalstructure of the Nitridosilicates $Ln_3Si_6N_{11}(Ln = La, Ce, Pr,$ Nd, Sm) and LnSi₃N₅ (Ln = Ce, Pr, Nd), Inorg. Chem., 1995, 34, 5105-5108.
- 81 P. Bielec, R. Nelson, R. P. Stoffel, L. Eisenburger, D. Gunther, A. K. Henss, J. P. Wright, O. Oeckler, R. Dronskowski and W. Schnick, Cationic Pb2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb₂Si₅N₈, Angew. Chem., Int. Ed., 2019, **58**, 1432–1436.
- 82 W. F. Chen, B. W. Liu, S. M. Pei, X. M. Jiang and G. C. Guo, K_2PbX Ga_7S_{12} (X = Cl, Br, I): The First Lead-Containing Cationic Moieties with Ultrahigh Second-Harmonic Generation

- and Band Gaps Exceeding the Criterion of 2.33 eV, Adv. Sci., 2023, 10, 2207630.
- 83 X. L. Chen, Q. Jing and K. M. Ok, Pb₁₈O₈Cl₁₅I₅: A Polar Lead Mixed Oxyhalide with Unprecedented Architecture and Excellent Infrared Nonlinear Optical Properties, Angew. Chem., Int. Ed., 2020, 59, 20323-20327.
- 84 M. Abudoureheman, S. J. Han, B. H. Lei, Z. H. Yang, X. F. Long and S. L. Pan, KPb₂(PO₃)₅: a novel nonlinear optical lead polyphosphate with a short deep-UV cutoff edge, J. Mater. Chem. C, 2016, 4, 10630-10637.
- 85 N. S. P. Watney, Z. A. Gal, M. D. S. Webster and S. J. Clarke, The first ternary tin(II) nitride: NaSnN, Chem. Commun., 2005, 4190-4192,
- 86 S. Zhang, L. Kang and Z. Lin, Nonlinear optical ASnX (A = Na, H; X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design, Nanoscale, 2020, 12, 14895-14902.
- 87 D. Ostermann, U. Zachwieja and H. Jacobs, Sodium nitride metallates, Na₃MN₃, of molybd/in (vI) and Tungsten(vI) with [CrO₂0_{2/2}]-isosteric [MoN₂N_{2/2}]₃ chains, J. Alloys Compd., 1992, **190**, 137-140.
- 88 H. Jacobs and R. Niewa, Synthesis and crystal-structure- of a Sodium Nitrido tungstate(v1), Na3WN3, Eur. J. Solid State Inorg. Chem., 1994, 31, 105-113.
- 89 O. Reckeweg, F. J. DiSalvo and M. Somer, Orthorhombic $Ba_3(BN_2)_2$: a new structure type for an alkaline earth metal nitrido borate, J. Alloys Compd., 2003, 361, 102-107.
- 90 H. Yamane and F. J. DiSalvo, Preparation and crystal structure of a new barium silicon nitride, Ba₅Si₂N₆, J. Alloys Compd., 1996, 240, 33-36.
- 91 Y. L. Hong, Z. B. Liu, L. Wang, T. Y. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng and W. C. Ren, Chemical vapor deposition of layered two-dimensional MoSi₂N₄ materials, Science, 2020, 369, 670-674.
- 92 L. Kang and Z. S. Lin, Second harmonic generation of MoSi₂N₄ - type layers, *Phys. Rev. B*, 2021, **103**, 195404.
- 93 J. S. Yang, L. N. Zhao, S. Q. Li, H. S. Liu, L. Wang, M. D. Chen, J. F. Gao and J. J. Zhao, Accurate electronic properties and non-linear optical response of two-dimensional MA₂Z₄, Nanoscale, 2021, 13, 5479-5488.