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Lessons learned: how to report XPS data
incorrectly about lead-halide perovskites

Chi Li,†abc Ni Zhang†abc and Peng Gao *abc

X-Ray photoelectron spectroscopy is a powerful tool for identifying the interactions of additives or

surface treatments with components in lead halide perovskites. However, with the increasing number of

studies using XPS, inaccurate or faulty data analysis has been encountered during a literature survey.

Herein, we describe the fundamental principle of chemical shifts of Pb atoms in XPS and critically review

the commonly seen mistakes in the literature: (i) misinterpretation of the XPS mechanism;

(ii) misinterpretations due to disturbed chemical environments; (iii) lack of awareness of the properties of

the passivator; iv. misquoted references. We hope that this perspective can help the community avoid

the pitfalls in applying the XPS technique and in explaining their experimental results.

Perovskite solar cells (PSCs)1–12 have become a game changer in
the field of solar cells, and specifically an up-and-coming
candidate in replacing the otherwise predominant silicon solar
cells due to their relatively low preparation costs and more
straightforward fabrication process.13,14 PSCs, however, do
show poor long-term stability—and to circumvent this issue,
additives or surface treatments (namely passivation) that target
the origins of various defects are commonly adopted.7,15–18 In
this context, the interactions between these various additives
and the components in the perovskites could readily be
unveiled qualitatively and quantitatively using X-ray photoelec-
tron spectroscopy (XPS). By analyzing the XPS data of a target
material, it is possible to determine its elemental composition
and empirical formula as well as the electronic and chemical
states of its elements. Therefore, XPS, which involves recording
the kinetic energy of electrons that are emitted from the top 1–
10 nm of the material being irradiated with a beam of X-rays, is
gaining popularity in characterizing the role of these passiva-
tion strategies19 (Fig. 1). The basis of a correct XPS data analysis
is the accurate calibration of the binding energy (EB),20 includ-
ing calibration of the energy scale of the spectrometer and the
deviation caused by the charging effect (usually with C 1s data
of adventitious carbon21 or decorated noble metal22).

The electron binding energy (EB) could be calculated using
the equation EB = hn � EK � WF,23 in which hn is the photon
energy, EK is the measured kinetic energy, and WF is the

spectrometer work function. EB is characteristically distinct for
atoms with different electronic shells, and it is also, to some
extent, dependent on the chemical environment of the atom.
Namely, a change in the chemical state (chemical environment)
could be reflected in shifted energies of expelled photoelectrons.24

The higher the electron density around an atom, the higher the EK

of photoelectrons originating from its core levels, and hence the
lower the chemical shift of the corresponding EB peaks in the
spectrum (Fig. 2).25 In studies of PSCs, the chemical shift of the Pb
4f signal is the most commonly chosen one to verify the interaction
of perovskite with functional groups of additives. Theoretically,
depending on the nature (electron-accepting or electron-donating)
of the functional group, a shift of the Pb 4f signal toward a higher

Fig. 1 Plot of the number of publications per year involving perovskite
solar cells and XPS according to a Google Scholar search performed in
January 2023 for the term ‘‘perovskite solar cell AND (XPS OR X-ray
photoelectron spectroscopy)’’.
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EB is due to a decrease in the electron density on the Pb atom.
In fact, the standard conduction of XPS on perovskites has already
been introduced by Schulz et al., including the normative measure-
ment conditions and correct analysis of binding energy spectra.26,27

However, as said by Aristotle, ‘‘one may go wrong in many different
ways, but right only in one, which is why it is easy to fail and difficult
to succeed’’, and so it is necessary to point out directly the mistakes
made subconsciously in XPS measurements.

Unfortunately, some reports have provided inaccurate or
inappropriate analysis of the XPS data (e.g., Pb 4f spectra) due
to (i) misinterpretation of the XPS mechanism, (ii) misinterpre-
tation due to a disturbed chemical environment, (iii) lack of
awareness about the properties of the passivator, and (iv) mis-
quoted references. Herein, a perspective on the correct under-
standing of XPS data is given based on examples containing
erroneous/inadequate analysis of the chemical shifts in XPS. We
hope that this critical perspective, which complements the work
done by Schulz et al. on properly analyzing XPS data,27 will help
the community avoid the pitfalls of applying the XPS technique
when explaining their experimental results.

Misinterpretation of the XPS
mechanism

Misinterpretations of the chemical shifts in XPS spectra are
easily found in the literature. For instance, Cheng et al. con-
cluded that the electron density around the Pb atom increased
based on an actually higher-energy-shifted EB.28 In another
case, Zheng et al. claimed that the higher EB at the Pb 4f level
resulted from additional negative charges surrounding Pb.29

These studies conceptually misinterpreted the rule of chemical
shifts in XPS, since there is no direct effect on the binding
energy of core-level electrons for the different valence-charge

densities because electrons do not have different energies but
simultaneously share the total energy of the whole system.19,30

A photoelectron from Pb in a Pb–Cl unit would reach the
detector with a lower kinetic energy than would that from a
Pb–I unit due to the higher electronegativity of Cl and poor
screening of the core holes.30

Misinterpretation due to disturbed
chemical environments

In fact, the evolution of the chemical environment of the observed
atomic species can be determined by tracking chemical shifts in
the photoelectron binding energy (EB) for the multicomponent
halide perovskite.27 But the operation of the XPS equipment and
collection of data may not be normative. This issue is reflected in
two works on the same compound, with opposite reported effects
on the chemical shift of a Pb 4f signal.31–36 For example, the Pb 4f
EB was reported by Wang et al. to shift to lower energy in perovskite
films with a PEG/PVA overlayer31 (Fig. 3a), but the same polymers
were reported to show the opposite shifts by Chen et al.32 (Fig. 3b).
The former attributed the down-shifting of Pb 4f binding energy to
increased electron cloud density of the Pb atom due to a strong
interaction with PVA/PEG,31 while the latter believed that the
observed up-shifting of the Pb core level was due to decreased
electron density by the same polymer via a weaker coordination
between the functional groups with Pb than with I�.32 Likewise,
contradictory conclusions have been reported in works about
ammonium-salt-modified perovskites: Kang et al. reported down-
shifting Pb 4f and I 3d EB values in the presence of 2D TBA2PbI4 in
an FAPbI3 film and speculated that the TBA cation reduced the
oxidation state of Pb and I or weakened the Pb–I bond (Fig. 3c);33

in contrast, Liu et al. reported no change in the oxidation state of
Pb and I in CsPbI3 after TBAI treatment and formation of 1D

Fig. 2 Schematic relationship between the electron density on the Pb atom and the chemical shift.
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TBAPbI3 (Fig. 3d).34 Similarly, the Pb 4f EB was reported to shift
differently in two separate works using PbS as the surface
sulfidation treatment (SST) material for perovskites: to higher
energy in one report, attributed to the strong bonding between S
and Pb (Fig. 3e);35 but with a reversed chemical shift on the same
core level after the same treatment according to the other work
(Fig. 3f).36 We believe that these contradictory experimental data
could be due to unregulated operation by inexperienced research-
ers, which may result in artifacts in the measured chemical shifts
under the same chemical environment.

Lack of awareness of the properties of
the passivator

As described by Schulz et al., the case of Pb is interesting because
the corresponding EB is influenced by the halide to which it is
bound.27 It is generally believed that the electron-donating nature
of a Lewis base can lead to a downward shift in the EB of the Pb 4f
peak.14,31,37–42 Assuming that the experimental conditions in the
same publication are consistent, the changes in Pb binding
energy should be attributed to the added passivator. Unfortu-
nately, the logical relationship between the XPS chemical shift
and the role of additives in some reports is not self-consistent.
For instance, the dipolar PCBB-3N-3I was deposited, in a work
published in 2019, to passivate under-coordinated Pb2+ via the
negatively charged terminal groups.43 However, this work
reported an upward-shifted Pb 4f core level energy, indicating
decreased electron density. So how could a more electron-poor
under-coordinated Pb2+ be called passivated? Similarly, Liu et al.
reported the use of (5-mercapto-1,3,4-thiadiazol-2-ylthio) acetic

acid (MTDAA) as a multi-active-site Lewis-base that shifted the Pb 4f
EB towards higher energy.44 The contradictory conclusions suggest
that the authors did not establish a clear connection between the
concept of increased electron density in a passivated under-
coordinated Pb2+ and the specific passivator they employed.45–49

Misquoted references

Sometimes, a report may blindly cite the conclusion from another
published report with different experimental results, leading to a
biased interpretation. By illustration, Hu et al., when using XPS to
prove the incorporation of Ln3+ into CsPbBr3, first claimed the
increased electron density around the Pb atom (down-shifting Pb
4f EB) to be due to a stronger interaction between Ln3+ and Br�.50

Later, another work by Duan et al. misquoted the conclusion from
ref. 45 to explain the observed up-shifting of Pb and Br core levels
after Ln3+ doping.51 Also, pyridine is commonly regarded as a
Lewis base to bind with a Lewis acid and, therefore, as a passivator
for perovskite.52 However, such a conclusion has been arbitrarily
used, including even when the nitrogen of the pyridine was
quaternized, in which the positive nitrogen cation cannot function
as an electron donor and, therefore, cannot be indicated to be
responsible for the upward shifting Pb 4f core level.53 To avoid
these situations, it is essential to ‘‘seek truth from facts’’ and fully
understand the previous studies before using them to support the
new data.

In brief, to use XPS as a powerful tool for understanding the
material science of perovskites, more comprehensive knowl-
edge combining the fundamental mechanism of XPS and the
electronic structure of the target compounds is needed.

Fig. 3 XPS spectra of Pb 4f peaks in perovskite films (a) without and (b) with PEG/PVA; (c) before (reference) and after post-treatment by UIPPT or APP-
PT; (d) CsPbI3 films before and after TBAI treatment; (e) perovskite films (control), Pb-rich perovskite films (Pb-rich) before and after surface sulfidation
treatment (SST-based); (f) pristine PbS QDs, perovskite films without (PVSK) and with PbS QDs (PVSK + PbS QDs).
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Furthermore, a consistent logical data analysis should be used
for drawing conclusions based on XPS and chemical theories.
Last but not least, rigorous handling, correct calibration, and
careful referencing are also crucial for reporting XPS data.
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T. Buonassisi, Perovskite-Inspired Photovoltaic Materials:
Toward Best Practices in Materials Characterization and
Calculations, Chem. Mater., 2017, 29, 1964–1988.
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