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Tin-based organic—inorganic metal halides
with a reversible phase transition and
thermochromic responser
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Da-Wei Fu®* and Qiang Guo (2 *

Organic—inorganic hybrid metal halides have been extensively studied since they have excellent photoelec-
tric properties, diverse constituents, and tunable band gaps. However, most of the discoveries are random
and there is a lack of new systems to find something worth exploring. Here, we have successfully synthe-
sized two tin-based organic—inorganic hybrid halides (BPA),SnClg (1, BPA-Cl) and (BPA),SnBrg (2, BPA-Br)
(BPA = 3-bromopropan-1-ammonium) with a reversible dielectric switching response using halogen modu-
lation. Differential scanning calorimetry (DSC) and dielectric measurements determined the phase transition
temperatures (T.) to be 1 (284.24 K) and 2 (301.89 K), and the T increased with halogen ion size. According
to the 2D fingerprinting of Hirshfeld surface plots, the short mean (di, de) also changes with the variation of
the inorganic framework, which is in accordance with DSC and dielectric results. The UV-NIR-vis absorption
spectra reveal that 1 is a direct bandgap semiconductor (2.97 eV) and 2 is an indirect bandgap semiconduc-
tor (2.66 eV). In addition, compound 2 exhibits a fascinating reversible thermochromic response. This work
not only provides a hew systematic approach to synthesizing dielectric materials, but also proposes a route
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Introduction

Organic-inorganic metal halides have been attracting more research
interest as key components in optical devices, solar cells, light-
emitting diodes, and nonlinear optical materials."™® The perfect
combination of organic and inorganic components provides feasi-
bility for the occurrence of phase transition behavior."'™ At
the same time, dielectric phase transition (thermally stimulated
response) materials often bring about interesting physical properties
such as fluorescence,*® thermochromism,"”"*° ferroelectricity*' >
and so on.”*>° Compared with high-dimensional hybrid phase
transition materials with limited organic ammonium species, the
structures of low-dimensional compounds are more flexible and
diverse.**** Meanwhile, low-dimensional materials can provide a
large degree of freedom for organic ammonium, thereby triggering
the order-disorder phase transition.>>® As an example, Zou et al.
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to obtain narrow-bandgap optoelectronic semiconductors.

reported a zero-dimensional organic-inorganic hybrid single crystal
(TMA),SbCl;-DMF (TMA = (CH;);NH', DMF = HCON(CH,),) with a
high quantum yield of 67.2%.*° Zang et al reported a zero-
dimensional halogenated zinc organic hybrid (H,TTz)ZnCl,-MeOH
(TTz = 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazole) with excellent
optical waveguide properties.”® In addition, our group synthesized
the compound (CASD),MnBr, (CASD = 8-chloro-5-azonia-spiro [4.5]
decane), which exhibits a large SHG response.®

Currently, most of the organic-inorganic phase transition
perovskites reported are based on lead (Pb),*"™** antimony
(Sb),>” bismuth (Bi),****> cadmium (Cd),***® and manganese
(Mn).*" In spite of this, there are still some problems
associated with potential toxicity and environmental pollution,
which limit the further applications of these materials.®**>2
Therefore, research into environmentally friendly lead-free
zero-dimensional organic-inorganic metal halides is in full
swing. Among them, tin-based zero-dimensional organic-inor-
ganic hybrid materials have attracted significant interest as tin
is located in the same group as lead and their electronic
structures are both (ns®np?).>* Therefore, tin-based materials
have excellent optical properties.’®”* Additionally, tin-based
halides have also received attention due to their thermochro-
mic properties.'® In simple terms, the color of the material
changes with temperature so it can be used as a temperature
indicator or alarm.>® To the best of our knowledge, there are
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few reports on the thermochromic effect of tin-based
halides, limited to our report on [2-(2-fluorophenyl)ethan-1-
ammonium],SnBrs, which has both thermochromic and fer-
roelastic properties.*®

Above all, to investigate the effect of inorganic frameworks
on physiochemical properties of organic-inorganic halides,
(BPA),SnClg (1) and (BPA),SnBr, (2) are designed by halogen
modulation. Both compounds exhibit a zero-dimensional inor-
ganic framework [SnX¢]*~ (X = Cl, Br) with discrete organic
[BPA]" cations. Satisfyingly, the phase transition temperature is
elevated from 284.24 K to 301.89 K with the modulation of the
halogen ion size. We find that both compounds exhibit rever-
sible dielectric switching, while compound 2 shows a thermo-
chromic response. In a word, this study provides new insights
into zero-dimensional organic-inorganic halides, which might
bring new ideas to optoelectronics.

Results and discussion
Structural analysis

To explain the origin of the phase transition, single-crystal X-ray
diffraction was performed on compounds 1 and 2. The powder
X-ray diffraction (PXRD) spectra are in good agreement with the
simulated spectra, indicating that the products are of high purity
(Fig. S1, ESIt). At 273 K (LTP), compound 1 crystallizes in the
space group P2,/c of the monoclinic crystal system with
the following cell parameters: @ = 10.715(5) A, b = 7.267(2) A,
¢=12.829(5) A, = 109.487(6), and V = 941.8(6) A* (Table S1, ESI?).
The asymmetric unit consists of half of the inorganic framework
[SnCleJ*~ and a C3H,BrN* cation, and thus the charge is balanced.
From Table S3 (ESIt) it can be seen that the Sn atom is connected
to six adjacent Cl atoms to form the [SnCls] octahedron, the
Cl-Sn-Cl bond angles are close to 90°and 180°, indicating that the
[SnClg] configuration is close to a regular octahedron. The Sn-Cl
bond length varies from 2.4462(16) to 2.4538(18) A, which is
consistent with related reports.'® At LTP, both cations and anions
adopt an ordered state. The [SnClg] octahedra are separated by
discrete organic ammonium cations (C3HoBrN'), forming a zero-
dimensional structure. It is this zero-dimensional structure that
provides sufficient degrees of freedom for the ions to move in a
way that facilitates the order-disorder phase transition. At 300 K
(HTP), compound 1 still crystallizes in the space group P2,/m of
the monoclinic crystal system with the following cell parameters:
a =11.040(3) A, b = 7.3622(15) A, ¢ = 12.282(3) A, = 105.063(6),
and V = 964.0(4) A®>. Compared with LTP, the N and C atoms of
BPA" at HTP change to a two-fold disordered state. When the
temperature reaches T, the disorder of organic ammonium
brings about changes in bond lengths and bond angles. The
geometric configuration of compound 1 alters drastically after this
process, revealing its internal mechanism. The Sn-Cl bond length
also transforms from 2.450 A to 2.448 A. The above results suggest
that compound 1 undergoes an order-disorder phase transition
from LTP to HTP (Fig. 1).

At 240 K (LTP), compound 2 crystallizes in the space group
P24/c of the monoclinic crystal system with the following cell

View Article Online

Materials Chemistry Frontiers

2 A

f"f ‘ "(
Ts,,z.ﬁ, () ( .)

Fig. 1 A schematic diagram of the LTP and HTP structures in compound
1. For clarity, all H atoms are omitted.

parameters: a = 10.886(8) A, b = 7.493(5) A, ¢ = 13.119(8) A,
B =110.449(13), and V = 1002.7(12) A® (Table S2, ESIt). Due to
the larger radius of the bromine atom compared to the chlorine
atom, the volume of 2 is also slightly larger than 1. Since the
LTP structures of compounds 1 and 2 are almost identical, the
LTP structure of compound 2 is not discussed in detail. At
333 K (HTP), compound 2 still crystallizes in the space group
P2,/m of the monoclinic crystal system with the following cell
parameters: a = 11.0559(15) A, b = 7.6425(6) A, ¢ = 12.6907(15) A,
B = 105.813(13), and V = 1031.7(2) A%. The asymmetric unit
consists of half of the [SnBre]*~ and a C;HoBrN" cation. At HTP,
the organic ammonium cations are in a disordered state. The
Sn-Br bond length varies between 2.575(3) and 2.586(5) A
(Table S4, ESIt). The inorganic frame of compound 2 also
changes after the phase transition (Fig. 2 and Fig. S2, ESI¥).

DSC and dielectric analyses

Generally speaking, dielectric and DCS measurements are
favorable methods to detect phase transitions occurring in
compounds. Therefore, DSC and dielectric measurements were
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Fig. 2 Packing structures of the LTP and HTP in compound 2. For clarity,
all H atoms are omitted.
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Fig. 3 (a and b) DSC curves of 1 and 2 in heating-cooling runs. (c and d)
Dielectric constant of 1 and 2. (e) The dielectric measurement of 2 at 1 kHz,
5 kHz, 10 kHz, 100 kHz and 1 MHz upon heating. (f) A schematic diagram
of the molecular switch simulation based on thermosensitive signal
conversion.

performed on compounds 1 and 2 in the temperature range of
240-340 K. Two consecutive DSC cycles were performed on the
powders of 1 and 2 (Fig. S3, ESIT). Fig. 3c and d shows that
compound 1 undergoes a sudden change in dielectric constant
at ca. 280 K (from 4 to 9) and the dielectric anomaly of
compound 2 (from 5 to 9) occurs near 300 K. From the apparent
change in dielectric constant, it can be tentatively concluded
that the two compounds undergo a phase transition. Therefore,
for further determination, DSC measurements were performed
on the compounds. As shown in Fig. 3a and b, there are
endothermic and exothermic peaks during heating and cooling,
respectively. For compound 1, a pair of endothermic/exothermic
peaks with a thermal hysteresis of about 21 K (284.24 K/263.13 K)
appears, and the entropy is 26.86 ] mol~* K™ *. For compound 2, a
pair of endothermic/exothermic peaks with a thermal hysteresis
of about 16 K appears at about 301.89 K/286.34 K, and its entropy
becomes 50.61 ] mol™' K™ '. Although the phase transition
temperatures of compounds 1 and 2 are relatively close, com-
pound 1 has a larger thermal hysteresis. The above results
confirm that this process is accompanied by a first-order phase
transition. Also, the real part of the dielectric constant (¢') of
compounds 1 and 2 were measured at different frequencies
(Fig. 3e and Fig. $4, ESIY). As the frequency decreases, ¢’ gradually
increases, but the temperature at the maximum value of &
remains almost constant at different measured frequencies, indi-
cating that compounds 1 and 2 do not show any dielectric
relaxation in the measured frequency range. The phase transition
temperatures of both compounds are close to room temperature,
making them good reversible dielectric switches without strict
working conditions (Fig. 3f).

Hirshfeld surface and 2D-fingerprint analyses

To better understand the intermolecular interaction forces of the
compound during the phase transition, the Hirshfeld surface and
two-dimensional fingerprints were calculated using CrystalEx-
plorer software. The different colors on the Hirshfeld surface
represent the interactions between molecules: white represents
the van der Waals distance, blue represents longer contacts and
red represents closer contacts. As shown in Fig. 4, small changes
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Fig. 4 Hirshfeld surfaces (top) and 2D fingerprint plots (bottom) for 1 and 2.

in the contact surface occur when the inorganic framework is
tuned. (di, de) for BPA-C, i.e. (1.6589, 1.9084), is smaller than that
of BPA-Br (1.6589, 1.9799), which allows us to know that the
interaction forces between cations and anions are different. In
addition, compound 2 shows stronger hydrogen bonding due to
the apparent contact of its cations indicated by the red circular
grooves. These results are consistent with those obtained from the
Hirshfeld surfaces and also demonstrate that compound 2 exhi-
bits a higher phase transition temperature.

Semiconducting properties and reversible thermochromism

In addition, the semiconductor properties of the title compounds
were characterized to investigate the effect of halogen modulation on
the band gap. Fig. 5a shows that the absorption edge of BPA-Br
(465 nm) is larger than that of BPA-CI (423 nm). To better under-
stand the relationship between the valence and conduction bands,
analysis of the energy band structure and density of states was
performed. Based on the position of the valence band maximum
(VBM) and the conduction band minimum (CBM), it can be
concluded that compound 1 is a direct semiconductor (3.00 eV),
while compound 2 is an indirect semiconductor (2.09 €V) (Fig. 5b
and e). This is more consistent with the results obtained from the
Tauc curve (Fig. 5d) (1, 2.97 €V; 2, 2.66 eV), indicating that halogen
modulation has an effect on the band gap. As shown in Fig. 5¢ and f,
the VBM and CBM are mainly contributed to by the inorganic part.
Moreover, by comparing the band gap with those of other tin-based
organic-inorganic hybrids (Fig. 6a), the title compounds belong to
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Fig. 5 (a) UV-NIR-vis absorption spectra of 1 and 2. (b and e) Band
structures of 1 and 2. (c and f) Partial densities of states of 1 and 2.
(d) Optical band gaps of 1 and 2 as calculated by the Tauc equation.
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the narrower band gap semiconductors, indicating that they have
a wide range of applications in optoelectronic devices (FPEA: 2-(2-
fluorophenyl)ethan-1-ammonium;'® FMBA: 3-fluoro-N-methylben-
zylamine;”® CoHgN: quinoline;” C;oH,oCIN: diallyldimethylami-
nium chloride;® RHQ: (R)-3-hydroxyquinuclidinium;® TMIM:
trimethyliodomethylammonium).>

Thermochromic materials have potential applications in the
fields of anti-counterfeiting, sensors and smart windows. The
thermochromic behaviour mostly reported is caused by the
lattice change or ionic rearrangement. Surprisingly, the large
crystal of compound 2 exhibits an excellent thermochromic
response. As shown in Fig. 6b, compound 2 exhibits a light
green color at 300 K. The color changes more significantly with
increasing temperature, and it finally shows a dark green color
at 420 K. Interestingly, the dark green color gradually returns to
light green as the temperature decreases, indicating that com-
pound 2 exhibits an interesting reversible thermochromic
response. Additionally, the measured thermogravimetric (TG)
results indicate that the decomposition temperatures of com-
pounds 1 and 2 are much higher than the phase transition
temperatures, ensuring their thermal stability for potential
applications (Fig. S5, ESIT). This thermochromic behaviour is
mainly caused by the deformation of [SnBrs]*~ octahedra
during the structural phase transitions from LTP to HTP. It is
a promising material to be applied in temperature sensors
(Fig. 6¢c and Fig. S6, ESIT).

Conclusions

In summary, we have synthesized two tin-based organic-inorganic
halides (BPA),SnCls (1) and (BPA),SnBre (2) by rational halogen
modulation. The phase transition temperature gradually increases
(284.24 - 301.89 K) with the increasing halogen ion size. Meanwhile,
DSC and dielectric measurements further provide reliable evidence
for this result. Furthermore, rational design of the band gap is
realized, which guides us to discover more narrow band gap
semiconductors. Compound 2 also exhibits a reversible thermochro-
mic response for applications in temperature sensors and smart
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windows. This work could provide new ideas for the subsequent
exploration of novel organic-inorganic hybrid halides.
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