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Electrocatalytic water splitting is a promising technology for producing clean hydrogen fuel. The

development of cost-effective, highly efficient, and excellent durable electrocatalysts for the hydrogen

evolution reaction (HER) plays an important role in industrial electrolytic water splitting. Using self-

supported electrodes is regarded as an impactful strategy for designing electrocatalysts with exceptional

activity and high stability, compared with conventional powder electrocatalysts. Herein, recent progress

in different substrates including nickel foam (NF), carbon cloth (CC), titanium foil (TF), stainless steel (SS),

iron foam (IF), cobalt foam (CF), copper foam (CFM), molybdenum foil (MF), and so on for self-

supported electrocatalysts is systematically overviewed, with a special focus on the vacancy engineering,

morphological control, heterostructure construction, alloying design, and doping regulation, as well as

the design and fabrication route. This review may promote future research and provide a guideline for

selecting suitable materials and substrates for fabricating self-supported electrodes with outstanding

HER performances, thereby further enhancing the large-scale application of electrolyzing water.

1 Introduction

Currently, it is an undeniable fact that the depletion of traditional
primary energy sources (natural gas, crude oil, and coal) is
becoming an increasingly serious problem,1–5 which needs to be
solved immediately. Therefore, high gravimetric energy density
hydrogen (H2) has attracted broad interest in this regard by virtue
of its clean, sustainable, zero carbon footprint, and environmen-
tally friendly features.6–11 H2 is a perfect medium for energy
storage. Hydrogen does not naturally form on Earth, and must
be produced by the decomposition of other molecules.
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Approximately 95% of the hydrogen yield around 50 � 106 t a�1

(around 50 million tonnes per annum) is generated through
steam reforming of natural gas and subsequent water–gas shift
reactions with electrolysis.12 The formation of H2 from natural gas
will lead to harmful or polluting side-products. Considering the
limited supplies of natural gas and the greenhouse effect of CO2,
producing H2 from this method does not solve the needs of renew-
able energy storage. It should be mentioned that on a weight-by-
weight basis H2 produces almost four times more energy than the
equivalent weight of gasoline. Fortunately, the production of H2

from water through electrolysis is a clean and environmentally
benign process, resulting in only oxygen being generated as a
byproduct. In addition, when H2 is burned, H2 as a renewable fuel
only generates water without by-products including sulfide, nitric
oxide, and carbon dioxide. Furthermore, with the ongoing

development of the economy and the global industrialization
process, human beings have to deal with the universal threat of
global warming and air pollution.13–19 Thereinto, H2, a promising
energy carrier, is capable of solving the environmental problems
caused by the consumption of fossil fuels. However, the strategies
of producing H2 in industry derived from steam methane reform-
ing, biomass conversion, and coal gasification are not energy-
efficient and economical.20 Since water electrolysis was first stu-
died by Troostwijk and Diemann in 1789, it has been extensively
investigated by researchers around the world.21–23 Alternatively,
electrolyzing water is a desirable method to yield H2 with high
purity and efficiency.24–26 Accordingly, efficient and stable electro-
catalysts are urgently developed and used for the HER.

Recently, several electrocatalysts have been synthesized for the
HER, and most of the electrocatalysts are in the form of powder.
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Thus, a binder is necessarily adopted to cast catalysts on sub-
strates in electrochemical tests, which is a time- and cost-
consuming process. Besides, the binder employed in preparing
electrodes can not only increase the interfacial resistance between
electrocatalysts and substrates but also block the active sites,27,28

resulting in reducing their HER activity and stability. Fortunately,
the self-supported electrocatalysts directly constructed on con-
ductive substrates have many advantages compared to the
powdery-type catalysts such as (1) a simplified electrode prepara-
tion process, (2) enriched active sites via increasing loading
amounts, (3) more active sites exposed by eliminating binders,
(4) charge transport favoured through evenly rooting catalysts on
the substrates, (5) hydrophilic/hydrophobic surface engineering
via tuning the morphology and microstructure, and (6) the
catalysts can be anchored on the substrates for enhancing
stability,29–34 leading to extraordinary HER performance. As a
result, the self-supported electrocatalysts are more suitable for
industrial applications compared to conventional powdery elec-
trocatalysts. To date, encouraging improvements have been
achieved in the self-supported electrodes.34 Nevertheless, to meet
the industrial standard, it is still significantly challenging to
enhance the performance of HER electrocatalysts, and the perfor-
mance of self-supported electrocatalysts is still far away from
meeting the requirements for commercial applications. The
challenges in fabricating electrocatalysts for practical applications
at large current densities primarily originate from the rigorous
need of electron and mass transfer efficiency. More importantly,
rationally constructing an electrocatalytic electrode with desirable
morphology and structure can improve the electron transfer
efficiency, exposure of active sites, ion diffusion rates, reaction
kinetics, as well as mechanical stability, and therefore has an
important effect on its HER performance at large current
densities.35 Therefore, highly efficient and stable self-supported
electrocatalysts are urgently needed for industrial electrolytic
water splitting for producing hydrogen. To meet the requirements
for commercial use (a low overpotential at 10 mA cm�2 for the
HER, a small Tafel slope, long-term stability (41000 h), high
operating current densities up to 1000 mA cm�2, and so on),
summarizing the recent advances in the designing and fabricating
self-supported electrodes is greatly significant.

In this review, we summarize recent developments in the
area of self-supported electrodes for the HER (Fig. 1). We
comprehensively review many important kinds of self-
supported substrates. In the discussion, particular attention
is paid to the defect and morphology engineering, interface
regulation, doping, and catalytic performance of these HER
electrocatalysts. Finally, we briefly point out the critical chal-
lenges in HER electrode design and performance.

2. Electrochemical hydrogen
evolution reaction
2.1 Mechanisms of electrochemical HER

The electrocatalytic HER involves a two-electron transfer
reaction occurring at the electrode/electrolyte interface.36

Thereinto, H2 is produced at the cathode through the reduction
of either a proton (H+) in acidic media or H2O in alkaline
media, both of which contain multiple steps (Fig. 2). It should
be noted that the HER process in a neutral solution is similar to
that in an alkaline solution. Moreover, electrocatalysts are
required to lower the energy barriers in each step.

2.1.1 HER in acidic media. In an acidic solution, first,
hydronium ions coupled with electrons form reactive hydrogen
intermediates H* at active sites (where * represents an active
site on the electrode surface, and H* is the hydrogen atom
adsorbed on the active site) via the electrochemical adsorption
process (Volmer step, eqn (1)). Subsequently, there are two
possible reaction pathways: one is the electrochemical
desorption process (Heyrovsky step, eqn (2)), where the gene-
rated H* combines a new pair of H+ and electron (e�) in the
solution to produce H2 molecules, and then desorbed; the
second is the chemical desorption process (Tafel step,
eqn (3)), in this case, two nearby H* obtained by the Volmer
step are recombined directly to yield H2 molecules. In acidic

Fig. 1 Overview of the topic covered in this article.

Fig. 2 Schematic process for the HER under acidic and alkaline solutions.
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media, the HER pathway with different Tafel slopes is as
follows:

H3O+ + e� + * - H* + H2O, Volmer step (120 mV dec�1)
(1)

H3O+ + e� + H* - H2 + H2O, Heyrovsky step (40 mV dec�1)
(2)

H* + H* - H2, Tafel step (30 mV dec�1) (3)

2.1.2 HER in alkaline media. Compared with the HER in
acidic media, the HER in alkaline solution shows a slower
kinetic rate, because extra energy is required to dissociate H2O
molecules to obtain enough H+.37 Therefore, the alkaline HER
is first initiated by water adsorption and dissociation process to
produce H* on active sites (Volmer step, eqn (4)), which is the
rate-determining step (RDS). Then, at low coverage of H* on the
catalyst surface, H* will preferably combine with an electron
and H2O molecule to generate an H2 molecule (Heyrovsky step,
eqn (5)); When the H* coverage is high, the H2 molecule will be
formed through binding two adjacent H* atoms (Tafel step,
eqn (6)). Additionally, it should be mentioned that the low
water adsorption energy and water dissociation are conducive
to the effective alkaline HER.38–41 In an alkaline solution, the
reaction formula and Tafel slope for the HER are described as
follows:

H2O + e� + * - H* + OH�, Volmer step (120 mV dec�1)
(4)

H2O + e� + H* - H2 + OH�, Heyrovsky step (40 mV dec�1)
(5)

H* + H* - H2, Tafel step (30 mV dec�1) (6)

2.2 Parameters for evaluating electrocatalysts

As shown in Fig. 3, several significant parameters are usually
utilized to evaluate the performance of an electrocatalyst, such
as overpotential (Z), Tafel slope, exchange current density ( j0),
stability, electrochemically active surface area (ECSA), specific
and mass activity, turnover frequency (TOF), electrochemical
impedance spectroscopy (EIS), and faradaic efficiency (FE).
These parameters can furnish penetrative information about
the thermodynamics and kinetics of the HER. These para-
meters are introduced briefly in this section.

2.2.1 Overpotential. Theoretically, the driving thermo-
dynamic potential of the HER is 0 V versus the reversible
hydrogen electrode (RHE), while the extra potential is routinely
required to drive the reaction in a practical reaction system.
The extra potential is called overpotential, which is a critical
parameter to assess the performance of catalysts. The over-
potential value can be determined by linear sweep voltammetry
(LSV) with a function between the current density and over-
potential. The overpotential mainly comprises the activation
overpotential, resistance potential, and concentration over-
potential in the electrochemical systems.42 The activation

overpotential, an intrinsic property of the catalyst, can be
reduced by using an efficient catalyst. The concentration over-
potential derives from a sudden change in the concentration
near the electrode/electrolyte interface owing to the sluggish
diffusion rate.43 This can be decreased by distributing the
electrolyte via stirring the solution. The resistance overpotential
can be depressed by employing ohmic drop compensation,
which can be realized in many modern electrochemical work-
stations equipped with automatic compensation for IR loss. For
ease of quantifying the overpotential, three Z values at the
current densities of 1 (Z1), 10 (Z10), and 100 (Z100) mA cm�2

are frequently utilized to compare the activities between differ-
ent catalysts. Z1 is called an ‘‘onset overpotential’’, which
suggests that the current density starts to tremendously
increase.30 Z10, an important criterion, corresponds to the solar
water-splitting efficiency of 12.3%, which is generally chosen as
the comparison standard for different catalysts.44 A smaller Z10

implies a better electrocatalytic activity to some extent. How-
ever, it cannot directly discriminate the activity of a catalyst by
just comparing the Z10 value, because the loading content of the
catalyst on the electrode with the same geometrical area is
totally different. Therefore, for evaluating and comparing the
real HER activity of catalysts, researchers should load the same
amount of a catalyst on a standard glassy carbon electrode with
low roughness to achieve the activity per unit mass. Z100 is
another key criterion for catalyst evaluation in practical appli-
cations. Furthermore, potentials are frequently measured and
quoted regarding reference electrodes other than the RHE,

Fig. 3 The parameters for evaluating the HER performance.
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which is greatly inconvenient from an experimental standpoint.
The common references are the saturated calomel electrode
(Hg/Hg2Cl2) in acidic media or the mercuric oxide electrode
(Hg/HgO) in alkaline media. Meanwhile, the counter electrode
should be a convenient one, which cannot affect the perfor-
mance of the working electrode. Over the past few decades, the
Pt electrode is prevalently used as the counter electrode due to
its outstanding stability and excellent electrical conductivity,
which, however, can be dissolved into Pt2+ for a long-term test.
Then, the produced Pt2+ transfers to the working electrode
surface, resulting in enhancing the activity of the working
electrode.45 To ensure the authenticity of the test data, some
stability electrodes including graphite rod, conductive glass,
carbon cloth, and titanium mesh should be served as the counter
electrodes. To unify the standard of evaluation, the potentials
should be calibrated to the RHE according to the following
equations:

E(RHE) = E(Hg/Hg2Cl2) + E1(Hg/Hg2Cl2) + 0.0592 � pH (7)

E(RHE) = E(Ag/AgCl) + E1(Ag/AgCl) + 0.592 � pH (8)

E(RHE) = E(Hg/HgO) + E1(Hg/HgO) + 0.0592 � pH (9)

2.2.2 Tafel plot and exchange current density. The Tafel
plot is often applied to exhibit the relationship between current
density and overpotential in the HER.46 From eqn (10), the
Tafel slope and exchange current density can be derived. The
Tafel slope is plotted by Z as a function of log|j|, and b can be
extrapolated from the linear portion of the Tafel plot. The Tafel
slope shows the intrinsic property of a catalyst and discerns the
charge transfer kinetics and probable reaction pathways, as
well as the rate-determining step of the hydrogen evolution
process,47 which generally can be used for explaining the
catalyst mechanism of the HER. It has been elaborated that
the HER kinetics contains three main steps: Volmer, Heyrovsky,
and Tafel as the rate-determining steps with corresponding
Tafel slopes of 120, 40, and 30 mV dec�1 observed at the low
overpotential values/current densities.48 Note that the above
Tafel slope values are not absolute, because the Tafel slope is
determined by the coverage of the absorbed hydrogen.49 The
smaller b indicates that less Z is required to achieve the same
current density increment, signifying faster electron-transfer
kinetics. On the other hand, j0, relying on the reaction activa-
tion energy at the surface of the electrocatalyst, is a critical
kinetic parameter for revealing the inherent catalytic activity of
an electrocatalyst under reversible conditions, which can be
valued by assuming Z of being zero.50 In addition, electrolyte
composition and temperature also affect the value of j0.51

A superior electrocatalyst should possess a high j0 and a small
b simultaneously.

Z = a + b log j (10)

2.2.3 Electrochemical impedance spectroscopy. EIS can
provide information about the electrode/electrolyte interface
in the catalytic system.52 The charge transfer resistance (Rct),

which exhibits the interface charge transfer process of an
electrode, can be gained by fitting the diameter of the semi-
circle in the high-frequency region.53 For the HER, a smaller Rct

value indicates a faster reaction rate and high charge transfer
efficiency, rendering a smaller overpotential. Additionally, the
uncompensated ionic and ohmic resistances of the electro-
chemical measurement process are also obtained based on
the EIS Nyquist plots.

2.2.4 Electrochemically active surface area. In electro-
chemical reactions, the geometric surface area is generally
employed to calculate the current density. However, it is
difficult to guarantee the standard flat of a catalyst.54 To reveal
the intrinsic activity, ECSA can be used to assess the perfor-
mance of a catalyst, which reflects the effective catalytic areas of
a catalyst.55 One of the most regularly used ECSA calculation
methods is measuring cyclic voltammetry (CV) in the non-
faradaic regions at different scanning rates.56 When conducting
the CV test, the variation of non-Faraday current density ( j)
should be linearly related to the scan rate (n); thus, it provides
the electric double-layer capacitance (Cdl) derived from the
slope (eqn (11)),57 where the slope is twice Cdl. The large Cdl

expounds more active sites exposing and current density
enhancing. The ECSA is proportional to Cdl, thus the ECSA of
the catalyst is calculated according to eqn (12). In addition,
ECSA can also be measured by underpotential deposition or
advanced electron microscopy.58–60 It should be mentioned
that the chemical nature and construction of the electrodes
may overestimate ECSA and thus underestimate the catalytic
activity.61 Moreover, although ECSA manifests some informa-
tion on the number of active sites of the electrocatalyst, it does
not mean that all active sites play a catalytic role in the HER.
Even so, ECSA can still act as a key reference for the comparison
of similar component materials.

Cdl ¼
j

n
(11)

ECSA ¼ Cdl

Cs
(12)

where Cs is the specific capacitance of a flat standard electrode
(1 cm2), it is usually between 20 and 60 mF cm�2. The average
value of 40 mF cm�2 is frequently used for flat electrodes.54,62,63

2.2.5 Turnover frequency. TOF is an important parameter
for evaluating the intrinsic activity of each catalytic site on
catalysts, which is defined by the number of H2 moles per
catalytic site per unit of time at a given potential. A high TOF
value implies prominent catalytic activity. However, it is a great
challenge to obtain a precise number of active sites per unit
area for voluminous HER catalysts, because catalysts generally
have readily accessible surface atoms/catalytic groups and
some unattainable internal atoms/catalytic species. Therefore,
various approximate strategies are carried out. For instance,
researchers endeavor to measure the TOF value with a reason-
able approach that only considers the surface atoms or the
easily accessible catalytic sites on the catalysts. In other cases,
the TOF is calculated by using the total catalytic species in the
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catalysts, which comprise all the accessible catalytic sites and
some inaccessible catalytic sites originating from the surface
and interior of catalysts. Although the two kinds of methods
cannot provide an accurate value compared with the real TOF
value of the active sites, they may still furnish a useful way to
compare the catalytic activity or efficiency of similar catalysts.
A common method to estimate TOF value is according to
eqn (13) and (14). Based on eqn (13), the number of active sites
(n) is obtained by the CV test from �0.2 V to +0.6 V vs. RHE at a
scan rate of 20 or 50 mV s�1 in 1.0 M phosphate buffer solution
(PBS, pH = 7). In addition, other methods for quantifying the
number of active sites are also applied, such as the copper
underpotential deposition method and estimating the number
of molecules on the active surface.64–67 When the number of
active sites is determined, the TOF (s�1) can be calculated with
eqn (14).

n ¼ Q

2F
(13)

TOF ¼ INA

2Fn
(14)

where Q is the voltammetric charge calculated by the integral
curve of CV, I is the current (A) during the linear sweep
measurement, NA denotes the Avogadro constant (6.023 �
1023 mol�1), F is the Faraday constant (96 485 C mol�1), and
n is the number of active sites (mol). The factor 1/2 in the
equation means that two electrons are consumed to generate
one H2 molecule.

2.2.6 Specific and mass activities. The specific and mass
activities are key quantitative parameters to evaluate the cata-
lytic activity of electrocatalysts at a defined overpotential. The
specific activity is the current density per unit real surface area
of the catalyst, which can be measured by normalizing the
current to the ECSA. The ECSA normalized activity is relatively
accurate, because ECSA can reveal the intrinsic surface area of
the catalyst.68,69 The current normalized by the loading mass is
the mass activity, which is normally valid for the comparison of
a similar material system.70 The mass activity is positively
correlated with the active surface area of catalysts, namely,
catalysts with larger surface area usually present a higher mass
activity.71

2.2.7 Faradaic efficiency. Faradaic efficiency is another
crucial parameter to evaluate the performance of an electro-
catalyst, which illustrates the proportion of electrons partaking
in the HER versus total electrons provided by an external circuit
in the HER.72 FE is defined as the ratio of the experimental to
the theoretical amount of H2 production. The theoretical H2

production can be calculated from the chronoamperometry or
chronopotentiometry test, and the experimental H2 generation
can be collected by the gas chromatography or drainage
method. The FE of electrons is usually less than 100% due to the
by-products forming on the electrode surface during the HER.

2.2.8 Stability. Long-term stability, which shows the long-
term ability to retain the initial catalytic activity of the electro-
catalysts, is a crucial indicator to evaluate the practical

applications of an HER catalyst.73 Generally speaking, two
assessment approaches are performed, such as continuous
CV and chronoamperometry (potential-time curve) or chrono-
potentiometry test (current-time curve). In the case of the CV
test, potential cycles usually are consistent with that of the LSV
range. The stability is evaluated by comparing the LSV curve
change before and after the repetitive CV cycles (normally 1000–
10 000 cycles). While the LSV curves remain negligible variation
as the initial one or the overpotential marginally increases less
than 10% with respect to the initial value, suggesting great
durability. With regard to the chronopotentiometry (CP) or
chronoamperometric (CA) measurements, which are usually
conducted at a constant current density of 10 mA cm�2 or
applied overpotential for at least ten hours. The longer duration
without potential (or current) change presents excellent endur-
ance. Even so, ten hours are not enough for HER. We recom-
mend using a longer time test, such as 100 hours. Additionally,
along with the accumulating and releasing of H2 bubbles on
electrodes, the measured current-time curve displays a unique
serrate shape.74 Unfortunately, the produced H2 bubbles
can cover the catalytic sites, leading to slow HER kinetics.71

Meanwhile, the release of H2 bubbles may peel the active
materials from the electrode surface, resulting in lowering
HER performance. To a certain extent, the negative effect of
H2 bubbles can be weakened through stirring or using self-
supported electrodes.

2.3 Density functional theory (DFT)

As a vital computational tool, DFT, which is based on quantum
mechanics, can not only illuminate the correlations between
the electrocatalytic performances and physical/chemical pro-
perties of catalysts at an atomic level but also calculate the
electronic structure of the whole catalytic system.75 With the
exuberant development of computer technology, DFT calcula-
tions have been widely used to explore the electrocatalytic
mechanisms, identify the active sites, and predict potential
catalysts.76–78 In particular, it is very hard to probe the inter-
mediate states of electrocatalytic reactions and electron transfer
because of their short lifetimes and complex reaction conditions,
leading to ambiguous active sites indefinite and inconclusive
electrocatalytic mechanisms.79 Therefore, coupling experiment
with DFT calculations is an effective method to identify the active
sites, deeply discern the catalytic mechanisms of the HER, as well
as rationally design new advanced electrocatalysts.

2.3.1 The Gibbs free energy of hydrogen adsorption (DGH*).
The Gibbs free energy of hydrogen adsorption has been exten-
sively regarded as a crucial descriptor for theoretically predicting
and evaluating the catalytic activity of the HER catalysts,80 which
can reflect the electronic state of the catalyst surface. As guided by
the volcano plot (Fig. 4), an optimal HER catalyst should have a
nearly zero DGH*, which not only promotes the charge/mass
transfer with fast kinetics but also facilitates adsorbed H (Hads)
bond breaking and rapidly release of H2 molecules under this
condition.81,82 When DGH* is too negative, the intermediate Hads

will bind strongly with the electrocatalyst surface, thereby pro-
moting the initial Volmer step, but retarding the subsequent
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Heyrovsky or Tafel steps. When DGH* is too positive, Hads shows
insufficient interaction with the electrocatalyst surface, resulting
in a slow Volmer step.83–85 Therefore, appropriate DGH* is very
important for enhancing H2 evolution. By modeling the possibly
produced intermediates of hydrogen adsorption, reduction, and
desorption processes, DGH* can be calculated from eqn (15).86

DGH* = DEH* + DEZPE � TDS (15)

where DEH* is the hydrogen chemisorption energy, DEZPE is the
zero-point energy difference between the adsorbed and gas
phases, T is the room temperature (298.15 K), and DS is the
entropy change.

2.3.2 The d-band center theory. The d-band center theory
was first established by Nørskov and Hammer, which has been
successfully used to describe the tendency in the activity of
transition metal-based electrocatalysts.87–90 Particularly, the
d-band center theory manifests that the hydrogen or oxygen
adsorption strength depends on the d states of metals.91–93 For
instance, when H* adsorbs on the surface of the metal catalysts,
the metal–hydrogen (M–H) bond will be formed through hybri-
dizing the H* orbital with the metal d orbital. Basically, the
interplay between H* orbital and the metal d orbital can
generate a fully filled bonding orbital with low energy and a
partially filled anti-bonding orbital with high energy, where the
occupancy of the anti-bonding orbital determines the M–H
bond strength.94 Generally speaking, the low anti-bonding
orbital occupancy will result in a high M–H bond strength.
Therefore, the inherent surface adsorption ability of H* can be
qualitatively construed and forecasted through computing the
local d-band states of a metal surface.95 Moreover, the position
of the d-band center (ed) relative to the metal’s Fermi level also
has a great impact on the M–H bond strength. When the
metal’s Fermi level gets close to the d-band center, the anti-
bonding orbital becomes higher due to the decreased occu-
pancy, leading to a stronger H* adsorption.96 Apart from the
d-band filling, the bandwidth of the d-band also influences
the adsorption strength on the catalyst surface. When fixing the

filling level of the d-band, a diminished bandwidth will elevate
the level of the d-band center, thereby resulting in a strong
adsorption interaction.97–99 For calculating the effect of ed on
the adsorption interactions, the corresponding ed is defined as
the local average of the d electron energies (eqn (16)).

ed ¼
Ðþ1
�1xr xð Þdx
Ðþ1
�1r xð Þdx

(16)

where x is the energy level and r(x) is the density of states of the
corresponding d-orbital.

3. Design and fabrication of
self-supported electrocatalysts
3.1 Carbon-based substrates

Carbon-based substrates mainly contain carbon fiber paper
(CFP), graphite plate (GP), and CC, which exhibit augmented
conductivity, strong flexibility, and high resistance to strong
acidic and alkaline electrolytes.100–103 To improve the solvent-
accessible hydrophilic surface, carbon-based substrates should
be treated before use. Several methods of treating carbon-based
substrates have already been reported, for instance, CC was
cleaned using acetone and ethanol under ultrasonication to
remove impurities, respectively, and then dried at 60–80 1C for
many hours. Whereafter, CC was treated with concentrated
nitric acid with the hydrothermal method or reflux method.104–107

In addition, chemical oxidation with potassium permanganate,
electrochemical oxidation, air calcination treatment, and plasma
methods were also utilized.108–111 Therefore, the carbon-based
substrates were widely used to construct the self-supported
electrodes for the HER by virtue of their advantages. For
example, the Mo–Fe–Ni phosphides nanowires were prepared
on carbon cloth, which shows superefficient alkaline HER
performance with an overpotential of 75 mV at the current
density of 10 mA cm�2 and superior long-term electrochemical
stability for 20 h electrolysis.112 The improved HER perfor-
mance could be attributed to the synergistic effects between
multiple catalytic centers (Mo, Fe, and Ni), as well as the
facilitated evolved-gas escape. In similar research, Wen et al.
provided a general strategy for fabricating self-supported nano-
porous Cu-doped CoP nanorod arrays on CC (Cu–CoP NRAs/
CC) via a hydrothermal method followed by a low-temperature
phosphatization route, showing enhanced HER performance in
a wide pH range.113 The resultant Cu–CoP NRAs/CC electrode
exhibited wonderful HER performance with 44 mV overpoten-
tial to reach a current density of 10 mA cm�2 in 0.5 M H2SO4

solution. Simultaneously, it needed overpotentials of 81 mV in
1.0 M KOH and 137 mV in 1.0 M PBS at the same current
density, respectively. It also presented prominent stability
under different pH conditions for 40 h. The exceptional HER
performance could be ascribed to the strong heteroatomic
interactions induced by many lattice distortions and defects.
Zheng et al. successfully synthesized bimetallic carbide
Ni6Mo6C nanodots embedded on NiMoOx nanosheets arrays
anchored on an activated carbon cloth (Ni6Mo6C/NiMoOx/ACC)

Fig. 4 A volcano plot.82
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via controlling the diffusion of carbon atoms into precursor
NiMoO4 nanosheets with carbothermal hydrogen reduction
(Fig. 5a).114 The as-formed NiMoOx nanosheet arrays grown
on ACC with unique hierarchical structures (Fig. 5b–d) could
greatly enhance both the mass transport and electric conduc-
tivity. In virtue of the moderated hydrogen adsorption ability
(DGH* = �0.13 eV) and low water dissociation energy barrier
(DGb = 0.27 eV) on Ni6Mo6C (Fig. 5e and f), the open micro-
structure of the Ni6Mo6C/NiMoOx hybrid, and the high con-
ductive ACC support, the Ni6Mo6C/NiMoOx/ACC flexible
electrode displayed a small overpotential of 29 mV to achieve
10 mA cm�2 with long-term stability for 60 h of constant
electrolysis, even superior to the benchmark Pt/C and most of
the reported nonprecious metal catalysts (Fig. 5g–j). Exclu-
sively, as exhibited in Fig. 5k and l, it showcased excellent
flexibility, which could remain unchanged for the HER perfor-
mance under different bending angles. Therefore, this work
provided a good idea to fabricate HER electrocatalysts with
highly efficient, inexpensive, and flexible merits for practical
application and commercialization. Liu et al. synthesized a
three-dimensional (3D) self-supported binder-free integrated
electrode constructing a few layered N, P dual-doped carbon-
encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on
CC (FLNPC@MoP-NC/MoP-C/CC) for attractive HER perfor-
mance.115 The FLNPC@MoP-NC/MoP-C/CC electrode was fabri-
cated through an electrodeposition process and an in situ
phosphatization. The preparation of the FLNPC@MoP-NC/
MoP-C/CC electrode with several steps is depicted in Fig. 6a.
First, a layer of the polyaniline (PANI) film on CC (PANI/CC) was
generated by an electrodeposited method. Second, the MoO3

microrods (MoO3-MRs) were in situ arrayed on PANI/CC to form
MoO3-MRs/PANI/CC by a hydrothermal route with the pre-
decessors of (NH4)6Mo7O24 and tartaric acid. Subsequently,
another PANI film layer was further electrodeposited on the
MoO3-MRs/PANI/CC electrode to obtain PANI/MoO3-MRs/PANI/
CC. Finally, the as-formed PANI/MoO3-MRs/PANI/CC was
annealed in a PH3 atmosphere, achieving a 3D self-supported
integrated FLNPC@MoP-NC/MoP-C/CC electrode by means of
converting MoO3-MRs into MoP-NC/MoP-C hybrids and carbo-
nizing PANI films into few layered N, P dual-doped carbon.
From Fig. 6b–d, the FLNPC@MoP-NC/MoP-C/CC electrode
showed remarkable HER performance with extremely low over-
potentials over the entire pH range ( j = 10 mA cm�2 at Z = 74,
69, and 106 mV in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS
solutions, respectively). Besides, owing to the protection of few
layered N, P dual-doped carbon, FLNPC@MoP-NC/MoP-C/CC
presented long-term durability for 50 h testing in acidic,
neutral, and alkaline media (Fig. 6e–g), indicating the great
potential for electrolyzing water application. The excellent
electrocatalytic performance could be ascribed to the following
virtues: (1) 3D porous structure of the electrode with large
specific surface area could furnish more active sites and facili-
tate electrolyte diffusion, as well as forcefully lower the charge
transport resistance;116 (2) the well-dispersed MoP-NCs
embedded in few-layered N, P dual-doped carbon could
increase the specific surface area, resulting in exposing more
active sites; (3) the N, P dual-doped carbon layer could not only
boost the porousness and electroconductivity of the entire
electrode, enhancing the contact between the active sites and
the electrolyte, and shortening the charge transfer pathway, but

Fig. 5 (a) Schematic illustration of the preparation of Ni6Mo6C/NiMoOx-T. (b) Field emission scanning electron microscope (FESEM) images of NiMoO4

nanosheets grown on ACC at different resolutions. (c) FESEM images of Ni6Mo6C/NiMoOx-400 at different resolutions. (d) Transmission electron
microscope (TEM) images of Ni6Mo6C/NiMoOx-400. (e) Calculated DGH* values for H adsorption on different sites of Ni6Mo6C (511) and Pt (111). (f) Gibbs
free energy diagram of the water dissociation path on Ni6Mo6C (511) and Pt (111). (g) HER polarization curves of different electrocatalysts without iR
compensation in 1 M KOH solution at 2 mV s�1. (h) Comparison of Z10, Tafel slope, and j0 of various electrocatalysts. (i) i–t curve of Ni6Mo6C/NiMoOx-400
at 100 mV overpotential in 1 M KOH solution, and (j) corresponding LSV curves after constant electrolysis for 60 h. (k) Digital images of the distorted
Ni6Mo6C/NiMoOx-400 electrode under the HER test, and (l) corresponding LSV curves.114
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can also prevent MoP-NCs from corrosion and aggregating;117

(4) N doping of carbon layers could provide extra active sites by
changing the electron density in graphitic carbon;118 (5) the
synergistic effect between MoP components and few layered N,
P dual-doped carbon could optimize the DGH* values to
improve the H* adsorption, resulting in promoting the HER
performance. This work put forward a broad strategy for
guiding the fabrication of various self-supported electrodes
for the HER. Lately, numerous works have been devoted to
exploring the economical and efficient alternatives based on
transition metal dichalcogenides, which showed potential elec-
trocatalytic HER activities owing to their optimal DGH*.62,119–122

Among them, molybdenum disulfide (MoS2) is a well-known
electrocatalyst due to its natural abundance, distinct catalytic
mechanism, low price, tunable electronic structure, and good
chemical stability.123–128 A 3D self-supported cross-linked
(3DSC) Co-doped MoS2 (Co-MoS2) nanostructured HER electro-
catalyst on CC was designed and synthesized by creative
nanostructure engineering.129 Benefiting from the special
structure, MoS2 nanosheets exposed more copious active sites
on the edges, making ion transfer and bubble release easy and
smooth. Moreover, the unique structure also enhanced the
stability and advanced electron transfer via direct bonding with
CC. On the other hand, the Co element in MoS2 could raise the

overall conductivity, resulting in optimizing the electron trans-
fer path and activating the adjacent S sites. As a consequence,
the 3DSC Co-MoS2 electrode integrated on CC could reach the
current density of 10 and 100 mA cm�2 with merely 40 and
119 mV overpotentials, respectively, surpassing other MoS2-
based HER electrocatalysts reported recently. This research
exhibited a facile integration strategy and a new method for
boosting inexpensive and high-activity electrocatalysts. Pang
and co-workers reported a versatile and effective method to
synthesize Re/ReS2 self-supporting array electrodes with abun-
dant S defects on CC (Re/ReS2/CC).130 The optimized S-defect-
rich Re/ReS2/CC exhibited outstanding electrocatalytic HER
performance, providing ultralow overpotentials of 42 and 44 mV
at 10 mA cm�2 in acidic and alkaline solutions, respectively,
and corresponding small Tafel slopes of 36 and 53 mV dec�1,
which were comparable to many promising HER catalysts.
Experiments and DFT results demonstrated that the S defects
in Re/ReS2/CC could afford sufficient active sites, boost charge
transfer kinetics, and optimize DGH* at the active sites, result-
ing in high-caliber electrocatalytic HER performance. Sun et al.
used a simple two-step method of dip-coating and electro-
chemical reduction to synthesize self-supported molybdenum
oxide stabilized ultrafine palladium electrocatalysts on CC (MoOx-
Pd/CC), which showed a small Tafel slope of 45.75 mV dec�1,

Fig. 6 (a) Fabrication process of few layered N, P dual-doped carbon-encapsulated MoP nanocrystal/MoP cluster hybrids on CC. (b–d) LSV curves of
bare CC, FLNPC/CC, MoP-C/CC, FLNPC@MoP-NC/MoP-C/CC, and Pt/C in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS electrolytes at 2 mV s�1. (e–g) LSV
curves of FLNPC@MoP-NC/MoP-C/CC initially and after 3000 cycles in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS medium. Insets of (e–g) are time-
dependent current density curves of FLNPC@MoP-NC/MoP-C/CC under a static overpotential for 50 h.115
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an ultralow overpotential of 25 mV at 10 mA cm�2, and out-
standing durability for at least 7 days in 0.5 M H2SO4 solution,
surpassing the bare Pd/CC and MoOx/CC and also comparable to
the commercial Pt mesh electrode.131 The experimental results
and DFT calculations presented that MoOx could not only effec-
tively downsize and disperse Pd nanoparticles by exposing more
active sites, but also tune the electronic structure of the Pd
surface, boosting their intrinsic catalytic activity. Hu et al. fabri-
cated a self-supported economical Ni-doped Mo2C electrocatalyst
with nanoflower morphology on CFP through a molten salt
method.132 Compared to the conventional solid-phase approach,
the molten salt method can prepare products with a uniform
chemical composition, great crystal morphology, and pure phase
by using a low melting point salt as a reaction medium at low
temperatures for a short time.133–137 Based on this method, the
as-obtained fluffy and porous nanoflower-like structure showed a
large specific surface area, resulting in exposing more active sites
and promoting charge transfer. The optimal Ni-doped Mo2C
electrocatalyst exhibited high-efficient HER performance with a
low overpotential of 56 mV at 10 mA cm�2, a small Tafel slope of
27.4 mV dec�1, and long-term stability for 35 h electrolysis in
0.5 M H2SO4 solution, which is superior to most of the noble-
metal-free electrocatalysts. DFT calculations indicated that the Ni
doping could cause a down shift of ed, which enabled Hads to
desorb from the catalyst surface easily, thus enhancing the
intrinsic catalytic activity. Recently, metal–organic frameworks
(MOFs) have received great attention in the electrocatalytic field
due to their intrinsically porous structures, large specific sur-
face areas, and well-dispersed metal sites.138–144 Unfortunately,
the catalytic performance of most MOFs was markedly ham-
pered by their improper adsorption/desorption energy of inter-
mediates generated in electrocatalysis and quite poor electrical
conductivity. In view of these issues, Geng et al. developed a
simple method to directly fabricate novel high conductive Co-
doped Cu-catecholate nanorod arrays on CC (CuCo-CAT/CC) as
binder-free electrodes for the HER in alkaline and neutral
media.27 Electrochemical results demonstrated that CuCo-
CAT/CC showed evidently improved HER performance with
low overpotentials of 52 and 143 mV at 10 mA cm�2 in alkaline
and neutral solutions, respectively, exceeding that of the
reported non-noble metal-based electrocatalysts or comparable
to the commercial Pt/C electrocatalysts. DFT calculations
proved that Co doping could not only optimize DGH* and
adsorption energy of water (DEH2O) of Cu-CAT, thereby facil-
itating the Volmer and Heyrovsky steps, but also boost the
electrical conductivity of Cu-CAT. Furthermore, the CuCo-CAT
nanorod arrays on CC presented an open porous intercon-
nected structure, resulting in decent stability for the HER in
alkaline and neutral solutions. This study elaborated a new
strategy to design conductive MOF-based electrocatalysts for
highly efficient HER. Besides CC and CFP, graphite plate (GP)
was also a distinguished substrate. For example, a superhydro-
philic NiCo–CeO2 nanoparticle array was integrally deposited
on GP (NiCo–CeO2/GP) by simple anion intercalation heightened
electrodeposition method and subsequent high-temperature
selective reduction.145 The superhydrophilic self-supported

NiCo–CeO2/GP electrode had many traits, such as boosting
electron conduction, accelerating bubble release, and preventing
catalyst shedding. Owing to the superhydrophilic self-supported
electrode and the synergistic interaction between NiCo and CeO2,
it displayed outstanding HER performance with low overpoten-
tials of 34 mV (140 mV) at 10 mA cm�2 (500 mA cm�2) and
striking stability in alkaline electrolytes. Notably, the coupled
CeO2 could favor dissociating water and facilitate hydrogen
adsorption, drastically enhancing the HER performance of the
NiCo alloy. More importantly, CeO2 was also applied to boost
the electrocatalytic activities of NiFe and NiCu alloys, indicating
its versatility. Meanwhile, an alkaline electrolyzer with NiCo–
CeO2/GP as the cathode and NiCo(OH)x–CeO2/GP as the anode
exhibited a low voltage of 1.45 V at 10 mA cm�2 and a
prominent stability at 500 mA cm�2, outperforming that of
the Pt/C||RuO2 electrolyzer. This work presented a simple
method to synthesize the low-priced NiCo–CeO2 electrocatalyst
and proved its potential for producing H2 at large current
densities.

3.2 Titanium-based substrates

Titanium materials have been deemed as the optimum sub-
strate candidates due to their natural abundance, excellent
corrosion resistance to acidic and alkaline media, processabil-
ity, and good chemical stability.146–150 Inspired by the merits,
Li et al. fabricated Co-doped anatase TiO2 nanorod arrays on a
Ti plate (Co-TiO2@Ti(H2)) with 1D structure, abundant oxygen
vacancies (OVs), and good hydrophilic feature by ion exchange
process and calcination treatment (Fig. 7a–c).151 As displayed in
Fig. 7d–f, the as-formed Co-TiO2@Ti(H2) provided a much low
overpotential of 78 mV at 10 mA cm�2, a small Tafel plot of
67.8 mV dec�1, and outstanding long-term durability at a large
current density of 480 mA cm�2 for the alkaline HER. DFT
calculations demonstrated that the excellent hydrophilic sur-
face could facilitate water adsorption, the Co atoms could lower
the free energy of water adsorption/dissociation and H inter-
mediate, as well as ample OVs could grab OH� to efficiently
promote water dissociation and H intermediate desorption.
The work provided a promising electrode for cost-effective
and energy-efficient HER. To enhance the HER performance
of the Pt catalyst along with minimizing the Pt loading, an
effective electrode was designed, which was constructed by
using 3D Ti mesh (3D-Ti) as a substrate to yield TiO2 nanotubes
(TiO2 NTs), followed by implanting a Pt nanocluster via an
atomic layer deposition method.152 The as-formed Ptx/TiO2

NTs@3D-Ti catalysts showed a low overpotential of 53 mV at
10 mA cm�2 in 0.5 M H2SO4 solution, which was superior to
that of the commercial 20 wt% Pt/C catalysts. The experiments
and DFT results implied that the Pt–O–Ti bond between the Pt
nanocluster and TiO2 nanotube could not only boost the
durability of the Pt nanocluster anchored on TiO2 nanotubes
but also greatly enhance the HER performance. The improved
HER activity may be attributed to the following reasons: (1) the
3D pore structure from Ti mesh could facilitate gas diffusion
easily and furnish more surface contact between the electrode
and the electrolyte; (2) the regular TiO2 nanotubes possessed a
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high specific surface area for scattering Pt nanocluster and
offered 1D channel for transferring electron. Besides, Ru spe-
cies, which are much cheaper than Pt species, have favorable
dissociation kinetics of the absorbed water, exhibiting excellent
HER performance.153–156 Consequently, Wang et al. provided a
strategy to synthesize a hybrid catalyst by decorating TiO2

nanotube arrays (TNAs) with crystalline Ru0.33Se nano-
particles.157 Due to the large-specific surface area of TNAs,
Ru0.33Se nanoparticles could be evenly distributed without
aggregation, exposing more active sites. As a result, the fabri-
cated Ru0.33Se@TNA showed an improved HER activity with an
overpotential of 57 mV at 10 mA cm�2, a small Tafel slope of
50 mV dec�1, and outstanding catalytic stability. The enhanced
HER performance of Ru0.33Se@TNA catalysts stemmed from
the following aspects: (1) the increased active sites by the good
dispersion of Ru0.33Se nanoparticles on the TNAs with large-
specific surface area; (2) the boosted charge transfer efficiency

because of the contracted electron transport pathway distri-
buted by TNAs; and (3) the strong synergistic effect between
Ru0.33Se and TiO2. Additionally, Li et al. forecasted that the
defect-rich RuO2/TiO2 hybrids could dramatically modulate the
electron structure of RuO2, resulting in boosting the water
splitting.158 More importantly, ed of Ru in defective RuO2/
TiO2 shifted to a low-energy level owing to the strong synergistic
effect, and reduced the interaction between the adsorbed
oxygen species and Ru sites, benefiting the HER performance.
Consequently, defective RuO2/TiO2 hybrids on Ti mesh
(D-RuO2/TiO2/TM) were reasonably developed by impregnating
Ru precursor over TM followed by a thermal-oxidative method
at high temperatures. As expected, the as-obtained D-RuO2/
TiO2/TM catalyst presented excellent activity with a low over-
potential of 71 mV at 50 mA cm�2 for the HER in an alkaline
solution. Moreover, because of the partial metallic nature of Se
species, MoSe2 shows high electrical conductivity.159 In addition,

Fig. 7 (a) Schematic illustration of the ion exchange process for Co-TiO2@Ti(H2). (b) FESEM, and (c) TEM images of Co-TiO2@Ti(H2). (d) LSV curves in
1.0 M KOH solution. (e) Tafel plots derived from (d). (f) i–t Curves with different potentials in 1.0 M KOH solution.151 (g) The synthesis process of
hierarchical porous Mo-CoP/NC arrays on TF. (h) FESEM, (i) TEM, and (j) high-resolution transmission electron microscopy (HRTEM) images of Mo-CoP/
NC/TF. (k–m) LSV curves in 0.5 M H2SO4, 1.0 M PBS, and 1.0 M KOH electrolytes. (n) The local charge density difference isosurfaces (�0.0005 e Bohr�3

isosurfaces, cyan: �, yellow: +). (o) HER free energy diagrams for various sites.187
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its edge site surface energy is larger than that of the terrace sites,
making Mo and Se edges in the MoSe2 atomic layers more active
for the HER.160–163 Zhang’s group successfully fabricated few-
layered MoSe2 nanosheets with a mixed 1T/2H phase on Ti
substrates (1T@2H-MoSe2/Ti) via a simple one-step solvothermal
method.164 The 1T@2H-MoSe2/Ti electrode showed great HER
catalytic activity with an overpotential of 133 mV at 20 mA cm�2

and excellent stability for long-term electrolysis. The good electro-
catalytic performance was owing to the synergistic effects of the
special few-layered nanosheet morphology, conductive 1T metallic
phase, and 1T@2H-MoSe2 directly grown on the Ti substrate.
Furthermore, alloy catalysts could result in superior electrocata-
lytic performance owing to the synergistic effect between different
metal atoms.165–169 In this regard, a 3D NiMo alloy nanowire array
on a titanium substrate was successfully constructed by a simple
and effective magnetic field-assisted strategy with a short reaction
time and low temperature.170 The 3D NiMo alloy displayed
significantly enhanced alkaline HER catalytic activity with ultra-
low overpotentials of 17 and 98 mV at 10 and 400 mA cm�2,
a small Tafel slope of 28 mV dec�1, and prominent long-term
stability, which were better than most non-noble metal-based
electrocatalysts and even comparable to the Pt-based electrocata-
lysts. More importantly, the small Tafel slope suggested that the
NiMo electrode could reduce the kinetic energy barrier for the
Volmer step, thereby enhancing the alkaline HER activity. The
enhanced catalytic activity may come from the lattice distortions
induced by Mo incorporation, low contact resistance, more active
sites at nanowires surface, as well as superior charge/mass trans-
port and H2 bubbles abilities. Interestingly, Zhao et al. synthesized
FeP nanosheets on the Ti foil.171 After etching in concentrated
acid, the native oxide layer on the surface of the FeP nanosheet
was removed. The as-treated FeP nanosheet showed significantly
enhanced HER performance with the overpotentials 79 (95) and
95 (102) mV at 10 and 20 mA cm�2 in 0.5 M H2SO4 (1 M KOH)
electrolyte, respectively. Oxygen vacancy in transition metal
oxides (TMOs) plays a key role in catalytic fields, which have been
used to regulate the electron structure for improving the HER
activity.172–176 Liu et al. successfully established simple calcination
and electrochemical activation strategy to remarkably increase the
OVs content and get theoretical insight into how the concen-
tration of OVs influences the activity of spinel TMOs for the
alkaline HER.177 The self-supported spinel NiCo2O4 nanowire
arrays with tunable concentrations of OVs on TMs exhibited
extremely great HER performance. Impressively, it only required
a low overpotential of 317 mV to achieve a current density of
360 mA cm�2. In addition, the effective route could efficiently
produce OVs in CoFe2O4 and NiFe2O4 for boosted HER activity.
Furthermore, the DFT calculations indicated that the increasing
concentration of OVs on the surface of NiCo2O4 could not only
lower the adsorption energy of water molecules but also reduce
their dissociation energy barrier on the surface of the catalyst,
thus resulting in excellent HER performance. As a typical HER
electrocatalyst, the application of pyrite-type cobalt disulfide
(CoS2) is limited by its deficient activity and weak durability
because of the slow water dissociation kinetics and oxygen-related
corrosion.178–180 In view of this, an effective electrocatalyst

containing a CeO2-decorated CoS2 nanowire array on a Ti plate
was fabricated through constructing Lewis acid–base Ce� � �S
pairs.181 Correspondingly, the optimized electrocatalyst showed
an enormous HER performance with a low overpotential of 36 mV
at 10 mA cm�2 and unchanged activity over 1000 h electrolysis
in an alkaline solution. Experimental and theoretical results
indicated that the improved alkaline HER performance of CoS2

is induced by the interfacial Lewis acid–base Ce� � �S pairs with
neither too strong nor too weak acidity–basicity. Besides, the
interfacial Lewis acid–base Ce� � �S pairs kinetically promoted
interfacial water dissociation, sped the subsequent HER steps,
as well as established a special interfacial electronic and geo-
metric configuration for weakening O2 adsorption on the catalyst
surface and thus inhibiting corrosion during the alkaline HER.
These above findings could provide guidance to design CeO2-
based electrocatalysts for water splitting. In addition to CoS2, the
CoP electrocatalyst has also received great attention for the
HER.182–186 Likewise, Wang’s group utilized a synergistic electro-
nic and geometric tailoring strategy to rationally fabricate hier-
archically porous N-doped carbon incorporated Mo-doped CoP
nanosheet arrays on the titanium foil (Mo-CoP/NC/TF) via etching
Co-based MOFs (Fig. 7g–j).187 From Fig. 7k–m, the synthesized
Mo-CoP/NC/TF electrocatalysts exhibited outstanding perfor-
mance and superior stability for the pH-universal HER, requiring
overpotentials of 59, 130, and 78 mV at 10 mA cm�2 in acidic,
neutral, and alkaline solutions, respectively. DFT calculations
(Fig. 7n and o) and experimental results suggested that the
excellent catalytic activity of Mo-CoP/NC/TF could be attributed
to the following points: (1) a strong synergistic effect between the
Mo doping and N-doped carbon could effectively tailor the
electronic structures of CoP, resulting in thermo-neutral adsorp-
tion of hydrogen-containing intermediates and fast interfacial
charge transfer kinetics for Mo-CoP/NC; (2) the hierarchical
porous self-supported electrode could not only furnish more
accessible active sites, but also facilitate electrolyte diffusion
and the gas release.

3.3 Nickel-based substrates

Nickel foam has been widely employed as a substrate for HER
electrodes owing to its excellent electrical conductivity, low
price, hierarchical porous structure, commercial availability,
as well as 3D cross-linked network.188–193 For example, Chen
et al. reported a facile and simple one-pot aqueous strategy
to synthesize ultrathin rhodium-iridium nanosheets on NF
(RhIr NSs/NF) at room temperature.194 The catalyst exhi-
bited high HER performance in both 1.0 M KOH and 0.5 M
H2SO4 solutions with the overpotentials of 15 and 14 mV at
10 mA cm�2 and long-term durability. The excellent HER
performance was mainly attributed to the high conductivity,
large ECSA, and strong synergistic effect between the bimetals.
Recently, metal nitrides have received widespread attention
due to their excellent conductivity, superior chemical stability,
excellent mechanical robustness, and special electronic struc-
ture.195–199 Scaly Ni3N nanosheets were fabricated on 3D NF
(Ni3N NSs/NF) with the high-efficient electrocatalytic property
through ammonification engineering.200 The self-supported
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electrodes had many advantages including (1) the Ni3N NSs
in situ were formed on NF without using a binder and conduc-
ting agent, thus simplifying the electrode preparation process,
preventing catalyst shedding, and reducing the cost; (2) high
contents of active Ni3N NSs catalysts could be realized on NF,
leading to abundant catalytic active sites; (3) the seamless
contact of Ni3N NSs and NF guaranteed the rapid charge
transfer and conductivity of the integrated electrode. As expected,
Ni3N NSs/NF exhibited an ultralow overpotential of 34 mV at
10 mA cm�2, a small Tafel slope of 54 mV dec�1, and long-term
durability in 1 M KOH solution. DFT results showed that the
synergistic effect between Ni3N and NF, as well as more effective
facets for Hads could accelerate reaction kinetics. Our group
successfully fabricated a PVP gel encapsulated Pt/Ni(OH)2 hetero-
junction on NF (PVP@Pt/Ni(OH)2@NF) by a facile solution
evaporation method (Fig. 8a–g).201 The obtained self-supported
PVP@Pt/Ni(OH)2@NF only required overpotentials of 12, 37, and
60 mV to reach current densities of 10, 50, and 100 mA cm�2 in
1.0 M KOH electrolyte, respectively, rivaling the Pt/C catalyst
(Fig. 8h). Furthermore, the catalysts displayed an extremely low
Tafel slope of 21.5 mV dec�1 (Fig. 8i) and outstanding long-term
durability for 50 h without obvious decay (Fig. 8j). Additionally,

the loading of Pt contents in PVP@Pt/Ni(OH)2@NF was very low
(0.35 wt%), improving the utilization efficiency of Pt-based cata-
lysts. DFT calculations were applied to investigate the effect of PVP
on the alkaline HER. The results indicated that PVP molecules
at the interface could lower the water dissociation energy and
optimize DGH* on the Pt/Ni(OH)2 heterostructure (Fig. 8k and l),
resulting in great activity for the alkaline HER. Furthermore,
compared with the Tafel slopes and the electron state of
Pt/Ni(OH)2 with and without the PVP gel involved, the PVP gel
could not only boost water dissociation to generate enough
protons, but also improve the desorption of Had to enhance the
HER kinetics by redistributing the charges of Pt/Ni(OH)2. Our
work exhibited a convenient strategy for designing a Pt/Ni(OH)2

heterostructure and enhancing the utilization efficiency of Pt-
based catalysts. Analogously, Kong et al. reported a facile and
simple approach to fabricating Pt-decorated TiO2/b-Ni(OH)2

nanosheet arrays based on two-dimensional (2D) Ti3C2 through
anodic electrodeposition coupling with the hydrothermal method
(Fig. 9a–h).202 Initially, few-layered Ti3C2 nanoplates were evenly
riveted on NF in the anodic electrodeposition process. Ni2+ ions
were easily yielded from NF in acidic conditions, which could act
as the nucleation sites for b-Ni(OH)2 nanosheets on the surface of

Fig. 8 (a) The preparation procedures of Pt/Ni(OH)2@NF and PVP@Pt/Ni(OH)2@NF. (b) The FESEM, (c) TEM, and (d) HRTEM images of the
Pt/Ni(OH)2@NF sample. (e) The FESEM, (f) TEM, and (g) HRTEM images of the PVP@Pt/Ni(OH)2@NF sample. (h) LSV curves. (i) Tafel plots. (j) CP test of
Pt/Ni(OH)2@NF and PVP@Pt/Ni(OH)2@NF at 10 mA cm�2 for 50 h without IR compensation. (k) H2O dissociation energy profile for different substrate
surfaces. The initial and final optimized configurations of H2O adsorption and dissociation on the Pt/Ni(OH)2 and PVP@Pt/Ni(OH)2 surfaces are given on
the right side. The silver, red, pink, blue, brown, and orange balls display Ni, O, H, Pt, C, and N atoms, respectively. (l) DGH* profile for different substrate
surfaces.201
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2D Ti3C2. During the facile hydrothermal reaction, Ti3C2 could
accelerate dissociating H2O into hydroxyl anions, subsequently
reacting with adsorbed Ni2+ to produce Ni(OH)2 species. Mean-
time, Pt0 and TiO2 species were generated via the reduction of
Pt(IV) and the partial oxidization of Ti3C2. The prepared Pt/TiO2/
Ni(OH)2/NF presented a superior performance for alkaline water
electrolysis under large industrial current densities. For the HER
(Fig. 9i), the Pt/TiO2/Ni(OH)2/NF delivered low overpotentials of
107, 145, and 184 mV at the industrial current densities of 500,
1000, and 1500 mA cm�2, respectively, and excellent electro-
chemical stability at 500, 700, and 1400 mA cm�2 for at least
12 h (Fig. 9j), which far outperformed most reported HER
electrocatalysts. In particular, the Pt/TiO2/Ni(OH)2/NF electrodes
could reach 10, 500, and 1000 mA cm�2 at the voltages of 1.37,
1.83, and 1.95 V, respectively, attaining extraordinary overall water
splitting performances, which also preserved good long-term
durability for at least 25 h. The outstanding electrocatalytic activity
was the collaboration of the hydrophilic surface for facilitating the
electrolyte wetting, rapid kinetics of water dissociation and H*
recombination, a strong synergistic effect of Pt and TiO2/Ni(OH)2,
and unique array architecture for promoting gas bubble releasing.
This work developed effective nanoarray support for alkaline
water electrolysis under large current densities. Song’s group
fabricated a MOF-derived Ru doped cobalt–nickel oxide hetero-
structure nanosheet arrays grown in situ on NF (Ru-Co3O4-
NiO-NF).203 The synthesized Ru-Co3O4-NiO-NF could efficiently

preserve the merits of 2D Co-MOF precursors with leaf-shaped
nanosheet morphology and simultaneously possess the mechan-
ical strength and skeleton integrity of the 3D NF network, result-
ing in exposing more active sites and quickening the charge or
mass transfer.204 As a result, the optimized Ru-Co3O4-NiO-NF
showed a superior HER performance achieving a current density
of 10 mA cm�2 and 100 mA cm�2 at overpotentials of 44 mV
and 115 mV in 1 M KOH solution, respectively, superior to that
of the commercial 20 wt% Pt/C catalysts. Furthermore, the self-
supported electrode maintained electrocatalytic activity over 60 h
at 100 mA cm�2 without apparent decrease. Experiments and DFT
calculation results indicated that Ru-doping and Co3O4-NiO
heterointerface could cooperatively adjust the electronic state of
Ni and Co sites, thereby optimizing the H2O adsorption/
desorption and hydrogen adsorption in the alkaline HER. This
work not only afforded an effective and scalable synthesis method
to design a MOF-derived self-supported electrode, but also raised
a new strategy to synthesize the excellent alkaline HER electro-
catalysts through engineering morphology and regulating electro-
nic structure. Nickel phosphide catalysts have attracted
considerable attention owing to their great catalytic activities for
the HER.205–210 Yan et al. constructed 3D self-supported, hierarch-
ical, and edge-rich Ni2P nanosheet arrays on NF (Ni2P NSs-NF) for
the HER.211 Several in-plane nanopores were produced on the
Ni2P NSs in the phosphatization step, benefiting from the electro-
lyte soakage and H2 molecules release. Meanwhile, abundant

Fig. 9 (a) Fabrication process of Pt/TiO2/Ni(OH)2/NF nanosheet arrays. (b) Schematic illustration of Pt/TiO2/Ni(OH)2 nanosheets. (c) FESEM image of Pt/
TiO2/Ni(OH)2/NF. (d) Corresponding magnified FESEM image. (e) TEM image of Pt/TiO2/Ni(OH)2 arrays, and corresponding (f) HRTEM image, (g) selected
area electron diffraction (SAED) pattern, (h) elemental mapping. (i) LSV curves. (j) CP test of Pt/TiO2/Ni(OH)2/NF in 1.0 M KOH solution at different
overpotentials.202
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active edges on the Ni2P NSs could expose more active sites.
Owing to the 3D open nanostructure with abundant edges in the
Ni2P NSs, the Ni2P NSs-NF electrode displayed superior HER
performance both in alkaline and acidic solutions, which needed
low overpotentials of 89 mV in 1 M KOH solution and 67 mV in
0.5 M H2SO4 solution to reach 10 mA cm�2 with low Tafel slopes
of 82 and 57 mV dec�1, respectively. Additionally, the self-
supported Ni2P NSs-NF electrode exhibited good cycling stability
for the HER both in alkaline and acidic solutions even after 10 000
runs. Similarly, Wang et al. developed a new method for fabricat-
ing tripod-like NixP nanowires on NF (NixP/NF).212 The method
contained the processes of removing Mo cations in nickel molyb-
date nanowires via electrochemical oxidation and the following
phosphorization. The optimized self-supported NixP/NF pre-
sented a small 71 mV overpotential at 10 mA cm�2. More
significantly, the overpotential of NixP/NF was only increased by
about 4 mV at 200 mA cm�2 after 2000 CV runs, and the activity
above 360 mA cm�2 showed little loss after 40 h electrolysis,
outshining the benchmark Pt/C catalyst. Therefore, this self-
supported electrode could be used practically for H2 production
via water electrolysis. The HER performance of transition-metal
phosphides was affected greatly by the phosphorus content.213–217

Zhou et al. provided a facile strategy to integrate P-rich NiP2 and P-
poor Ni5P4 into self-supported in-plane heterostructures via anion
substitution of S in NiS/NiS2 by P, in which P atoms at the in-plane
interfaces served as active sites to adsorb H*, thereby favoring the
HER by tuning the electron distribution between NiP2 and
Ni5P4.218 The self-supported NiP2/Ni5P4 heterostructures were
synthesized through gas-phase sulfurization and phosphorization
processes using the precursors of commercial NF, sulfur, and red
phosphorous. Initially, the NF reacted with sulfur to produce
high-crystalline NiS/NiS2 nanoparticles on NF at an optimal
annealing temperature. Subsequently, the NiS/NiS2 nanoparticle
acted as a sacrificial template for in situ forming in-plane NiP2/
Ni5P4 heterostructures on conductive NF by thermal phosphoriza-
tion with red phosphorus powder. The resultant NiP2/Ni5P4

heterostructure only required ultralow overpotentials of 30
and 76 mV to reach 10 and 100 mA cm�2 with a Tafel slope of
30.2 mV dec�1 in acidic solution, which outperformed most of the
earth-abundant electrocatalysts and was comparable to Pt cata-
lysts (30/72 mV at 10/100 mA cm�2). Specifically, it could be used
at a large current density and only needed 247 mV to achieve
2 A cm�2, showing great potential for the commercialization of
water electrolysis. DFT calculations elucidated that the interfacial
hybridization between P 2p and H 1s orbitals at the interface of
the NiP2/Ni5P4 catalyst led to an optimal H-adsorption strength
and a fast kinetic process. This work furnished a new design
principle for fabricating excellent electrocatalysts for industrial
water electrolysis.

3.4 Copper-based substrates

Compared with NF, CFM possesses a lower cost and higher
electrical conductivity and therefore acts as a highly favourable
substrate for the HER.219 However, the corrosion resistance and
electrocatalytic activity of CFM are generally lower than those
of NF. As reported, platinum-based catalysts showed the

benchmark activity;220–222 however, there were fewer studies
on their HER performance under high current densities in
neutral electrolytes. Tan et al. proposed a simple synthetic
strategy to directly in situ deposit blackberry-shaped Pt nano-
crystals with low contents on CFM for the HER in a neutral
solution.223 Compared with the commercial 20 wt% Pt/C elec-
trocatalysts pasted on CFM, the self-standing Pt@Cu foam
exhibited low overpotentials of 35 and 438 mV at 10 and
1000 mA cm�2, respectively. Meantime, due to the strong inter-
action between Cu and Pt, it showed outstanding durability in
CA measurement at high current densities (100 to 400 mA cm�2)
and 1000 cycles LSV tests achieving 1000 mA cm�2. DFT calcula-
tions revealed that the optimized DGH* on the Pt@Cu interface
could facilitate efficient proton adsorption and rapid release of
produced H2. Moreover, Pt@Cu displayed effective water dissocia-
tion owing to the existence of a small amount of Cu(OH)2 on CFM,
which could easily adsorb OH� in a neutral solution, thus further
facilitating dissociating water.224–226 This work provides a new
strategy for designing self-supported electrocatalysts by establish-
ing strong metal-metal interactions between active materials and
substrates. Furthermore, Ru-doped Cu2+1O vertically arranged
nanotube arrays in situ prepared on CFM (Ru/Cu2+1O NT/CFM)
were reported by Cao’s group, which presented a small over-
potential of 32 mV at 10 mA cm�2 in the alkaline HER.227

Dramatically, the alkaline electrolyzer employing Ru/Cu2+1O NT/
CFM as a bifunctional electrocatalyst only required 1.53 V voltage
to reach a current density of 10 mA cm�2, superior to the bench-
mark of IrO2(+)/Pt(�) counterpart (1.64 V at 10 mA cm�2). The
remarkable performance of the Ru/Cu2+1O NT/CFM catalyst origi-
nated from its high conductive substrate and special Ru-doped
nanotube structure, which offered a high electrochemically active
surface area and 3D gas diffusion channel. Song et al. reported a
simple one-pot solution method to fabricate a self-standing 3D
CFM electrode integrated with in situ grown Ag nanodots deco-
rated Cu2O porous nanobelts at room-temperature, which exhib-
ited an overpotential of 108 mV at 10 mA cm�2, a low Tafel slope
of 58 mV dec�1, and high durability for at least 20 h at 200 mV.228

The good performance could be ascribed to the porous nanobelts
with abundant active sites and the fast electron transfer between
Ag@Cu2O and conductive CFM support. Moreover, the low-cost,
high-efficient, and long-durable electrocatalysts that operated well
at high current densities are strongly demanded by industry H2

production.229–234 Therefore, the high-throughput scalable pre-
paration method should be developed. Based on this, Zhang et al.
synthesized high-performance and low-cost 2D MoS2-based HER
electrocatalysts on CFM through a scalable top-down exfoliation
method followed by a thermal treatment.235 The catalysts pos-
sessed a great acidic HER activity with an overpotential of 412 mV
at a high current density of 1000 mA cm�2, a small Tafel slope of
60 mV dec�1, and good durability for 24 h. In addition, an
inexpensive mineral-based catalyst with outstanding performance
for the high-current-density HER was also fabricated using the
same approach. Noteworthy, except for the cost of the CFM, the
price of MoS2 mineral-based catalyst was only 10 US$ m�2, which
is almost 30 times lower than the commercial Pt/C catalysts,
highlighting a magnificent potential for large-scale industry

Materials Chemistry Frontiers Review

Pu
bl

is
he

d 
on

 1
5 

D
ec

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 6

:5
0:

49
 P

M
. 

View Article Online

https://doi.org/10.1039/d2qm00931e


582 |  Mater. Chem. Front., 2023, 7, 567–606 This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023

H2 production. Li et al. utilized a simple electrochemical method
to successfully synthesize a grass-like Ni/Cu nanosheet array on
CFM (Ni/Cu/CFM).236 First, a grass-like Cu nanosheet array was
produced via partially electrochemical oxidizing CFM in 3 M
NaOH solution and then an electrochemical reduction in 1 M
Na2SO4 solution at room temperature. Finally, the grass-like
Ni/Cu/CFM was fabricated by electrochemically reducing NiSO4

solution on the surface of the Cu nanosheet array at room
temperature. The resultant grass-like Ni/Cu/CFM electrode
showed excellent HER performance with a Tafel slope of
42.7 mV dec�1 and an overpotential of 38 mV at 10 mA cm�2,
which was far lower than 156 mV of Ni/CFM and 246 mV of Cu
nanosheet array/CFM electrode. Meanwhile, the as-prepared
Ni/Cu/CFM electrode also exhibited superior catalytic durability
because of its solid structure, which displayed 50 h stability at the
current density of 30 mA cm�2, indicating outstanding durability.
The excellent electrocatalytic activity should be ascribed to the
unique grass-like structure, which could expose more effective
active sites and facilitate electrolyte penetration and gas diffusion.
Yao et al. fabricated mesoporous Cu nanowires shelled with
ultrathin WC layer self-supported on CFM through the chemical
oxidation and in situ electro-reduction route followed by a simple
and rapid magnetron sputtering (Fig. 10a–e).237 The as-obtained

Cu@WC/CFM catalyst exhibited low overpotentials of 92, 119, and
173 mV at 10 mA cm�2 in acidic, alkaline, and neutral solutions
with high stability over 12 h (Fig. 10f and g). The enhanced HER
performance could be attributed to the following reasons: (1) the
large surface area of the mesoporous structure with exposed active
sites boosted the H+ transfer and the bubbles release; (2) the small
work function between Cu (core) and WC (shell) reduced the
contact potential; (3) the lattice mismatch of WC and Cu opti-
mized both the atomic and electronic structures of WC. Tong et al.
successfully synthesized a bamboo leaves-like amorphous FeOx

coated Cu3P on CFM, and the bamboo leaves-like morphology
facilitated the mass transfer and more active site exposing.238 As a
result, the binder-free FeOx coated Cu3P@Cu exhibited a low
overpotential of 48 mV at 10 mA cm�2 for the alkaline HER, even
exceeding the Pt/C catalyst at a large current density. Benefiting
from the special hierarchical hollow nanowire array nanostructure
with large surface area, good conductivity, abundant active sites,
as well as fast mass/transport ability, a two-step synthetic route to
synthesize hierarchical Cu2S hollow nanowire arrays grown on
CFM (Cu2S HNAs-CFM) was proposed (Fig. 10h).239 The obtained
hierarchical Cu2S HNAs-CFM electrode showed admirable alkaline
HER activity with a low overpotential of 125 mV at 100 mA cm�2

(Fig. 10i), which was comparable to the performance of Pt/C-CFM

Fig. 10 (a) Schematic illustration for the formation mechanism of Cu@WC/CFM. (b and c) FESEM, (d) TEM, and (e) HRTEM images of Cu@WC/CFM.
(f) LSV curves for Cu@WC/CFM in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS solutions. (g) CP tests of Cu@WC/CFM. The inset is the line of the amount of H2

gas.237 (h) Preparation of a hierarchical Cu2S HNAs-CFM electrode. (i) LSV plots.239
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and most reported electrocatalysts. Altogether, these meaningful
works demonstrated the practicability of synthesizing high-
performance HER electrode based on CFM.

3.5 Stainless steel substrates

Stainless steel is not only more resistant to corrosion in acid
and alkaline solutions, but also cheaper than CC, NF, titanium-
based substrates, and CFM, which have been more emphasized
heavily.240–246 Recently, Zhu et al. fabricated an efficient bifunc-
tional electrocatalytic electrode of nanoporous nickel–iron
hydroxides (NiFe(OH)x) nanosheet arrays combined metal
Ni/Fe in situ grown on stainless steel fiber felt (SSF) by a facile
electrodeposition method at room temperature.247 The con-
structed electrode showed distinguished electrocatalytic activity
for water splitting, requiring overpotentials of 100 and 210 mV at
10 mA cm�2 in 1 M KOH media for the HER and oxygen evolution
reaction (OER), respectively. Served as both anode and cathode for
overall water splitting, the synthesized electrode also displayed
extraordinary performance, achieving an overall cell voltage of
1.80 V to gain a current density of 100 mA cm�2. Moreover, no
obvious potential drop was observed after a long-term stability
test. The improved water splitting performance was attributed to
the special vertically ultrathin nanosheets with abundant active
sites, more dangling bonds, and a synergistic effect between the
NiFe(OH)x nanosheets and SSF substrate. The exceptional dual-
functional catalyst could not only effectively lower the total cost
but also simplify the electrolytic device. The strong metal–support
interaction has been used to design and fabricate metal–support
catalysts, which is a simple and effective approach to forming
unique electronic structures and modifying the interface on the
surface of the catalyst for enhancing HER performance.248–253

Ascertaining that, our group directly fabricated NaxWO3 nanotube
bundle support on a stainless mesh (SM) substrate via a facile
hydrothermal method, followed by anchoring Pt nanoparticles
with a low load-level (1.44%) on the as-prepared NaxWO3 nano-
tube bundles (Pt/R-NaxWO3@SM) via the in situ chemical
reduction, successfully establishing Pt-sodium tungsten bronze
hybrid electrocatalysts.254 Specially, the NaxWO3 nanotube bun-
dles were synthesized without using additives and surfactants,
and Na2S2O8 reagent was employed as an acid source instead of
the strong corrosive including HCl, HNO3, as well as H2SO4.
As expected, owing to the nanotube bundle morphology with
3D structure and the strong metal–support interaction between
Pt and NaxWO3, the optimized Pt/R-NaxWO3@SM-170 catalyst
exhibited excellent HER performance with low overpotentials
of 20 and 46 mV at 10 and 100 mA cm�2, a small Tafel slope of
18.6 mV dec�1, as well as good stability over 3000 CV runs and CA
test for 25 h in 0.5 M H2SO4 media. Additionally, its activity even
exceeded the benchmark 20 wt% Pt/C catalysts at a high current
density (69 mV at 100 mA cm�2). Impressively, it showed 10.8-fold
higher mass activity than the Pt/C catalyst at 20 mV overpotential.
DFT calculations manifested that the charge transfer between
the R-NaxWO3 nanotube bundle and Pt nanoparticles could
increase the electrons on the surface of the Pt nanoparticle, and
thus negatively shift ed, leading to fast desorbing hydrogen
intermediate and re-exposing the active sites on the Pt surface,

eventually achieving outstanding the HER activity. This work
provided a reliable route to synthesize sodium tungsten bronze
for feasible support. Edison et al. electrochemically synthesized
ruthenium nanoparticles on cathodically treated stainless-steel
mesh. The experimental results showed that its acidic HER
performance is very close to that of the bare Pt.255 Moreover,
Balogun’s group developed a simple method to improve the HER
performance of Co-based heterojunction catalysts with dual
nanostructures on 3D stainless steel mesh (SSM) via non-oxygen
anionic modifying CoO.256 The compounds including CoO–CoP
(SSM/CoOP), CoO–CoxN (SSM/CoON), and CoO–CoSx (SSM/CoOS)
could be produced after phosphorizing, nitriding, and sulfuring
CoO, respectively, where SSM/CoOP exhibited the best HER
performance with a small overpotential of 21 mV at a current
density of 10 mA cm�2, comparable to the benchmark Pt/C
catalysts (19 mV) and superior to that of SSM/CoON (44 mV)
and SSM/CoOS (142 mV), evincing the non-oxygen treatment route
benefitting for enhancing the HER activity. The excellent activity
of SSM/CoOP could arrive from the following merits: (1) the strong
electronic interaction between CoO and CoP and (2) the 1D
nanowires and 2D nanosheets dual nanostructures, which could
forcefully increase active surface, expose more active sites, and
boost the ion/electron transfer, and thus significantly optimizing
DGH*, resulting in improving catalytic activity. Hu et al. incorpo-
rated iron oxyhydroxide (FeOOH) on Co4N nanowires supported
on 3D SSM (FeOOH@Co4N/SSM) by a facile hydrothermal
and chemical bath deposition process.257 The as-synthesized
FeOOH@Co4N/SSM hybrid electrocatalyst showed a low over-
potential of 92 mV at 10 mA cm�2, a small Tafel slope of
34 mV dec�1, and excellent stability for the alkaline HER. DFT
analyses indicated that the enhanced HER performance of
FeOOH@Co4N was owing to the suitable ed of Co4N adjusted
by the strong electronic interaction between Co4N and FeOOH.
Yao et al. synthesized self-supported (Ni,Co)3C mesoporous
nanosheets/N-doped carbon ((Ni,Co)3CNSs@NC) on a conductive
SSM with controllable sizes from 1 cm � 1 cm to 25 cm � 25 cm
through a simple and fast electrodeposition method followed by
carbonization (Fig. 11a–e).258 The as-fabricated catalyst exhibited
small overpotentials of 58, 118, and 71 mV at 10 mA cm�2 in
acidic, neutral, and basic solutions, respectively, with high stabi-
lity (Fig. 11f–i), which outperformed that of most non-noble metal
carbide-based catalysts in a pH-universal solution. The eminent
activity could be attributed to the special ultrathin nanosheet-like
morphology, large specific surface area, and strong synergetic
effect of Ni and Co. As shown in Fig. 11j–l, DFT calculations
revealed that the bimetallic NiCo carbide was favorable for the
HER due to its good metallic conductivity, appropriate DGH*, and
downshifted ed. This work provided a facile and viable strategy to
prepare large-scale excellent catalysts for the HER in a wide pH
electrolyte.

3.6 Molybdenum-based substrates

Compared to the common conductive substrates including CFP,
CC, and GP, the monolithic Mo foil or plate can be directly uti-
lized as a molybdenum source and self-supported substrate.259–266

In addition, due to the chemically inert Mo substrate, the
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Mo-based electrode can be applied directly in both acidic and
alkaline solutions.267 Recently, Guo et al. reported the large-
scale fabrication of vertically standing MoP nanosheet arrays
(NSAs) on the Mo substrate through topotactically phosphoriz-
ing MoS2 by a facile two-step chemical vapor deposition (CVD)
method.268 Initially, MoS2 NSAs on the Mo substrate (MoS2

NSAs/Mo) were synthesized by the CVD process using MoO3

and S powders as the evaporation precursors. Subsequently, the
formed MoS2 NSAs/Mo precursor was topotactically switched to
MoP NSAs/Mo. The as-synthesized MoP NSAs/Mo possessed
excellent structural robustness, completely exposed active sites,
and much adjoining space, benefiting for boosting the electro-
chemical kinetics and releasing the H2 bubbles during the
HER. As a result, the self-supported MoP NSAs/Mo electrode
exhibited outstanding acidic and alkaline HER perfor-
mance with overpotentials of 95 and 106 mV at 10 mA cm�2,
respectively, and small Tafel slopes of 50 and 56 mV dec�1.
Moreover, its activity remained unchanged even after 5000 cycles

of repeating the CV test at 100 mV s�1, as well as 36 h electrolysis
at a high current density in both acidic and alkaline solutions.
Zhao et al. provided a simple bottom-up approach to synthe-
sizing heterostructured CoP nanoarray/MoO2 films on the Mo
foil (CoP–MoO2/MF) employing pre-oxidized MF supported
cobalt hydroxide-carbonate nanoneedles as the precursor.269

The CoP–MoO2/MF heterostructure exhibited superior HER
activity with low overpotentials of 65 and 42 mV at 10 mA cm�2

in acidic and alkaline electrolytes, prosperous long-term stability,
large exchange current density, and high turnover frequency. The
experiments and DFT results indicated that MoO2 was in favor of
adsorbing water, cleaving H–O bonds, and facilitating hydrogen
transfer. Moreover, heterointerfacial charge redistribution could
optimize the DGH* on the heterointerface of CoP–MoO2, which
could be reduced from 0.08 eV on CoP (011) and 0.78 eV on MoO2

(011) to 0.02 eV on CoP–MoO2, significantly enhancing the HER
performance and accelerating the catalytic kinetics. The large-
scale synthesis of cheap, efficient, and stable electrocatalysts used

Fig. 11 (a) Schematic illustration of the formation mechanism. (b) Digital images of the catalyst with flexible property (size of 25 cm � 25 cm). (c and d)
FESEM, and (e) TEM images of (Ni,Co)3C NSs@NC. (f–h) LSV curves for (Ni,Co)3C NSs@NC in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS solutions. (i) CP test
at different current densities in 0.5 M H2SO4 solution; (i inset) LSV curves before and after the stability test. Schematic energy profiles for the HER (j) (113)
and (k) (002). (l) Total and partial electronic density of states (TDOS and PDOS) calculated for (Ni,Co)3C (113), Ni3C (113), (Ni,Co)3C (002), and Ni3C
(002).258
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at high current densities in HER is very important and indis-
pensable for industrial H2 generation.270–272 Liu’s group devel-
oped a large-scale strategy to efficiently and economically
fabricate MoSe2–Mo2N Schottky heterojunction flakes on
inexpensive industrial-grade molybdenum substrates through
a simple solid-state synthesis method.273 The preparation
process was as follows, first, MoO3 prisms were seamlessly
synthesized on Mo substrates via a controlled calcination
process, and then the MoSe2–Mo2N Schottky heterojunction
catalyst was achieved by a facile thermal treatment under the
H2/NH3 mixture atmosphere. As a result, the as-formed MoSe2–
Mo2N/Mo electrode showed a low overpotential of 76 mV at the
current density of 10 mA cm�2 for the alkaline HER. Besides,
it delivered a high current density of 1000 mA cm�2 at the
overpotential of 462 mV, superior to that of a commercial Pt/C
catalyst. DFT results demonstrated that the formed Schottky
heterojunction between MoSe2 and Mo2N could prompt self-
driven electron transfer that not only optimized the electronic
structure at heterointerfaces but also adjusted the free energy
of hydrogen adsorption and dissociation. Subsequently, they
also successfully constructed a molybdenum oxide–phosphide
(MoO2–MoP) seamless electrode on Mo substrate using the
same method.274 The MoO2–MoP mesh electrode achieved an
industrial current density of 800 mA cm�2 at a low overpoten-
tial of 362 mV and showed excellent stability at high current
densities for 200 h in an alkaline electrolyte. Additionally, it
yielded a current density of 1000 mA cm�2 at 293 mV in 1.0 M
KOH solution, but required an overpotential of only 215 mV to
reach the same current density in 5.0 M KOH solution, which
was practical for industrial alkaline HER. Similarly, a self-
standing MoC–Mo2C heterojunction was also constructed on
a Mo sheet utilizing CO2 as the carbon resource and electrons
as the reducer in molten carbonate via a one-step electro-
deposition method (Fig. 12a–d).275 The as-prepared MoC–
Mo2C heterojunction exhibited outstanding HER performances
(Fig. 12e–j) with low overpotentials of 256 and 292 at a high
current density of 500 mA cm�2 in acidic and alkaline solu-
tions, respectively, with long-term stability for at least 1000 h,
a large TOF, and a high industrial operating temperature of
about 70 1C, indicating a cost-effective catalyst for the HER
operating at industry-level conditions. Experiments and DFT
calculations (Fig. 12k–m) verified that the decent HER activity
of the MoC–Mo2C heterojunction self-supported electrode in
acidic and alkaline electrolytes was due to the profitable DGH*,
low water dissociation energy, hydrophilic surface, and special
3D porous structure. This work proposed a facile strategy to
fabricate large-scale electrodes (3 cm � 11.5 cm), which could
be expanded to the preparation of diverse carbide electrodes
with sensibly designed microstructures, adjustable composi-
tions, and excellent performances for practical applications.

3.7 Cobalt-based substrates

The strategy of nitrogen doping into metal phosphides has
been extensively utilized to tune electronic structure, hydrogen
adsorption free energy and water dissociation free energy, etc.,
thereby enhancing their HER performance.2,276–280 By virtue of

this phenomenon, a nitrogen-doped CoP nanoarray grown on
3D porous CF was prepared for the HER and OER in water
electrolysis.281 The as-obtained CoP–N/CF required overpoten-
tials of 100 and 260 mV for the HER and OER to reach a current
density of 50 mA cm�2, respectively, in alkaline conditions.
Furthermore, as a bifunctional catalyst for the electrolyzing
water reaction in a two-electrode system, it needed a cell voltage
of 1.61 V to achieve a current density of 50 mA cm�2, even
exceeding the benchmark catalyst system of RuO2/CF@Pt/C/CF
(1.78 V). Additionally, the electrolyzer showed outstanding
stability after 25 h of continuous operation at 50 mA cm�2.
The results revealed that doping of non-metallic nitrogen into
CoP could greatly boost its catalytic activity, durability, kinetics,
and catalytic efficiency for the HER and the OER. Similarly, the
interface-strengthened CoP nanosheet array with Co2P nano-
particles on CF as a self-supported electrocatalyst exhibited low
overpotentials of 68 and 256 mV at 10 mA cm�2 for the HER
and the OER, respectively.282 Meanwhile, the CoP/Co2P/CF as
both anode and cathode for overall splitting water delivered a
low voltage of 1.57 V to achieve 10 mA cm�2 with stability
for over 58 h. Zhang’s group elaborately fabricated flower-like
Fe–Ni bimetallic layered double hydroxide on ultrahigh poros-
ity CF (FeNi LDH/CF), and then flower-like FeNiP-LDH/CF
was obtained through a phosphorization process in a tube
furnace.283 The hierarchical FeNiP-LDH/CF catalyst offered a
current density of 10 mA cm�2 at a low overpotential of 39 mV
for the alkaline HER, which was superior to that of the Pt
catalyst (53 mV). In addition, the electrode could keep steady
HER performance over 16 h during CA measurement at
an industrial-level current density of 500–600 mA cm�2.
This decent HER performance could be assigned to several
advantages, including the special porous nature of CF, the
strong synergistic effect of bimetallic electrocatalysis, unique
nanoflower-like morphology constructed by LDHs, as well as
coupling interaction of transition metals and phosphorus.
Subsequently, they also fabricated NiCoP/CF electrocatalysts,
which only required overpotentials of 47 and 126 mV to reach
10 and 100 mA cm�2, and retained excellent stability at a
current density higher than 500 mA cm�2 for over 16 h.284

Additionally, other bimetallic phosphides also exhibited highly
efficient overall water splitting under a large current density in
industries. A seamless integrated Fe2P–Co2P/CF electrode was
successfully fabricated (Fig. 13a), which only required 145(243),
208(291), and 254(317) mV for alkaline HER(OER) to reach
current densities of 100, 500, and 1000 mA cm�2, respectively
(Fig. 13b and c).285 Remarkably, using Fe2P–Co2P/CF for overall
water splitting at room (25 1C) and quasi-industrial (65 1C)
temperatures, the operating voltages were 1.87 and 1.71 V to
deliver 500 mA cm�2, respectively, along with long-term stabi-
lity for at least 300 h (Fig. 13d and e). The outstanding
performance was owing to the in situ grown seamless integrated
electrode with excellent conductivity and good stability, as well
as the strong coupling effect between Fe2P and Co2P, indicating
it met the application of industrial water splitting for large-
scale renewable H2 production. Interface engineering is an
effective strategy for enhancing the water adsorption and
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dissociation and optimizing the DGH*, thereby improving the
heterostructured catalyst’s HER performance in acidic and
alkaline solutions.286–290 The low-cost interfacial Co2N/Co
grown on CF was reported, which displayed superior HER
activity with overpotentials of only 12 and 64 mV to produce
10 and 100 mA cm�2, respectively, substantially lower than
those of Pt/CF (20 and 98 mV).291 In addition, it showed

exceedingly robust stability after the 10 000 CV and CP test
at 10 and 100 mA cm�2 for at least 100 h. The DGH* values at
two interfacial sites of Co2N/Co were computed to be only
�0.02 and �0.04 eV. In the contrast, both Co2N and Co
presented strong hydrogen affinity (�0.27 to �0.40 eV). The
DFT computational results indicated that the interfacial sites of
Co2N/Co could improve the HER activity. Correspondingly, a

Fig. 12 (a) Schematic of synthesizing MoC–Mo2C in molten carbonate and digital pictures of the Mo electrode before and after electrolysis. (b) FESEM,
(c) TEM, and (d) HRTEM images of the synthesized MoC–Mo2C. (e and f) LSV curves for MoC–Mo2C in 0.5 M H2SO4 and 1 M KOH solutions. (g and h) LSV
curves before and after stability tests in 0.5 M H2SO4 and 1 M KOH solutions at 70 1C. (i) The long-term electrolysis stability test of MoC–Mo2C at 150 mV
overpotential in 0.5 M H2SO4 and 1 M KOH solutions. (j) Stability test in both 0.5 M H2SO4 and 1 M KOH medium at 500 mA cm�2 and 70 1C. (k) TOF curves
of different electrodes. (l) Calculated DGH* diagram of the HER in an acidic solution. (m) Relative energy diagram of water dissociation on MoC, Mo2C, and
MoC-Mo2C, including the two steps of water dissociation, in alkaline solution, TS: transition state.275
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CF-supported Co2N/CoN/Co2Mo3O8 heterostructure with hierar-
chical and nanoporous architecture was fabricated by a hydro-
thermal route followed by nitridation treatment (Fig. 13f and g),
which exhibited high activity and excellent durability for
the alkaline HER, exceeding most reported non-precious
catalysts.292 DFT calculations (Fig. 13h–j) indicated that the
Co2Mo3O8 component facilitated H2O dissociation and Co2N
promoted the hydrogen adsorption and recombination. Wang
et al. built super-hybrid metal sulfide nanoarrays on CF (super-
Co3S4/P-WS2/Co9S8/CF) by a simple one-step method.293 The
as-synthesized super-Co3S4/P-WS2/Co9S8/CF consisted of a
metallic Co3S4 nanosheet, a P doped WS2 nanosheet and
Co9S8 nanoparticles, which just required 58, 70, and 129 mV
in alkaline, acidic, and neutral solutions, respectively, to achieve

10 mA cm�2, and showed rapid kinetics and good long-term
durability. The experimental and theoretical results demon-
strated that the robust activity in super-Co3S4/P-WS2/Co9S8/CF
mainly originated from the unique electronic structure, special
nanoarray morphology, and multiple heterointerfaces, which
not only boosted the electric conductivity for electron transfer
but also maximized the active heterointerfaces exposing for
mass transport, resulting in Pt-like DGH* and favorable H2O
adsorption and dissociation energy for all-pH HER. For
instance, the interface between Co3S4/WS2 could enhance the
HER activity via optimizing DGH*, and the Co3S4/WS2 and
Co9S8/WS2 heterostructures were in favor of H2O adsorption
and dissociation, thereby enabling the outstanding HER per-
formance in a wide pH range. The strategy in this work could

Fig. 13 (a) Schematic illustration of preparing a seamlessly integrated electrode of Fe2P–Co2P/CF. (b and c) LSV curves of different catalysts for the
alkaline HER and OER. (d) Multistep CP curves of Fe2P–Co2P/CF under different current densities for overall water splitting at 25 1C. (e) Multistep CP
curves of Fe2P–Co2P/CF under different current densities for overall water splitting at 65 1C.285 (f) Schematic illustration to fabricate the Co2N/CoN/
Co2Mo3O8/CF catalyst. (g) FESEM images of Co2N/CoN/Co2Mo3O8/CF catalyst. (h) Adsorption energies (DEad) of H2O and (i) DGH* for the HER on
different sites of the Co2N (111), CoN (111), and Co2Mo3O8 (001) surfaces. (j) Top and side views of the optimal adsorption structures of H2O and H on
Co2N (111), CoN (111), and Co2Mo3O8 (001) surfaces, respectively.292
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inspire the future synthesis of high-performance metal sulfide-
based heterostructures for the HER. Like WS2, the CeO2 nanorod
array was also employed to decorate Co3S4 nanosheets, forming a
heterogeneous hierarchical Co3S4/CeO2 nanorod array on CF
(Co3S4/CeO2-CF) through a simple ionic liquid-assisted one-step
hydrothermal approach.294 The as-synthesized Co3S4/CeO2-CF
with the favorable heterointerfaces and hierarchical core–shell
structures demonstrated high-performance HER and OER activity,
which only required overpotentials of 74.9 mV and 213 mV to
reach the current density of 10 mA cm�2 in 1.0 M KOH electro-
lyte. To attain the current density of 10 mA cm�2, the Co3S4/
CeO2-based electrolytic water device merely needed 1.64 V in
an alkaline solution, lower than that of the Pt/C and RuO2-
assembled electrolysis device (1.70 V).

3.8 Iron-based substrates

The corrosion method has been widely used to synthesize self-
supported electrodes on metal surfaces without electricity

input, intricate synthetic process, and high temperature,
and the metals served as substrates and precursors.295–298

Consequently, a simple and industrially-compatible one-pot
corrosion route for the fast preparation of amorphous RuO2-
decorated FeOOH nanosheets on iron foam (FF-Na-Ru) within
60 min was developed.299 The as-fabricated electrode could
rapidly release the generated gas bubbles owing to its super-
hydrophilic and aerophobic feature, ensuring fast HER
kinetics. Therefore, the FF-Na-Ru electrocatalyst presented a
superior performance for the HER (30 mV at 10 mA cm�2) and
electrolyzer (1.46 V at 10 mA cm�2) with high operational
stability in 1 M KOH solution. DFT calculations confirmed that
the strong electronic interactions between RuO2 and FeOOH
could enhance the electrocatalytic HER activity. The metastable
FeS with ultrathin nano fan-like morphology on the 3D porous
IF was prepared by the in situ sulfurization method (Fig. 14a–c),
which showed efficient and long-term HER performance in
alkaline simulated seawater and neutral electrolyte with low

Fig. 14 (a) The synthesis of the FeS@IF electrode, and tested the electrochemical performance in both neutral and alkaline solutions. (b and c) FESEM
images of the FeS@IF electrode. (d and e) LSV curves of the FeS@IF electrode in alkaline simulated seawater solution and 1.0 M PBS solution. (f and g) CP
tests for the FeS@IF electrode in alkaline simulated seawater and 1.0 M PBS medium. (h) Schematic mechanism of the FeS@IF electrode in the HER
process.300
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overpotentials of 63 and 78 mV at 10 mA cm�2, respectively
(Fig. 14d and e).300 Strikingly, it also exhibited outstanding
stability for at least 300 h in alkaline simulated seawater
solution at 1 A cm�2 with neglect deterioration (Fig. 14f).
Surprisingly, the FeS@IF electrode was continuously electro-
lyzed for over 600 h at an industrial-grade current density in a
neutral solution (Fig. 14g). The decent activity and robustness
were attributed to the fast gas release and mass transfer
induced by the highly-dispersed fan-like structure and the
strong interaction between corrosion-resistant FeOxSy protec-
tion layers and 3D porous IF (Fig. 14h). Based on the doping
effect, Ru, Ni dual-doped Fe2O3 catalyst with a lily-shaped
morphology was constructed on IF (RuNi-Fe2O3/IF) through a
simple one-step hydrothermal method for alkaline water
electrolysis.301 The RuNi-Fe2O3/IF electrode produced a large
current density of 100 mA cm�2 at overpotentials of 75 and
329 mV for the HER and the OER, respectively. Besides, the
overall water splitting needed cell voltages of 1.66 and 1.73 V to
achieve 100 mA cm�2 in 1.0 M KOH and 1.0 M KOH seawater
solutions, respectively. Moreover, the electrode displayed excel-
lent long-term stability, retaining 100 mA cm�2 for over 100 h,
which was superior to the two-electrode cell assembled by
noble catalysts. The excellent activity and durability of RuNi-
Fe2O3/IF could be ascribed to the intact lily-shaped morphology
and the strong electronic coupling between the Ru/Ni doping
and Fe2O3 host. Chai’s group fabricated phosphorus doped
inverse spinel Fe3O4 on IF (P-Fe3O4/IF) for the alkaline
HER, which exhibited an ultralow overpotential of 138 mV at
100 mA cm�2.302 More inspiringly, coupling NiFe LDH/IF with
P-Fe3O4/IF for splitting water showed excellent durability for
over 1000 h at 1 A cm�2, and even for 25 000 s at 10 A cm�2 in
6.0 M KOH at 60 1C, exhibiting great potential for the industrial
H2 production. DFT calculations suggested that the octahedral
Fe site with excellent conductivity facilitated the water disso-
ciation through a biomolecule Volmer reaction mechanism,
greatly boosting the proton supply.303 Meanwhile, DGH* of the P
atom in inverse spinel Fe–O–P as an active site was theoretically
calculated to be 0.01 eV, benefitting the alkaline HER. They
also investigated the effect of F doping on bimetallic phosphide,
and the results showed that F doping could affect the valence state
and electronic structure of Co and Fe ions, thereby enhancing
HER performance.304 As a result, the as-synthesized F-Co2P/Fe2P/
IF exhibited outstanding HER catalytic activity, which required
low overpotentials of 229.8, 260.5, 292.2, and 304.4 mV to deliver
500, 1000, 2000, and 3000 mA cm�2, respectively. Meantime,
it could retain a long-term durability in 1.0 and 6.0 M KOH
electrolytes at different high current densities for industrial
water splitting. For further improving the HER performance of
the bimetallic phosphide, they fabricated a self-supported
CoFeOH/CoFeP on the IF substrate (CoFeOH/CoFeP/IF) with
superior alkaline HER performance, requiring overpotentials of
114.9, 194.9, 221.8, 249.7, and 266.1 mV in 1.0 M KOH (25 1C) to
reach 100, 500, 1000, 2000, and 3000 mA cm�2, together with over
100 h durability (at 500 and 1000 mA cm�2).305 When integrating
with NiFe-LDH/IF in a two-electrode cell, the voltage of NiFe-LDH/
IF (+)||CoFeOH/CoFeP/IF (�) is only 1.57 V (7.6 M KOH 70 1C) at

2500 mA cm�2. Even in 1.0 M KOH (25 1C) media, it merely
demanded 1.88 V. The outstanding HER performance of CoFeOH/
CoFeP/IF showed great potential for large-scale H2 production.

3.9 Other substrates

Besides the substrates discussed above, other substrates
including W foils, indium tin oxide (ITO) glass, SiO2/Si, Au/Si,
and MoNi foam have also been used as HER electrode sub-
strates. For instance, Li et al. developed a WS2 nanosheet
electrocatalyst fabricated on the W foil (WS2/W) by a mild
bottom-up method (Fig. 15a).306 The vertically arranged WS2

ultra-thin nanosheets formed on the W substrate could reduce
the effect of the contact resistance and improve the conduc-
tivity of WS2 (Fig. 15b–d). Moreover, the W and S vacancies in
the WS2/W heterostructure could offer more active sites for the
HER. DFT calculations demonstrated that the chemical bonds
could be formed between the W foil and WS2, leading to fast
electron transport. This electrocatalyst exhibited HER activity
with an overpotential of 108 mV for 10 mA cm�2, a low Tafel
slope of 45.5 mV dec�1, and good stability. Xie et al. fabricated a
vertically aligned defect-rich MoS2 (DR-MoS2) nanowall (NW)
on the highly conductive ITO glass with a facile hydrothermal
reaction (Fig. 15e and f).307 Benefiting from the more exposed
active edge sites, the coarse surface, as well as the potent
nanowall structure, the DR-MoS2 NW catalyst with an opti-
mized thickness displayed a low overpotential of 95 mV to
reach 10 mA cm�2 in an acidic solution. Furthermore, the HER
stability of DR-MoS2 NW could be maintained due to the close
contact between the NW structure and the conductive ITO
substrate. Vikraman et al. synthesized the metal-doped MoSe2

layers on SiO2/Si and Au/Si substrates using the solution bath
technique (Fig. 15g), which exhibited improved acidic HER
activity due to the more edge facets and enhanced electrical
conductivity, requiring overpotentials of 86, 87, and 88 mV at
10 mA cm�2 for Cu-, Mn-, and Fe-doped MoSe2, respectively.308

Considering the advantages of nickel and molybdenum sub-
strates, Zhou et al. fabricated a self-supported NiO/MoO2 het-
erostructure with large crystal-amorphous interfaces utilizing
MoNi foam as the metal source and substrate by a mild and
practical anodizing-assisted molten-salt strategy (Fig. 15h).309

The prepared diamond-like NiO/MoO2-100-2 catalyst exhibited
excellent alkaline HER activity with a low overpotential of
48 mV at 10 mA cm�2, a small Tafel slope of 51.5 mV dec�1,
and good stability, which could be derived from three main
factors: (1) the activated substrate by a pre-anodizing process
facilitated the etching of subsequent molten salt, exposing
more available active sites; (2) the NiO crystal/amorphous
MoO2 heterojunction with high-density distribution modified
the electron density and d-band structure near the Fermi level,
resulting in optimizing hydrogen adsorption/desorption energy
and boosting charge transfer. In detail, the NiO crystals pro-
moted the alkaline water dissociation to fast produce active
hydrogen (Volmer step), thereby benefitting for the subsequent
Heyrovsky and Tafel steps on the amorphous MoO2 region;
(3) the modulated electron state of NiO and MoO2 was also
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propitious to improve conductivity and optimize hydrogen
adsorption.

4. Future perspectives

In this review, we comprehensively summarized the latest
advances in various substrates for supporting electrocatalysts.
Compared to the published reviews on the design or modifica-
tion of electrocatalyst materials, this article focuses on
substrates and their impacts on electrolytic water, which
can provide an innovative strategy or guidance to develop

high-efficient electrocatalytic electrodes. The investigations on
self-supported electrodes have received great attention and
have achieved a series of progress in the field of electrocatalytic
water splitting. Notwithstanding, how to keep the advantages of
the self-supported electrodes for large-scale fabrication and
application is still a great challenge. To boost electrocatalytic
activity and achieve wide applications in the industry, there are
some suggestions for developing self-supported electrodes as
exhibited in Fig. 16. For instance, (1) It is important to develop
advanced substrates, which is the base on the self-supported
electrodes; (2) large-scale synthetic methods are explored to
serve for electrocatalytic water splitting; (3) the fundamental

Fig. 15 (a) Fabrication of WS2 process. (b and c) FESEM images of WO3 and WS2 nanosheets on the W foil. (d) Side-view FESEM.306 (e) Digital photograph
of the DR-MoS2 NW catalysts with different thicknesses and variable transparency. (f) FESEM image of the DR-MoS2 NW.307 (g) Illustrations of metal-
doped MoSe2 deposition.308 (h) Illustration of preparation of the NiO/MoO2 sample.309
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reaction mechanisms of HER need more experimental data and
theory analysis; (4) in situ spectroscopic technologies are used
to evaluate the electrocatalytic performance and investigate
interface effects and stability of self-supported electrodes; and
(5) appropriate evaluation methods need to be established for
evaluating the performance of electrocatalysts.

Currently, 3D macroporous metal foams (especially NF, CF,
CFM, IF, and so on) are widely used to support electrocatalysts.
Although these substrates exhibit relatively excellent conduc-
tivity, their mechanical strength cannot meet the practical long-
term test at a large current density and high temperature.33

In addition, these metal foams may become extremely fragile
and broken during the pyrolysis of precursors under a high
temperature. Accordingly, the synthesis method for self-
supported electrocatalysts will be limited. Furthermore, CC is
a preferential alternative to metal foam, which possesses
not only good mechanical flexibility and elasticity, but also
high-temperature stability. Nevertheless, its conductivity is
weaker than that of metal foam, adversely affecting the catalytic
performance of self-supported electrodes.310 Whereas, most of
the present attention is mainly paid to designing and tailoring
electrocatalysts, the study on substrates is rarely reported.
Therefore, more studies should be conducted to develop effi-
cient and advanced substrates, which can not only enhance the
catalytic activity of the self-supported electrodes but firmly
operate for a long time in practical applications. Moreover,
the chemical and physical properties of substrates essentially
determine their performances and applications. Thus, the effect
of substrate properties on the electrocatalytic performance needs

to be further clarified. For instance, the interface between the
active materials and the conductive substrates has a crucial
impact on the electron transfer and durability properties, which
are merely studied. Therefore, their relationship should be inten-
sively investigated to get more information about the adhesive
force between active materials and substrates, which may include
the electrostatic attraction, van der Waals interaction, and cova-
lent bonding.311 For enhancing the HER performance, effective
strategies should be used to tailor the interface. Besides, tedious
procedures and low yield usually appear in the process of con-
structing self-supported electrocatalysts. Therefore, it is essential
to exploit facile and easily scalable synthetic methods. In addition,
the mass of the catalyst loaded on substrates shows dramatic
effects on the HER performance. When the catalyst loading is
high with a large thickness, the catalysts will easily dissolve in the
electrolyte during testing due to their delamination from the
substrate. On the other hand, when the loading is small with
thin active layers, low catalytic activity will be observed.31 There-
fore, it is necessary to ensure the optimal amount of catalysts for
efficient water splitting.

For developing advanced HER electrocatalysts, it is neces-
sary to investigate the fundamental reaction mechanism. The-
oretical calculations and in situ spectroscopic investigations are
effective and powerful tools to reveal the catalysis mechanism
and structural transformation of electrodes. In situ operando
analytic techniques such as Raman, X-ray photoelectron
spectroscopy, X-ray diffraction, and Fourier-transform infrared
spectroscopy have been successfully employed to probe
the surface species in the HER, facilitating simultaneously

Fig. 16 Challenges and future perspectives of self-supported electrodes.
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determining the real catalytic active sites and mechanisms.312–315

Meanwhile, transmission electron microscopy can give insight
into the morphology, microstructure, and chemical properties
of catalysts at the nanoscale. With in situ transmission electron
microscopy, dynamic processes of catalytic reactions in both
gas and liquid environments can be deeply investigated in real
time.316–318 Additionally, more refined characterization should
be utilized at an atomic level. For instance, ex situ and in situ
synchrotron radiation-based characterizations can study
the electronic structure, oxidation states, and coordination
environment.319–321 Besides, more high-resolution techniques
should be rapidly and timely developed to investigate the
reaction processes and the evolution of surface/interface/bulk.
For instance, near-ambient pressure X-ray photoelectron spectro-
scopy (NAP-XPS) and synchrotron radiation-based vacuum ultra-
violet photoionization mass spectrometry (SVUV-PIMS) are useful
tools to analyze the surface information under working condi-
tions, as well as detect the active intermediates and radicals in
the combustion field, respectively.322–324 However, these tech-
niques are rarely utilized in the field of electrocatalysis to probe
the active intermediates during the HER. Therefore, multi-
techniques should be exhaustively developed to probe simulta-
neously the structural information and reaction intermediates
in the catalysis field, visualizing the HER pathways. Furthermore,
the self-supported electrode with well-aligned nanostructures can
remarkably influence the efficiency of mass transport during
the HER.325–327 In particular, the property of the nanostructure
surface plays a key role in the microscale mass transport for the
multi-phase system. For example, the 1D/2D nanostructured
electrode can quickly remove the produced gas bubble, promoting
the HER.328–330 However, it is difficult to systematically investigate
the mass transport effects and mechanisms for different surface
nanostructures and active materials. The coupling of computa-
tional modeling with experiments will help to comprehend
the mass transport mechanisms. Therefore, developing effective
computational modeling should be taken into account in detail.

For stability performance, most of the reported self-
supported electrodes work well under a current density below
10 mA cm�2 for dozens of hours, but cannot satisfy the
requirement of industrial water electrolysis, which needs over-
potentials of less than 300 mV at 500 mA cm�2 with stability
for thousands of hours.331 To obtain a tough self-supported
electrode, the catalysts with an optimal adsorption energy of
intermediates and porous structure are feasibly designed and
fabricated, which can promote releasing H2 bubbles from the
surface and boost mass transfer.332 Meanwhile, the stability-
affecting factors should be focused on and investigated
in-depth, such as substrate material, catalyst structure/phase,
electrode/electrolyte hydrophilic performance, catalyst/substrate
interface property, mechanical behavior, and so on. The intrinsic
stability of most electrocatalysts in acid/alkaline solutions is not
yet completely comprehended. Thus, the chemical and structural
durability upon long-term testing and polarizing in strong acidic/
alkaline electrolytes should be paid more attention. Furthermore,
the decline mechanisms of electrocatalysts deserve to be further
investigated, which can be understood in the following respect

especially, such as the electrocatalysts dissolving, active materials
converting, substrate corroding, active materials peeling, catalyst
surface covering, and catalyst size increasing. In addition, the
decline mechanism in different testing conditions ought to be
studied separately. For a better understanding of the decline
mechanisms, effective mitigation strategies should be proposed,
and in situ characterization technique and chemical modeling
also need to be developed. Furthermore, a reliable evaluation of
the catalytic performance should be urgently addressed for
different electrocatalysts. To compare the electrocatalyst perfor-
mance, the presently used current density based on geometric
electrode area may not reflect some dominant factors including
substrate effect, catalyst dimension and size, mass loading,
morphology, specific surface area, and testing condition. There-
fore, comprehensive evaluation standards comprising Z, Tafel
slope, j0, TOF value, specific activity based on mass and ECSA,
and FE should be formulated for convincing comparison.

5. Conclusions

Exploring low-cost, highly efficient and extremely robust HER
electrocatalysts is greatly crucial for industrial electrolytic
water splitting for sustainable H2 production. Compared to
the conventional coated electrodes in the powder form, the self-
supported electrodes with in situ integrated catalytically active
phase on appropriate substrates are propitious for simplifying
the fabrication of electrodes, decreasing interface resistance,
exposing more abundant active sites and improving stability,
and they have promising potential for practical applications in
water splitting. In this review, we systematically summarized
the state-of-the-art development of self-supported electrodes
using different substrates for effective HER. The efficient
strategies for enhancing electrocatalyst performance, such as
heteroatomic doping, improving conductivity, building hetero-
structures, tuning wettability, surface/defect engineering, and
so on, are emphasized. Meanwhile, the synthesis routes,
including hydrothermal/solvothermal, electrodeposition, mol-
ten salt, calcination, CVD, thermal-oxidative, magnetic field
assisted, electrochemical activation, solution evaporation, top-
down exfoliation, bottom-up, magnetron sputtering, chemical
bath deposition, solid-state synthesis, corrosion, and anodizing-
assisted molten-salt methods, are also discussed. Further-
more, various electrocatalysts containing Fe2O3, Fe3O4, Co3O4,
Co2Mo3O8, CoO, NiO, NiCo2O4, Cu2+1O, Cu2O, TiO2, RuO2,
CeO2, MoO2, NaxWO3, FeS, CoS2, Co3S4, Co9S8, Cu2S, MoS2,
WS2, ReS2, MoSe2, Ru0.33Se, NiMo alloy, NiCo alloy, RhIr alloy,
Co, Ag, Ru, Pd, Pt, Ni(OH)2, NiFe(OH)x, FeOOH, Ti3C2,
Ni6Mo6C, (Ni,Co)3C, MoC, Mo2C, WC, Co2N, CoN, Co4N,
Ni3N, Mo2N, Fe2P, CoP, Co2P, Ni2P, Ni5P4, Cu3P, MoP, and
MOFs with nanowire, nanorod, nanodot, nanosheet, nano-
flower, nanotube, nanoplate, porous nanobelt, nanoarray, and
nanowall morphologies are also introduced. Although signifi-
cant progress towards materials design/synthesis and property
investigation has been made, great challenges remain in the
further development of self-supported electrodes.

Review Materials Chemistry Frontiers

Pu
bl

is
he

d 
on

 1
5 

D
ec

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 6

:5
0:

49
 P

M
. 

View Article Online

https://doi.org/10.1039/d2qm00931e


This journal is © The Royal Society of Chemistry and the Chinese Chemical Society 2023 Mater. Chem. Front., 2023, 7, 567–606 |  593

In summary, we hope that the strategies discussed in this
work can provide a background and a better insight into self-
supported electrodes utilized in catalytically electrolyzing
water. We believe that constructing a self-supported electro-
catalyst is a promising and challenging strategy to develop a
hydrogen economy.
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