

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Inorg. Chem. Front.*, 2023, **10**, 4276

DOI: 10.1039/d3qi90057f
rsc.li/frontiers-inorganic

Correction: Understanding the ultraviolet, green, red, near infrared and infrared emission properties of bismuth halide double perovskite[†]

Anjun Huang,^{‡,a} Mingzhe Liu,^{‡,b} Chang-Kui Duan,^b Ka-Leung Wong^{*a} and Peter A. Tanner^{*a}

Correction for 'Understanding the ultraviolet, green, red, near infrared and infrared emission properties of bismuth halide double perovskite' by Anjun Huang *et al.*, *Inorg. Chem. Front.*, 2022, **9**, 6379–6390, <https://doi.org/10.1039/D2QI02053J>.

The authors regret that a few errors were present in the original article:

On page 6382, Computation results, "(S4a and b, ESI[†])" should read "(section S2, ESI[†])", and "(S4c and d, ESI[†])" should be deleted.

On page 6386, second paragraph, left hand column, "(Fig. 7d and Fig. S19[†])" should read "(Fig. 5d and Fig. S21b[†])".

On page 6387, in the caption to Fig. 8, "eqn (S8)[†]" should read "eqn (S10)[†]".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China. E-mail: klwong@hkbu.edu.hk, peter.a.tanner@gmail.com

^bCAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China

[†]Electronic supplementary information (ESI) available: Computation method and results; equations; XPS spectra; RT absorption spectrum; UV, visible, NIR and IR emission and excitation spectra of $\text{Cs}_2\text{NaBiCl}_6$ samples prepared by different methods, nonstoichiometric and Mn-doped samples, and temperature dependence; lifetime decay curves and fitting; persistent luminescence spectra: 31 figures and 5 tables. Movie S1: change in intensity of $\text{Cs}_2\text{NaBiCl}_6$ on warming from 77 K. Movie S2: dynamic anti-counterfeiting process – persistent luminescence on warming from 77 K. See DOI: <https://doi.org/10.1039/d2qi02053j>

[‡]A. Huang and M. Liu contributed equally to this work, *via* experiment and theory, respectively.

