

RSC Advances

At the heart of open access for the global chemistry community

Editor-in-chief

Russell J Cox Leibniz Universität Hannover, Germany

We stand for:

Breadth We publish work in all areas of chemistry and reach a global readership

Quality Research to advance the chemical sciences undergoes rigorous peer review for a trusted, society-run journal

ŞĘĘ

Community Led by active researchers, we publish quality work from scientists at every career stage, and all countries

Submit your work now

rsc.li/rsc-advances

Showcasing research from Dr Tae Ho Shin's laboratory, Hydrogen Energy Material Centre, Korea Institute of Ceramic Engineering and Technology, Republic of Korea.

Enhancing CO₂ electrolysis performance with various metal additives (Co, Fe, Ni, and Ru) – decorating the $La(Sr)Fe(Mn)O_3$ cathode in solid oxide electrolysis cells

A promising metal-infiltrated ceramic electrode for hightemperature CO_2 electrolysis cells with a LaGaO₃-based solid oxide electrolyte is reported, suggesting accelerated chemical adsorption of CO_2 via metal additives on the ceramic electrode and presenting an insight into the surface activity of metal catalysts in CO_2 electrolysis.

As featured in:

See Kyu Hyung Lee, Jong Hyeok Park, Tae Ho Shin *et al., Inorg. Chem. Front.*, 2023, **10**, 3536.

rsc.li/frontiers-inorganic