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Ammonia (NH3) is an essential raw material in the production of fertilizers and a promising carbon-free
energy carrier, however, its synthesis still depends on the energy- and capital-intensive Haber—Bosch
process. Recently, the electrochemical N, reduction reaction has attracted significant interest as an emer-
ging method for NHz synthesis under ambient conditions. However, the limited solubility of N, in
aqueous electrolyte and the strong N=N bonds result in a low NHs yield rate, inferior faradaic efficiency
and unsatisfactory selectivity, impeding its further practical application. Considering the high water solubi-
lity of nitrate (NO=7), the electrochemical NO3z™~ reduction reaction (NOs~RR) has become a fascinating
route for achieving sustainable production of NHz, and enormous progress has been made in this field. As
a consequence, this review discusses the reaction mechanism of the electrochemical reduction of NO3z~
and systematically summarizes the recent development of electrocatalysts for the NOz™RR, including
noble-metal-based materials, single-atom metal catalysts, and transition-metal-based catalysts. Diverse
design strategies of the catalysts to boost the NOz™RR performance, such as defect engineering, rational
structure design, strain engineering and constructing heterostructures, are discussed. This is followed by
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an illustration of how a robust understanding of the optimization strategies affords fundamental insights
into the NHs yield rate, faradaic efficiency, and selectivity of the electrocatalysts. Finally, we conclude with
future perspectives on the critical issues, challenges and research directions in the design of high-

rsc.li/frontiers-inorganic efficiency electrocatalysts for selective reduction of NOz™ to NHs.

ditions, including high temperature (400-550 °C) and high
pressure (15-30 MPa), which is extremely energy-consuming.*®

1. Introduction

Ammonia (NH;3) as a high-value-added chemical exerts a sig-
nificant influence in the synthesis of fertilizers for sustaining
the rising global population, and is also being considered as a
promising alternative fuel for hydrogen storage in the
future."” At present, the synthesis of NH; in industry mainly
hinges on the traditional Haber-Bosch process (HBP). Such a
reaction process is accomplished under tough operating con-
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Taking the enormous requirements into consideration (~170
Mt per year, over 80% of total content for fertilizers), the HBP
consumes 1-2% of the world’s energy supply and is
accompanied by extensive CO, emissions.® Furthermore, the
extensive centralized infrastructures involved in the HBP have
to spend substantial capital, leading to a large innovation
barrier and uneven regional distribution.” In this regard,
exploring a clean and sustainable strategy for highly-efficient
NH; production is highly desired, and presents great chal-
lenges in both fundamental science and engineering.

Recently, electrochemical NH; synthesis has provided an
alluring research direction in the search for a substitute for
the traditional HBP due to its moderate production conditions
and ability to integrate with renewable energy resources.®’
Among them, the electrochemical N, reduction reaction (NRR)
has drawn tremendous interest and achieved substantial
progress. In NRR systems, the electrochemical synthesis of
NH; directly originates from the reduction of N, and the
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dissociation of H,O under ambient conditions, in which the
driving force is regulated by the applied voltage.'"?
Consequently, the thermodynamic energy efficiency of the
NRR is about 20% higher than that of the HBP.! Meanwhile,
this method can achieve the decentralized and on-site/-
demand production of NHj, further supporting the fabrication
of distributed fertilizers and reducing the cost of transpor-
tation. Nevertheless, the highly stable N=N bond with a bond
energy of 941 k] mol™, limited solubility of N,, and the com-
peting hydrogen evolution reaction (HER) cause the extremely
low NH; yield rate, selectivity, and faradaic efficiency (FE),
which are far from meeting the practical demands, and even
result in unreliable quantifications experimentally owing to
the trace amounts of contaminants.***

Recently, the electrochemical nitrate reduction reaction
(NO3;"RR) has been demonstrated as an alluring method for
NH; synthesis at room temperature and atmospheric pressure,
and its good performance may originate from the following
aspects: (i) NO;™ is highly soluble in water, has a relatively low
N=0 dissociation energy of 204 k] mol™", and has a more
positive potential than N,. These characteristics are beneficial
to alleviate the competing HER and attain high NH; selectivity
with only a small overpotential required, indicating that the
NO; RR process is more energy-efficient than the HBP and
NRR; (ii) NO;™ is abundant in industrial wastewater and pol-
luted groundwater, with a maximum concentration up to
2.0 mol L™, and these can be considered as NO;~ sources, pro-
viding a promising opportunity for large-scale fabrication of
NH;; (iii) converting NO;~ into NH; alleviates the environ-
mental degradation caused by excessive nitrate emission and
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maintains the balance of the perturbed nitrogen cycle. The
reason is attributed to the fact that the accumulation of NO;~
in drinking water will induce illness and jeopardize human
health; (iv) this process utilized water as the proton source,
eliminating fossil-fuel consumption and CO, emission.
Consequently, there has been a dramatic growth in research
efforts to study the ambient electrochemical reduction of NO;~
to NH;."*™'” However, the NO; RR is an eight-electron reaction
process and generates various by-products, such as NO,™, NO,
N,O, N,, and NH,OH, resulting in low NH; selectivity, FE and
yield rate.'®2° Such electrocatalytic performance is mainly
determined by the electrocatalysts; hence, the major challenge
in large-scale production of NHj; via the NO3; RR lies in
finding a suitable catalyst. Recently, a series of electrocatalysts,
including noble metals, signal-atom catalysts, and catalysts of
transition metals and their compounds have been developed
and/or designed for the NO; RR wunder ambient
conditions.>'* Meanwhile, extensive research efforts have
pointed out that their electrocatalytic activities can be signifi-
cantly ameliorated by elaborate structural design, defect engin-
eering (oxygen vacancies and heteroatom doping), strain
engineering, and constructing heterostructures. Thus, a sys-
tematic discussion on the recent progress of electrocatalysts
for the NO; RR and an analysis of corresponding materials
design principles could provide a specific direction for ration-
ally developing efficient NO; RR electrocatalysts.

Currently, several high-quality reviews focusing on the
electrochemical removal of NO;~ have been presented.'®"%2%2¢
Nevertheless, reviews that exclusively focus on the rational
design of electrocatalysts for the reduction of NO;~ to NH; are
lacking. As a consequence, we review the recent advancements
of electrocatalysts toward the NO; RR for attaining large NH;
yields, high FE, as well as high selectivity under ambient con-
ditions. Firstly, this review briefly discusses the fundamental
reaction mechanisms of the electrocatalytic NO; RR. Secondly,
the most recent advancements of electrocatalysts for electro-
chemically converting NO;~ to NH; have been summarized,
covering noble metals, single-atom catalysts, and catalysts of
transition metals and their compounds (Fig. 1a). Meanwhile,
several strategies to regulate the apparent activity or intrinsic
activity of the electrocatalysts for the NO; RR to form NH; are
highlighted. Finally, the perspective and challenges in this
emerging area are also presented.

2. Reaction pathways of
electrocatalytic nitrate reduction

Owing to the multivalent nitrogen element, various nitrogen-
containing species like NO,”, N,O, NH,ON, N,, N,H,, and
NH; will be generated during the electrochemical NO;~
reduction procedure. Among them, N, and NH; feature the
highest thermodynamic stability and are regarded as final pro-
ducts under standard conditions.>””*® The corresponding reac-
tions can be expressed through the following equations:*’

This journal is © the Partner Organisations 2023
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Fig. 1 (a) Element list of reported NO3z RR electrocatalysts to date. (b)
The electron-mediated pathway of the electrochemical reduction of
NO37.

2NO;~ + 12H" +10e” — N, + 6H,0,E° = 1.17 V vs. SHE

(1)

NO; ™ +9H' + 8¢~ — NH; + 3H,0,E° = —0.12 V vs. SHE.

(2)

Generally, the electroreduction of NO;~ has two different
pathways, including an indirect autocatalytic reduction
pathway and a direct electrocatalytic reduction pathway.>*!
terms of the former, NO;~ does not participate in the electron-
transfer process and the operating conditions are a large con-
centration of NO3;™ (>1 M) and high acidity (pH < 0). The latter
can also be divided into two pathways: one is the regulation of
active adsorbed hydrogen atoms (H,gs); the second one is elec-
tron reduction at the cathode (Fig. 1b). In the adsorbed-hydro-
gen-mediated pathway, the first process is the generation of
H.qs via decomposition of the adsorbed H,O on the surface of
the cathode. The second process is that H,qs directly reduces
NO;~ and generates intermediates to give the final-product
NH; rather than N,, which is attributed to the fact that for-
mation of an N-N bond is kinetically less favorable than that
of an N-H bond. This process usually requires a small overpo-
tential to promote the conversion from NO;~ to NHj;, which
can efficiently suppress the competing HER, as well as attain
high NH; selectivity and FE.>>** As for the electron-mediated
pathway, electrons directly reduce NO;~ adsorbed on the
surface of the cathode to NO,” (eqn (3) and (4)).** Notably,
converting NO3;~ to NO,~ generally requires a high activation
energy, and this process is considered as the rate-determining
step to regulate the reaction kinetics of the whole NO; RR
process. Then, the generated NO, (a45) reduces to NO(aqg),
which is a decisive intermediate as a branch for the generation
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of N, or NH;/NH,". On the one hand, NOgaqs) can be reduced
to HNO(,q5) and H,NO(,q5), and quickly followed by hydrogen-
ation to form hydroxylamine, which finally reduces to NH;.*?
On the other hand, NO(,q) can be desorbed from the electrode
surface to generate NO in solution. When NO(,q presents in
the solution, a weakly adsorbed NO dimer can be formed,
which is the precursor of N;O(ags). The produced N;O(aqs)
further reduces to N, according to eqn (9), and this process
plays a dominant role in the pathway of N, evolution.>®*”

NO; " (ag) — NO3 " (aas) (3)

NO; ™ (ags) + 2H" +2€ — NO, ™ (a45) + H20 (4)
NO; ™~ (ags) + 2H' + e~ — NO(aqs) + H20 (5)
NO(aq) + 6H" + 5¢~ — NH; " + H,0 (6)
NO(ads) — NO(aq) ()

NO(ads) + NO(yq) + 2H" +2¢7 — NyOpaqq) + HO  (8)

N3O(ags) + 2H' +2¢~ — N, + H,0 (9)

3. Efficient NOz RR electrocatalysts

Exploring advanced electrocatalysts with a high selectivity, FE,
and yield rate are keenly desired for the electrosynthesis of
NH; by converting NO; ™. Recently, a series of electrocatalysts
have been investigated for the NO; RR process under ambient
conditions, like noble-metal-based materials, single-atom
metal catalysts, and transition-metal-based materials. In the
following sections, the recent advances of those catalysts in
the NO; RR toward NH; and the corresponding optimization
strategies for electrocatalytic activity will be systematically
discussed.

3.1 Noble-metal catalysts

Noble metals have been widely utilized as electrocatalysts for
diverse electrochemical conversion reactions including the
HER, the oxygen evolution reaction, the oxygen reduction reac-
tion, and the NRR, owing to their alluring electronic conduc-
tivity, moderate capturing ability for various reactants, and
high density of under-coordinated surface atoms. Recently,
both experiments and theoretical calculations have suggested
that noble-metal materials (Pt, Pd, Ru, and Rh) are promising
electrocatalysts for the NO; RR under ambient conditions, as
listed in Table 1.29387%2:45748:5052 Epor example, Li et al*?
designed Ru/oxygen-doped Ru core/shell nanoclusters (Fig. 2a
and b) as an NO; RR electrocatalyst for the production of NHj;,
in which the introduction of oxygen can increase the size of
the Ru unit cell to induce tensile strains (Fig. 2c). The strains
suppressed the HER but benefit H* production by expanding
the barrier of H-H coupling. As a result, this catalyst achieved
a large NH; formation rate of 5.56 mol g~' h™" with a nearly
100% selectivity at 120 mA cm™2. In addition, Chen et al.*° dis-
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Table 1 Summary of catalytic performance of noble-metal-based electrocatalysts

Catalyst Electrolyte

NH; yield rate

Faradaic efficiency ~ Potentials (Vvs. RHE)  Ref.

Ru-dispersed Cu nanowire
BC,N/Pd

Amorphous Ru nanoclusters
Strained Ru nanoclusters
Pd/Cu,O octahedra
Pd/Coz0,

CuPd aerogels

CuPd nanocubes

PdBP nanothorn arrays
RuO, nanosheets

1 M KOH + 2000 ppm KNO,
0.1 M KOH + 250 mM KNO,

5 mM Cs,CO; + 500 ppm NO; ™
1 M KOH + 1 M KNO;

0.5 M K,SO, + 50 ppm NO;~
0.5 M K,SO, + 200 ppm NO;~
0.5 M K,S0, + 50 mg L™ NO;~
1 M KNO; + 1 M KOH

0.5 M K,S0, + 100 ppm NO;~
0.1 M K,SO, + 200 ppm NO;~

“NHj yield rate. ? Faradaic efficiency.

persed Ru nanoparticles into a Cu-nanowire matrix (Ru-
CuNW) through a simple cation exchange method for electro-
chemical NH; synthesis (Fig. 2d). This catalyst presented an
industrial-level NO;~ reduction current of ~1 A cm™> (Fig. 2e)
accompanied by a maximum NHj; FE of 96% (Fig. 2f) when
operating with a low NO;™ concentration of 2000 ppm (typical
industrial wastewater). Meanwhile, the voltage of Ru-CuNW
does not significantly change during the long-term electrolysis
of 100 h under the current density of 400 mA cm™>, with a
high NH; FE of 90% maintained, indicating that such a cata-
lyst features excellent durability. More importantly, it showed
an ultrahigh NO;~ conversion ratio of 99% for NH; pro-
duction, making industrial wastewater reach a drinkable water
level (concentration of NO3;~ < 50 ppm) (Fig. 2g), and the solid
NH,CI and liquid NH; solution products were collected by
coupling the NO; -reduction effluent stream with the air-strip-
ping process, as displayed in Fig. 2h. In another study, Jiang
et al.*" investigated the effect of the noble-metal crystal struc-
ture on electrochemical NO; RR activity. They chose Ru as the
model material and fabricated amorphous Ru nanoclusters
anchored on carbon nanotubes (aRu-CNTs) for electro-
chemical NH; production from NO;”. The experimental
results demonstrated that aRu-CNTs delivered an NH; yield of
145 pg h™" mg™" with a FE of 80.62% at —0.2 V vs. RHE, and
the achieved yield was 3.1 times larger than that of crystalline
Ru. Therefore, the amorphization of noble metals can be
recognized as a promising route for increasing the amount of
active sites on the catalysts to a certain degree.

Besides, revealing the electrocatalytic behaviors on noble
metals with different facets for the NO; RR is essential to
explore rational design strategies for electrosynthesis of NH;.
Lim et al.**> employed Pd as a model catalyst to understand the
structure-sensitivity of NO;™ reduction to NH; on a Pd catalyst.
Specifically, they fabricated Pd nanoparticles with diverse mor-
phologies, such as nanocubes containing six (100) facets,
cuboctahedrons containing six (100) and eight (111) facets,
octahedrons containing eight (111) facets, and concave nano-
cubes containing (100) and (hk0) facets. Based on the experi-
mental results, the Pd (111) facet is favorable to catalyze the
reduction of NO;~ to NO, ™, while the (100) facet is inclined to
catalyze the reduction of NO,~ to NH; (Fig. 2i-k). Hence, the
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1730 pgh™ em™
-1 —1

145.1 pg h™ mg

5.56 Mol geo ' h™* 96% -0.3 42

76500 pg h™" em™ 90% 0.04 20
97.42% -0.79/-0.3" 40
80.62% -0.2 41

925.11 pgh™" mg™* 96.56% —0.645 45
0.204 mmol h™" em™ 88.6% —0.645 46
784.37 pgh™" mg ™" 90.02% -0.46 47
6.25 mol h™* g™* 92.5% —0.6°/-0.5" 48
0.109 mmol h™* cm™2 64.73% —0.66 50
0.1158 mmol h™ em™  97.46% —-0.35 52

activity for NO;~ reduction decreases in the order of Pd (111) >
Pd (100) > Pd (hk0) and the activity for NO,~ reduction
decreases in the order of Pd (100) > Pd (kk0) > Pd (111) under
the alkaline electrolyte. As a consequence, NH; production
using noble-metal catalysts can be enhanced through control-
ling their structure and facets.

Numerous research studies have demonstrated that the
electrochemical performance of noble metals for converting
NO;~ to NH; can be significantly modified by constructing a
heterostructure with two materials, with the modified perform-
ance originating from the unique physical properties induced
by the charge distribution and energy-band bending at the het-
erointerface. For instance, Li et al*® constructed a hybrid
material consisting of Pd nanoparticles and a boron-carbon-
nitrogen material (BC,N/Pd) for the NO; RR, which showed a
superior NH; production rate of 1730 pg h™" em™ at —0.7 V vs.
RHE using 250 mM KNOj; solution as the nitrogen source.
Theoretical calculations revealed that the free energy accumu-
lation of the NO; RR on BC,N/Pd was higher than that of indi-
vidual Pd or BC,N, and the corresponding value from NO;™ to
*NH could conquer the reaction energy barriers from *NH to
*NH, and *NH, to NH;. As exhibited in Fig. 3a-d, Ren et al.**
constructed Cu/Pd/CuO, heterostructures with abundant pores
for electrochemical conversion of NO;~ to NH;. In terms of the
Cu/Pd/CuO, heterostructure, the electronic interactions
between the Cu, Pd, and CuO, components lead to electron
transfer from Pd to Cu, which can increase the number of reac-
tive sites and thus modulate the adsorption ability for inter-
mediates, meanwhile suppressing the competitive hydrogen
evolution reaction process. Moreover, the abundant channels
provided sufficient contact area between electrolyte and cata-
lyst. Benefiting from interfacial engineering and a unique
porous structure, the designed Cu/Pd/CuO, heterostructure
afforded a superior NH; production rate of 1510.3 pg h™*
mg~!, FE of 86.1%, and NH; selectivity of 90.06% (Fig. 3e-f).
Similarly, Xu et al.*®> applied Cu,O corner-etched octahedra
with cavities and oxygen defects as the substrate to support Pd
nanoparticles (Pd-Cu,0), in which the loading content of Pd
active materials was only 2.93%. For Pd-Cu,O catalyst system,
Pd sites were regarded as the active center for capturing *H
and generating Pd-H intermediate; while parts of Cu,O elec-

This journal is © the Partner Organisations 2023
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Fig. 2 (a) TEM image and (b) aberration-corrected HAADF-STEM/EELS elemental map images of Ru/oxygen-doped Ru core/shell nanoclusters. (c)
Schematic illustration of the reaction mechanism for the NO3;™RR on the strained Ru nanoclusters. Reproduced from ref. 42 with permission from
the American Chemical Society, copyright 2020. (d) Synthesis process of the Ru-CuNW catalyst. (e and f) /-V plots and corresponding NHz FEs of
Ru-CuNW and counterparts. (g) Complete NO3s~ removal using Ru-CuNW catalyst. (h) Schematic diagram of NH4Cl;) and concentrated NH3,q) pro-
ducts from nitrate-containing influent. Reproduced from ref. 20 with permission from the Nature Publishing Group, copyright 2022. (i and j) The
electrocatalytic activity of Pd catalysts with various structures. (k) Schematic illustration of the reaction mechanism for the NOz™RR on the different
crystal facets of Pd catalysts. Reproduced from ref. 43 with permission from the American Chemical Society, copyright 2021.

trochemically reduced to Cu’ and in situ formed Cu/Cu,
which could provide active sites for NO;~ electroreduction.
Meanwhile, the oxygen defects in Cu,O were beneficial for the
capture of NO;~ and to weaken the N-O bond. As expected,
Pd/Cu,O heterostructure catalyst exhibited an excellent electro-
catalytic activity of NO;~ to NH3, including NH; formation rate
of 925.11 pg h™" mg™", selectivity of 95.31%, and FE of

This journal is © the Partner Organisations 2023

96.56%. Pd-PdO-modified Co;0, nanowire arrays were fabri-
cated and applied as a catalyst to electrochemically convert
NO;~ to NH;. In K,SO, solution containing 200 mg L™ of
NO;™ electrolyte, such catalyst showed a high NH; FE of 88.6%
and selectivity of 95.3%.*°

Tailoring the catalytic sites of noble-metal materials by
alloying with another metal is another fascinating strategy to
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Reproduced from ref. 48 with permission from the Nature Publishing Group, copyright 2022.

further improve their catalytic activity for the NO; RR to NHj3.
For example, Xu et al.*” rationally chose Pd as an active metal
and Cu as a promoting metal to construct a CuPd bimetallic
catalyst for electrochemical conversion of NO;~ to NH;. In
terms of the CuPd catalyst system, Pd sites serve as active
centers to adsorb *H and promote the hydrogenation reaction
for NH; production. Consequently, the CuPd alloy catalyst deli-
vered a large NH; yield rate of 784.37 ug h™' mg™", and a high
NH; FE of 90.02% at —0.46 V vs. RHE, which was superior to
those of pure Cu and Pd catalysts. Furthermore, Gao et al.*®
employed density functional theory (DFT) calculations and
machine learning to deduce that the upshifted d-band center
of the Cu sites of the CuPd alloy favored the adsorption of
*NOj3, and *N was destabilized owing to the dominant role of
Pauli repulsion from the subsequent Pd d orbitals, promoting
the protonation of N-bonded species toward NH;. As demon-
strated in Fig. 3g-1, they also experimentally synthesized CuPd
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nanocube alloy catalysts, and confirmed the existence of
charge transfer between Pd and Cu via X-ray absorption near-
edge spectroscopy (XANES). In 1.0 M NaOH solution contain-
ing 1.0 M KNOj;, the PdCu nanocube catalyst showed an NH;
yield rate of 6.25 mol h™" g™ at —0.6 V vs. RHE and an NH; FE
of 92.5% at —0.5 V vs. RHE, respectively. Furthermore, the
current density remained stable over 12 h of continuous oper-
ation, with a high NH; FE of ~85.1% maintained. Similarly,
Zhang and his co-authors*® also employed metallic Ni as a pro-
moter catalyst to regulate the electronic structure of Pd, and
synthesized PdNi alloys for the NO; RR. PdNi nanosheets dis-
played an NH; formation rate of 16.7 mg h™ mg™" (at —1.2 V
vs. RHE) and a FE of 87.9% (at —0.6 V vs. RHE). After that, a
ternary PdBP nanothorn-array catalyst was also designed and
utilized for converting NO;~ to NH;. In terms of the ternary
system, B and P doping could induce the lattice strain, thus
regulating the electronic structure and increasing the number
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of active sites of Pd; in addition, the doping sites also served
as the Lewis acid to improve the adsorption ability for NO3™.
Thus, the electrochemical performance for reducing NO;™ to
NH; was significantly enhanced after B and P doping.>®

Several noble-metal oxides were also used as electrocatalysts
for highly efficient NH; formation by electrochemical conver-
sion of NO;™ at room temperature. Liu et al.>" fabricated oxide-
derived silver and investigated its electrochemical activity for
the NO; RR. It is noted that this catalyst delivered excellent
electrocatalytic activity of NO3;~ to NO,~ and thus promoted
the reduction reaction of NO,” to NH,", which was well con-
trolled by the applied potential and they obtained an NH," FE
of 89%. Qin et al.’* designed and synthesized Ru,O, clusters
anchored on nickel metal-organic frameworks (MOF) for the
NO; RR. Such a catalyst could provide a nearly 100% NH,"
selectivity with an NH," yield rate of 274 pg h™" mg~". Wang
et al> fabricated carbon-supported RuO, nanosheets with
abundant oxygen vacancies for electrochemical NO;~ to NH;
conversion. The abundant oxygen vacancies within the RuO,
nanosheets could regulate the d-band center and improve the
hydrogen affinity, thus reducing the reaction-energy barrier of
the potential-determining step (NH, — NH;). As a result, this
catalyst displayed a superior electrocatalytic activity for the
conversion of NO; to NH; (NH; FE of 97.46% and selectivity
of 96.42%) than that of the crystalline counterparts.

3.2 Single-atom catalysts

Single-atom catalysts, a group of emerging frontier materials
comprising isolated metal atoms dispersed into support
materials, have triggered explosive research interest within the
catalysis field owing to their remarkably high catalytic activity
and selectivity. When applied to the NO; RR, single-atom cata-
lysts can provide the following desirable advantages, including

View Article Online
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(i) the specific atomic structure can expose abundant adsorp-
tion sites and homogenous catalytic active centers; (ii) the
strong interactions between single atoms and the surrounding
atoms enable superior long-term electrolysis; and (iii) the
absence of multiple neighboring active sites required for coup-
ling N-N bonds in their structure can efficiently suppress the
generation of by-product N,, thus enhancing NH; selectivity.
Currently, both experimental and theoretical calculations have
suggested that single-atom catalysts are effective toward elec-
troreduction of NO;~ to NH;.

For example, Niu and co-workers® used first-principle cal-
culations to systematically investigate the electrocatalytic
activity of various transition-metal single-atoms (from Ti to
Au) anchored on carbon nitride (TM/g-CN) for electrochemical
NO;~ to NH; conversion, as shown in Fig. 4a. Firstly, the
adsorption energies of NO;™, a H proton, and an N, molecule
on TM/g-CN were systematically calculated. As revealed from
Fig. 4b, the adsorption ability for NO;~ was stronger than for
H proton or N, on TM/g-CN catalysts, except for Pt and Au,
indicating that the NO; " RR is more favorable than the HER
and NRR. By combining with detailed pathways of NOjz;~
reduction on TM/g-CN, they established a volcano plot of limit-
ing potential selecting the adsorption energy of NO;™ as a
descriptor (Fig. 4c), where Ti and Zr appeared near the top of
the volcano. Based on the above analysis, Ti/g-CN and Zr/g-CN
possessed stronger adsorption abilities for NO;~ compared
with those of other TM/g-CN catalysts, making them fascinat-
ing electrocatalysts with high activity and selectivity for the
NO; RR. Similarly, Lv et al.>® explored the NO; RR perform-
ance of a set of transition-metal single-atom (Ti, Os, Ru, Cr,
Mn, and Pt) catalysts supported on g-C3N, by performing DFT
calculations. The calculation results suggested that Ru/g-C3N,
featured the highest activity and selectivity for the conversion
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Fig. 4 (a) Atomic structure of TM/g-CN and corresponding element list (from Ti to Au). (b) Comparison of adsorption energies of NOs~, N, and H
proton on TM/g-CN. (c) NO3™RR volcano plot of TM/g-CN using the adsorption energy of NOs™ as the descriptor. Reproduced from ref. 54 with per-
mission from Wiley-VCH, copyright 2021. (d) Volcano correlation curve between the limiting potential and adsorption energy of NOs~ of TM/
g-C3Ny4. Reproduced from ref. 55 with permission from the American Chemical Society, copyright 2021. (e) NH3 FE of Fe-MoS, under various poten-
tials. (f) Reaction pathway for the NO3™RR on Fe-MoS,. (g) Schematic diagram of the interaction between NO and M-MoS; nanosheets. Reproduced

from ref. 57 with permission from Wiley-VCH, copyright 2022.
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Table 2 Summary of catalytic performance of single-atom metal electrocatalysts

Catalyst Electrolyte NH; yield rate Faradaic efficiency Potentials (V vs. RHE) Ref.
Fe-MoS, SAC 0.1 M Na,SO, + 0.1 M NaNO, 431.8 pgh™'em™ 98% —0.48 57
Fe SAC 0.1 M K,SO, + 0.5 M NO;~ 0.46 mmol h™ cm™ 75% —0.85%—0.66" 58
Fe-PPy SAC 0.1 M KOH + 0.1 M NO;~ 2.75mg h™ em™> 100% -0.7/-0.3 59
Cu SAC 0.1 M KOH + 0.1 M NO;~ 4.5mgem>h™! 84.7% -1.0 60
Cu-cis-N,0, SAC 0.5 M K,SO, + 1000 ppm NO;~ 28.73 +1.25 mg h™' em™ 80% -1.6 61
FeN,0, SAC 0.1 M K,SO, + 0.5 M NO;~ 46 mg h™' mg™* 92% —0.88%/—0.68" 62
Ni-Cu SAC 0.5 M K,SO, + 200 ppm NO;~ 326.7 pmol h™* em™ 100% —0.55 63
FeMo SAC 0.05 M PBS + 0.16 M KNO, 18.0 pmol cm™2 h™* 94% —-0.45 64

“NHj yield rate. ? Faradaic efficiency.

of NO;~ to NH; with a limiting potential of —0.34 V, as pre-
sented in Fig. 4d. Thus, theoretical calculations have provided
an advanced direction for the application of single-atom cata-
lysts and paved the way for the electrochemical conversion of
NO;™ to NH;.

Up to now, only a few single-atom catalysts have been
experimentally fabricated and employed for the electrosynth-
esis of NH; from NO;™, including Fe, Cu, Ni, Mo, and their
alloys, as listed in Table 2. For example, Zhu et al.’® prepared a
single-atom Cu-catalyst supported on nitrogenated carbon
nanosheets (Cu-N-C) and investigated its catalytic perform-
ance for the NO; RR for the first time. The strong binding
between Cu and N (Cu-N,) was responsible for the good
adsorption ability of the catalyst for NO;~ adsorption, promot-
ing the fast conversion from NO;~ to NH; as well as exhibiting
excellent stability. Furthermore, Chen et al** demonstrated
that Cu-N-C could effectively inhibit the generation of toxic
NO,™~ and by-product N,, as well as facilitate the reduction of
HNO; to NO;, and NH, to NH;. It is well known that the
nitrate reductase enzyme has a Mo(iv) atom coordinated with
sulfur coordinating ligands, whereas nitrogenase is a multi-
nuclear enzyme with MoFe; clusters as the active sites.
Inspired by this point, Voiry’s group®” developed a novel
heterogeneous catalyst composed of Fe single-atoms anchored
on two-dimensional MoS, (Fe-MoS,) for electrochemical NH;
synthesis by the reduction reaction of NO;™. Fe-MoS, delivered
a remarkably high FE of 98% for the NO; RR to NH; at an
onset potential of —0.48 V using 0.1 M Na,SO, containing 0.1
M NaNO; electrolyte (Fig. 4e). Under the above testing con-
ditions, this catalyst showed a 7-hour average NH; formation
rate of 431.8 pg h™' ecm™>. DFT calculations revealed that the
Fe-MoS, catalyst featured a superior ability for activating NO;™
by virtue of the strong interaction between the d-band orbitals
of the Fe atoms and the 2n* orbitals of the NO species, lower-
ing the energy barrier for conversion of *NO to *N (the rate-
determining step) (Fig. 4f and g). At the same time, Wu et al.>®
chose an N-doped porous carbon matrix to anchor Fe single-
atoms (Fe SAC) and applied them for electrochemical NO;™ to
NH; conversion (Fig. 5a and b). A large NH; yield rate (up to
0.46 mmol h™" em™> at —0.85 V vs. RHE) and a high NH; FE of
75% at —0.66 V vs. RHE were achieved in K,SO, with 0.5 M
KNOj3, and remained stable during 20 consecutive electrolysis
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cycles (Fig. 5c—e). These results indicated that Fe SAC featured
superior electrocatalytic activity and outstanding durability for
the NO; RR. The favorable catalytic activity of the as-designed
Fe SAC originated from the unique structure, which can not
only effectively suppress the N-N coupling and enhance the
selectivity of NH; production, but also enable the intrinsic
high-efficiency active sites (Fe-N,) to possess lower thermo-
dynamic barriers. However, the detailed reaction mechanism
of Fe SAC was only revealed through theoretical modeling.
During the electrocatalytic reaction process, the M (metal)-N,
catalyst may experience structural evolution induced by the
applied potential and/or the interaction with reactants or elec-
trolytes, which complicates the comprehension of the struc-
ture-performance relationship and seriously blocks the
rational design of efficient catalysts. Consequently, revealing
the dynamic transformation of the M-N, structure under oper-
ating conditions is essential to recognize the real active sites.
To achieve the above-mentioned target, Li et al>* employed
in situ characterisation techniques to establish the reaction
pathway and evolution mechanism of the catalysts, selecting a
catalyst of Fe single atoms anchored on carbon derived from
polypyrrole as an example. They proposed the preoccupied
NO; RR mechanism presented in Fig. 5f that the exclusive
existence of nitrate-preoccupied Fe(u)-N, sites prior to the for-
mation of Fe (0), which could effectively eliminate the compet-
ing adsorption of water under aqueous conditions.
Subsequently, Yang et al.®® discovered the restructuring of Cu-
N, sites during the electrochemical production of NH; by con-
verting NO;~ through in situ X-ray adsorption spectroscopy
coupled with advanced electron microscopy. Specifically, as
depicted in Fig. 5g-i, the Cu-N, structure experienced the
sequential evolution from Cu-Nj to near-free Cu® single atoms
and finally to aggregated Cu® nanoparticles during the electro-
reduction of NO;~ to NH;. Moreover, the formed Cu® nano-
particles can be dismantled into single atoms and again recov-
ered to give the Cu-N, structure upon being exposed to an
ambient atmosphere after the electrolysis.

Although single-atom catalysts deliver outstanding electro-
catalytic activity for the conversion of NO;~ to NHj, the iso-
lated metal centers usually coordinate with four N atoms in
C,v symmetry. Such a coordination structure features relatively
weak adsorption ability for NO;™, leading to sluggish ionic
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(a) Schematic illustration of the preparation of Fe SAC. (b) Aberration-corrected medium-angle annular dark-field scanning TEM (HAADF

STEM) and mapping images of Fe SAC. (c) NHs FE. (d) NH5 yield rate and partial current density of Fe SAC under various potentials. (e) Cycling dura-
bility of Fe SAC at —0.66 V vs. RHE. Reproduced from ref. 58 with permission from the Nature Publishing Group, copyright 2021. (f) The proposed
preoccupied NO3~RR mechanism for Fe SAC. Reproduced from ref. 59 with permission from The Royal Society of Chemistry, copyright 2021. (g) In
situ XANES spectra of Cu—Ny4 at each given potential. (h) Linear combination fitting result of the Cu K-edge XANES spectra and (i) corresponding Cu
K-edge FT-EXAFS spectra at different potentials. Reproduced from ref. 60 with permission from the American Chemical Society, copyright 2022.

migration and low NH; production rate. Related literature has
demonstrated that introducing weakly coordinated hetero-
atoms to substitute some of the coordinated N is an admirable
strategy for breaking the coordination symmetry of the metal
centers, consequently increasing the site polarity and improv-
ing NO;~ accumulation. For instance, Cheng et al.®* broke the
coordination symmetry of Cu SAC by replacing the local
coordination atoms from 4N to 2N + 20 (Cu-cis-N,0,). First-
principle calculations were preferentially employed to reveal
the coordination symmetry-breaking in Cu SAC and investigate
the reaction pathways of Cu-cis-N,O, and Cu-N, catalysts, as
indicated in Fig. 6a-e. In terms of Cu-cis-N,0O,, Cu is co-
ordinated by two N and two O atoms and the catalyst possesses
polar active sites, which are prone to enrich NO;~ on the
surface of the catalyst and promote the generation of the key

This journal is © the Partner Organisations 2023

reaction intermediate *ONH, further facilitating hydrogenation
to NH;. Motivated by this, a Cu-cis-N,O, catalyst was fabricated
by pyrolysis of a Cu-Salen complex under an Ar atmosphere
(Fig. 6g-h). When applied to the NO; " RR, the NH; formation
rate reached 27.84 mg h™' ecm™ at an industrial-level current
density of 366 mA cm™>. Moreover, the electrochemical activity
of Cu-cis-N,0, was well maintained after continual operation
for 2000 h (Fig. 6i-k). Analogously, Zhang et al.°* fabricated an
Fe single-atom catalyst with unique FeN,O, coordination via
direct pyrolysis of metal-organic frameworks possessing a pre-
organized FeN,O, environment. When applying the designed
Fe SAC for the NO;™RR, it showed a high NH; production rate
of 46 mg h™" mg™" with a FE of 92% in neutral electrolytes.
Combined theoretical calculations revealed that the O atoms
in FeN,O, could regulate the d-band center of Fe and conse-

Inorg. Chem. Front., 2023, 10, 3489-3514 | 3497


https://doi.org/10.1039/d3qi00554b

Published on 02 May 2023. Downloaded on 2/6/2026 4:29:08 PM.

View Article Online

Review Inorganic Chemistry Frontiers
@ NO NH (O
3 3 . e —
P )‘%’,{, ¢ on THEAolecen . . ol Pyrotysis i Ar ey
Cu-cis-N,0, SAC . }’ o [ cans,::::m' WD B 550,21 )

i

Cu-cis-N,0; . Cu-trans-N,0, . 3 Cu-N,
(ej Cu-cis-N,0, ‘
“NO,
ilor: e
». |
2wl o o had \
F - *ONH, ONH, |
8 = |
2 *‘.f:g'd ONH  “NHOH % .
P i K7 NH,OH T o
h
- o b -
T 3 NH; release “OH NS
——ONH pathway ™ complex |
-8 d
Cu-N
O e ; .
A ! é
< *NO, *NOH
= *NO “ONH INHOH,
B _— . “ONH, %"-a,
§4 *ONH,
*NH,OH *NH, -
o 2 ) 2
4 : w
===nHOH pathway < NH. lelea’se g - RO
—— ONH pathway & complex 3 oA H,;0

8
Reation Pathway

) 20
054 2
2 &
< E}
5 i Feo S
< E
= s 2
025 M
Qhw S ]
R S

OO —

CuOACY CucisN;0;SAC

8

% 8 3
Faradic Efficiency (%)

——Na;SO,
Na,SO,+KNO;

j(mA em?)
&
8
NH; Formation Rate (mg h'' em2)

o
20 15 10 05 00

E (Vvs.RHE)

A E)

2 14 A6 -8
E (Vvs. RHE)

o j o Rate,, EENFE,,

[ 500 1000 1500 2000

Time (h)

Fig. 6 (a) Illustration of the Cu-cis-N,O, catalyst. (b—d) The molecular dynamic simulation of Cu-cis-N,O, and counterparts. (e and f) Reaction
pathways for the NO3z"RR on the surface of Cu-cis-N,O, and Cu-N,. (g) Synthesis process of Cu-cis-N,O,. (h) HAADF STEM and corresponding
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Reproduced from ref. 61 with permission from Wiley-VCH, copyright 2022.

quently enhance the adsorption energies of the NO; RR inter-
mediates. In comparison with FeN,, FeN,O, features superior
conductivity, NH; selectivity and a lower reaction energy
barrier from *NOH to *N, thus promoting the progress of the
NO; RR.

To further enhance the catalytic activity of single-atom cata-
lysts, tuning the electronic structures of active sites through
introducing foreign atoms in the metal matrix can be regarded
as an alluring approach to increase the NH; production rate,
selectivity and FE. For example, Cai et al.®® reported a single-
atom Ni-alloyed Cu catalyst that achieved an NH; yield rate of
326.7 pmol h™' em™2 at —0.55 V vs. RHE and a maximum FE of
100% in 0.5 M K,SO, with 200 ppm NO;™, in which the yield
rate was nearly 10.7 times superior to that of a bare Cu catalyst.
Theoretical calculations suggested that the single Ni atom on
the Cu catalyst regulated the third protonation reaction of the
electrocatalytic NO; " RR and increased the adsorption energy
of the crucial NOOH* intermediate, thus decreasing the limit-
ing potential and inhibiting the formation of by-product.
Murphy et al.®* reported a bimetallic FeMo-based single-atom
catalyst for electroreduction of NO;~ to NH3, in which Mo and
Fe served as the dissociative and associative sites of the initial
adsorption of NO;™, respectively. Benefiting from the synergis-
tic effect of both Mo and Fe sites, this bimetallic catalyst
achieved an NH; production rate of 18.0 pmol ecm™> h™*

3498 | /norg. Chem. Front., 2023, 10, 3489-3514

(153 pgnm, mg~' h™") with a FE of 94%, as well as outstanding
long-term durability with a well-maintained FE above 90% for
over 60 h of electrolysis.

In the above-mentioned two parts, we have discussed
noble-metal and single-atom metal catalysts for conversion of
NO;~ to NH; under ambient conditions. Although an extensive
number of electrocatalysts deliver desirable activity, high FE
and superior selectivity, their large-scale practical application
is still impeded by their expensive cost, rare resources (noble
metals) and low yield (single-atom catalysts). In contrast, non-
noble transition metals, such as Cu, Co, Ni, Fe, and their
alloys, have drawn extensive attention as promising alterna-
tives in the field of electrochemical conversion of NO;~ to NH;
by virtue of their abundant resources and favorable catalytic
activity. Transition-metal-based materials including metals,
metal oxides, metal phosphides, and so on, have been widely
investigated as highly efficient catalysts for the NO; RR. In the
following section, the recent advances in transition-metal-
based electrocatalysts for the NO; RR will be systematically
discussed.

3.3 Transition-metal catalysts

3.3.1 Zero-metal catalysts. Owing to the similar energy
levels between the d orbitals of Cu and the LUMO zn* molecular
orbital of NO;™, metallic Cu catalysts have attracted extensive
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Table 3 Summary of catalytic performance of transition-metal electrocatalysts

Catalyst Electrolyte NH; yield rate Faradaic efficiency ~ Potentials (V vs. RHE) Ref.
Cu nanosheets 0.1 M KOH + 10 mM KNO; 390.1 pgmg~ ' h™* 99.7% -0.15 70
Cu polycrystalline 0.5 M Na,SO, + 0.1 M KNO, 101.4 pmol h™' em™ 93.91% —0.266 71
dr-Cu nanoplates 0.5 M K,SO, + 50 ppm KNO;~ 781.25 pgh™" mg ™" 85.47% —0.654 72
Cu with grain boundaries 0.1 M KOH + 10 mM NO;~ 487.8 mmol g ' h™* 94.2% -0.2 74
Cu@C 0.1 M KOH + 1 mM NO;~ 469.5 ygh™' em™> 72.0% -0.9%-0.3° 77
Cu/TiOy_y 0.5 M Na,SO, + 500 ppm NO;~  0.1143 mmol h™' mg™  81.34% —0.75 78
Cu-CuO 0.1 M KOH + 0.1 M NO;~ 3.17molh™" g™ 98.7% -0.8 79
Co nanosheets 1 M KOH + 0.1 M NO3~ 10.4 mmol h™* em™ 98% —0.24 89
Fe-cyano NSs 1M KOH + 0.1 M NO;~ 421mgh™*' em™ 90% -0.5 90
Ni-NCNTs 0.5 M Na,SO, + 0.3 M NO,;~ 5.1mgh™' em™ 99% -0.5 92
CuFe alloys 0.1 M Na,SO,4 + 100 ppm NOz~ — 81.1% -0.7 93
CuNi@C alloy 0.1 M PBS + 50 mg L™" NO;~ — 79.6% -1.0 95
C0y.5CUy 5 1 M KOH + 50 mM KNO, — 95% -0.03 9

“ NH, yield rate.  Faradaic efficiency.

attention toward the NO; RR.®>®” However, most metallic Cu
catalysts generally convert NO;™ to N, instead of NH;. In terms
of an electrochemical NH; synthesis system, enhancing the
NH; yield rate and selectivity of metallic Cu catalysts is critical
during the reduction of NO;™. Previous literature indicated
that rational structure design and crystal regulation could
achieve the above-mentioned target.®®®® For example, Fu
et al.”® designed Cu nanosheets as electrocatalysts for the
NO; RR, which delivered a superior catalytic activity (NH;
yield rate of 390 pg mg™" h™" and FE of 99.7%) to Cu foil and
Cu nanoparticles (with the yield rate being about 400 times
that of Cu foil and 1.7 times that of Cu nanoparticles)
(Table 3). Such excellent performance might be ascribed to the
large surface areas of Cu nanosheets, which could expose
abundant active sites. In a recent study, flower-like polycrystal-
line Cu grown in situ on carbon paper was fabricated by an
electrodeposition technique. The unique structure provided an
open reaction environment beneficial to the permeation of
electrolyte, and thus enhanced the liquid-phase mass-transfer
process. When regarded as a catalyst for the NO;™RR, it
showed superior electrochemical activity with a large NH; for-
mation rate of 101.4 pmol h™ em™ and FE of 93.91% in
neutral solution.

Meanwhile, an NH; yield rate of 82.4 pmol h™" ecm™> was
still achieved after six continuous cycles, with a high FE above
92.85% retained, indicating an alluring stability for electrore-
duction of NO;™ to NH,.”*

On the other hand, interface engineering, such as defect
engineering,”> heteroatom doping,”* coupling with carbon,®
grain-boundary engineering,”* and constructing
heterostructures’>’® has been proposed to further enhance the
electrochemical NO; RR activity of metallic Cu catalysts. As
presented in Fig. 7a and b, Xu et al.”? fabricated the atomic-
defect-rich metallic Cu nanoplates (dr-Cu NPs) and investi-
gated their catalytic activity for the NO; RR. After the introduc-
tion of a large number of defects in the lattice, the electroche-
mically active surface area of the Cu nanoplates was remark-
ably enhanced (dr-Cu NPs: 1.28 mF cm™> vs. Cu NPs: 0.38 mF

This journal is © the Partner Organisations 2023

em~?), thus increasing the surface-active sites and facilitating
the adsorption of various intermediates during the electro-
chemical process. As expected, dr-Cu NPs displayed a large
NO;~ conversion rate of 93.26%, favorable NH; selectivity of
81.99%, as well as a high NH; FE of 85.47%, which were
superior to those of Cu nanoplates without defects (Fig. 7c and
d). Song et al.”’” designed Cu nanoparticles encapsulated in a
porous carbon matrix for NO;~ to NH; conversion (Fig. 7e and
f). Under an ultralow concentration of 1 mM NO;~, Cu@C deli-
vered a high NH; FE of 72.0% and a yield rate of 469.5 pg h™*
em™? at —0.3 and —0.9 V vs. RHE, respectively, which were
approximately 3.6 times larger than those of Cu nanoparticles
(Fig. 7g and h). To reveal such impressive electrocatalytic
activity, they adopted the finite-element method to simulate
the enrichment effect of NO;~ on the surface of Cu@C and
Cu. The structure model of a Cu slab coated with or without
porous carbon shown in Fig. 7i and j suggested that the
porous carbon skeleton within Cu@C was beneficial to the
concentration of NO;™, thereby expediting the mass transfer of
NO;~ for efficient electroreduction into NH; at ultralow con-
centrations. In addition, Cu nanoparticles with abundant
grain boundaries encapsulated by hollow carbon (Cu@C) were
constructed and regarded as an electrocatalyst for thee conver-
sion of NO;™ to NH; in alkaline media. In terms of this catalyst
system, apart from the enrichment effect of carbon, the grain
boundaries within the Cu nanoparticles could appropriately
regulate the adsorption energy of NO;~ for dwindling reaction
barriers and enhance the reaction activity for the NO; RR. As
a consequence, the constructed Cu@C catalyst exhibited a
maximum FE of 94.2% and a large NH; yield rate of
487.8 mmol ¢~" h™" at a low potential of —0.2 V vs. RHE in
alkaline media, achieving an exceptional performance for the
NO; RR.”* Zhang et al.”® constructed a heterostructure catalyst
composed of metallic Cu and oxygen-vacancy-rich TiO,_y, in
which the Cu nanoparticles were homogenously anchored on
TiO,_, nanosheets (Fig. 7k). As a catalyst for the NO; RR, the
designed heterostructure electrode exhibited an NH; for-
mation rate of 0.1143 mmol h™" mg™" along with a high FE of
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Fig. 7 (a) TEM and (b) HRTEM images of a dr-Cu nanoplate. (c) NH," yield rate and FE, and (d) NH4* selectivity of dr-Cu nanoplates at various
potentials. Reproduced from ref. 72 with permission from The Royal Society of Chemistry, copyright 2021. (e) SEM and (f) TEM images of Cu@C. (g)
NH3 yield rate and (h) FE of Cu@C under different potentials. Simulated concentrations and distribution of local NO3~ on the surface of (i) Cu@C and
(j) Cu at the diffusion time of 7 ps. The blue semicircle and the gray shell represent Cu and porous carbon, respectively. Reproduced from ref. 77
with permission from Wiley-VCH, copyright 2022. (k) TEM image of Cu/TiO,_,. (1) NH3 selectivity and yield rate of Cu/TiO,_, at each applied poten-
tial. (m) Reaction mechanism and (n) corresponding calculated free energy changes of the NO3zRR on the surface of Cu/TiO,_,. Reproduced from
ref. 72 with permission from The Royal Society of Chemistry, copyright 2021.

81.34%, which obviously outperformed the individual Cu and
TiO,_, counterparts (Fig. 71). Such excellent electrocatalytic
activity could be ascribed to the introduction of oxygen defects
and metallic Cu clusters, which not only modified the elec-
tronic conductivity of the heterostructure electrode, but also
optimized the adsorption energy of NO;~ and hydrogenation
manner that suppressed the generation of by-products
(Fig. 7m and n). Similarly, Zhao et al.”® designed and fabri-
cated a Cu-CuO heterostructure as an electrocatalyst for the
NO; RR, where the heterointerface between Cu and CuO was
favorable for promoting the hydrogenation of *NO to *NOH
and inhibiting the HER during the reduction process of NO;™.
Thus, this heterostructure catalyst showed a molar-level NH;
yield rate of 3.17 mol h™" g™" and an ultrahigh FE of 98.7%. In
addition, metallic Cu exhibits substantially high energy bar-
riers to the dissociation of water in both neutral and alkaline
electrolytes during electroreduction of NO;~, which controls
the proton transfer rate and further leads to sluggish reaction
kinetics for NH; synthesis.®* To address the above-mentioned
issue, Yu et al.®" employed DFT calculations to seek applicable

ligands and confirmed that the uncoordinated carboxylate

3500 | /norg. Chem. Front, 2023, 10, 3489-3514

ligands could considerably promote water dissociation on Cu,
accelerating the proton transfer and reaction kinetics of NO;™.
They experimentally encapsulated Cu nanoparticles into the
uncoordinated carboxylate-ligand-rich MOF matrix through a
particle decomposition route. As expected, the designed Cu-
based catalyst achieved an alluring electrochemical perform-
ance for the reduction of NO;~ to NH; in alkaline media,
including a high NH; yield rate of 496.4 mmol h™" g™" at an
ultralow potential of —0.2 V vs. RHE and an outstanding stabi-
lity of 20 h.

In addition to metallic Cu, other metal catalysts like Co, Fe,
Ni, and Bi have been applied to highly effective reduction of
NO;™ to NH;.*>"® For instance, our group synthesized metallic
Co-nitrogen-doped carbon nanotubes hybrid (Co-NCNTs)
(Fig. 8a and b) and investigated their electrocatalytic activity
for the NO; RR. In 0.1 M NaOH with 0.1 M NO;~, the Co-
NCNTs delivered a high activity for the NO; RR with an NH;
production rate of 5996 pg h™" cm™ and FE of 92% at 0.6 V vs.
RHE (Fig. 8c and d), and exhibited excellent durability with
~8.7% attenuation of current density and well-maintained FE
during the 12-h electrolysis. Furthermore, DFT calculations

This journal is © the Partner Organisations 2023
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(Fig. 8e) revealed that the Co (111) facet is more favorable for
the NO;"RR than the Co (200) and Co (220) facets, in which
the rate-determining step is the hydrogenation of *NH to
*NH,. The corresponding energy barrier was only 0.19 eV, indi-
cating the impressive NO; RR activity of metallic Co.®®
Meanwhile, we also synthesized metallic Co nanoparticles
embedded on carbon derived from corncob as an electrocata-
lyst for the NO; RR to NHj3, which achieved a large NH; pro-
duction rate of 0.6 mmol h™* cm® with a FE of 93.4%, as
depicted in Fig. 8f and g.*® Fang and coworkers® reported that
metallic Fe anchored on cyano-coordination polymer porous
nanosheets (Fe-cyano NSs) displayed an outstanding electro-
chemical NH; synthesis through the reduction of NO;™ in an
alkaline electrolyte. Bi has also been employed as a highly
efficient catalyst for electrochemical reduction of NO;™ due to
its unique atomic structure, in which the interlayer lattice
compression shortens the Bi-Bi bond to broaden the 6p band-
width for electronic delocalization, enhancing the adsorption
Ilarchuk et al®" syn-
thesized Ni foam catalysts through a dynamic hydrogen-
bubble-template-assisted electrodeposition process. An NHj;3
FE of more than 95% was obtained under the relatively low
potential range from —0.1 to —0.3 V vs. RHE. Gao et al.’® con-
structed a Schottky heterostructure composed of metallic Ni
and nitrogen-doped carbon nanotubes (Ni-NCNTs) for convert-
ing NO;~ to NH; at room temperature (Fig. 8h—j). In terms of

energy for nitrogen intermediates.®*

This journal is © the Partner Organisations 2023

heterostructure catalyst, the heterointerface between Ni nano-
particles and NCNTs could induce the formation of a built-in
electric field (Fig. 8k), which facilitated the accumulation and
fixation of NO;~ on the surface of the catalyst and conse-
quently promoting the reaction kinetics during the electro-
chemical process. As a result, the designed Ni-NCNTs enabled
a high FE of 99% for the electrocatalytic reduction of NO;™,
and a large NH; formation rate of 5.1 mg h™" em™ in the
electrochemical conversion of NO;™ (Fig. 81 and m).

3.3.2 Metal alloys. Coupling with a secondary metal has
been regarded as a fascinating route to enhance the electro-
chemical activity of transition-metal catalysts via regulating the
electronic structure of the metal and exerting a synergistic
effect of two different metals. Table 3 summarizes the electro-
chemical performance of metal alloy catalysts for the NO; RR.
For instance, Tang et al.”®> demonstrated that Cu-Fe bimetallic
nanoalloys with a Cu/Fe molar ratio of 3:1 presented a high
NH; FE of 81.1% at —0.7 V vs. RHE within 6 h in 0.1 M Na,SO,
containing 100 ppm NO; ™. Similarly, Sargent and coauthors®*
indicated that CusoNis, alloy catalysts only required an overpo-
tential of 0.2 V to obtain the maximum NH; FE under various
concentrations of NO;™, and produced a 6-times increment in
the NO; RR activity compared to the case of pure Cu at 0 V vs.
RHE. DFT calculations revealed that the introduction of Ni
atoms led to the upshifting of the d-band center toward the
Fermi level, which improved the adsorption energies of the
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intermediates and enhanced the selectivity for NH;. Recently,
Liu et al.®® incorporated CuNi alloy nanoparticles into a nitro-
gen-doped carbon matrix with hierarchical pores by pyrolysis
of bimetallic MOFs. A high NH; selectivity of 94.4% and FE of
79.6% were achieved when utilizing the designed CuNi@C as a
catalyst for the NO; RR. Jeon et al.’® designed cobalt-copper
(Coy_Cu,) nanoparticles supported on a three-dimensional
substrate for efficient and selective NH; synthesis via an
electrocatalytic NO;~ reduction. Typically, the optimized
Coy.5Cuy 5 catalyst performed at a high NH; FE of over 95% at
—0.03 V with an NH; partial current density of ~176 mA cm™>
at 50 mM nitrate, which is 7.3- and 1.7-fold higher than those
of the pure Co and Cu counterparts, respectively. Importantly,
replacing Co with Cu enabled tuning of the onset potential on
the Co catalyst and maintained a high selectivity toward NHj;.

3.4 Transition-metal compound catalysts

3.4.1 Metal oxides

3.4.1.1 Copper-based oxides. Transition-metal oxides have
been widely investigated as electrocatalysts for NH; synthesis
via converting NO;~ under ambient conditions (Table 4). As
summarized in the above section, metallic Cu has been
intensively studied for the electroreduction of NO;~ to NHj;
owing to its favorable adsorption ability for NO;~ and
various intermediates (e.g., NO,~ and NO). However, pure Cu
catalysts still suffer from serious catalytic instability. For the
purpose of overcoming this issue, substantial efforts have

View Article Online
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recently been made into the study of Cu-based oxide cata-
lysts for highly-efficient electrochemical NO;~ to NH;
conversion.

For example, Yuan et al.®” explored the influence of Cu oxi-
dation state on the electrochemical reduction of NO;~, and
found that the NH; formation rate and FE of a Cu electrode
could be significantly boosted after surface oxidation. After
that, Ren et al.®® designed and fabricated core-shell structural
Cu@Cu,+;0 nanowires (Fig. 9a—c) for electrochemical conver-
sion of NO;~ to NHj;. In terms of the Cu@Cu,.,0 catalyst, the
interior metallic Cu components could provide pathways for
fast electron transfer due to the one-dimensional nanowire
structure, while the exterior Cu,,,;O layer affords a massive
amount of catalytically active sites. Furthermore, DFT calcu-
lation results suggested that the introduction of a surface oxi-
dation layer regulated the Cu d-band center and modulated
the adsorption energies of various intermediates. Therefore,
the constructed Cu@Cu,,O catalyst exhibited a high NH;
yield rate of 576.53 ug h™" mg™" associated with a FE of 87.7%
at —0.564 V vs. RHE, and NH; selectivity of 76% (Fig. 9d). Qin
et al.”® further illustrated the effects of the surface structure of
Cu,O (exposing facets) on NO;™~ reduction to NH;. Both experi-
mental and theoretical calculation results illustrated that the
Cu,0 (100) facet featured a relatively smaller energy barrier for
NH; formation than the Cu,O (111) facet, leading to a large
NH; formation rate (743 pg h™" mg™") and high FE (82.3%) at
—0.6 V vs. RHE.

Table 4 Summary of catalytic performance of transition-metal compound electrocatalysts

Faradaic Potentials (V vs.
Catalyst Electrolyte NH; yield rate efficiency RHE) Ref.
Cu@Cu,.,;0 nanowires 0.5 M K,SO, + 50 mg L™* 576.53 pg h™' mg™* 87.7% —0.545 98
NO;~
CuO@MnO, 0.5 M K,SO, + 100 mg L™ 0.240 mmol h™ em™ 94.92% —0.645 104
NO;~
Cu0,/TiO, 0.5 M Na,SO, + 100 ppm 1241.81 pgh™' em™> 92.34% —-0.75 105
NO;~
TiO,_, nanotubes 0.5 M Na,SO, + 50 ppm NO;~  0.045 mmol h™" mg™ 85% —0.945 109
Co-doped TiO, nanosheet 0.1 M NaOH + 0.1 M NO;~ 1127 pmol h™' em™ 98.2% -0.9%-0.5° 111
Co@TiO, 0.1 M PBS + 0.1 M NO;~ 800 pmol h™* cm™ 96.7% -1.0%-0.7° 112
FeS,@TiO, 0.1 M NaOH + 0.1 M NaNO;  860.3 pmol h™ ecm™ 97.0% —0.7%-0.4" 114
Cu-doped Co;0, nanowire 0.1 M Na,SO, + 500 ppm 36.71 mmol h™' g™* 86.5% -0.6 117
NO;~
Co;0, nanosheets with Co 0.1 M NaOH + 0.1 M NaNO;  517.5 pmol h™ em™ 97.2% —0.6%/—0.4° 118
vacancies
NiCo0,0, nanowire 0.1 M KOH + 0.1 M NaNO, 973.2 pmol h™* em™2 99.0% -0.6%/—0.3° 121
ZnCo,0,4 nanoarray 0.1 M KOH + 0.1 M NaNOj, 634.74 mmol h™* em™ 98.33% —0.8%-0.6" 122
BCDs/NiCo,0, nanowire 0.5 M K,SO, + 200 ppm NO;~  173.9 pmol h™' em™ 100% —0.55 124
CuO@Co304 1 M KOH + 1400 ppm NO; ™~ 1.915 mmol h™* em™ 99.17% -0.23 125
Co-doped Fe/Fe,0; 0.1 M Na,SO, + 50 ppm NO;~  1505.9 pg h™' em™ 85.2% —0.95 135
CoTiOs_, nanofibers 0.1 M NaOH + 0.1 M NaNO;  30.4 mg h™" mg., " 92.6% -1.1%9-1.0° 136
CuwO, nanospheres 0.5 M Na,SO, + 0.05 M 5.84 mgh™ mg™" 94.6% -0.7 137
NaNO;
CusP nanowires 0.1 M PBS + 0.1 M NaNO; 1626.6 + 36.1 pg h™' em™ 91.2 + 2.5% -0.5 141
CoP nanosheets 1.0 M NaOH + 1.0 M NaNO;  9.56 mol h™* m™2 100% —-0.3 143
Bi,S;/MoS, 0.1 M Na,SO, + 0.1 M NaNO;  15.04 x 10”2 mmol h™* 88.4% -0.8 146
-2
cm
Ni;N nanoparticles 0.5 M Na,SO, + 0.5 M NaNO;  9.185 mmol h™* mg_1 89.5% —0.795 148
Fe;C nanoflakes 1 M KOH + 75 mM KNO, 1.19 mmol h™" mg™* 96.7% —-0.5 150

“ NH, yield rate.  Faradaic efficiency.
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Fig. 9 (a) SEM, (b) TEM and (c) HRTEM images of Cu@Cu,,10 nanowires. (d) NHz formation rate and FE of Cu@Cu,,10 nanowires under the applied
potentials. Reproduced from ref. 98 with permission from Elsevier, copyright 2021. (e) Schematic illustration of NOz™-to-NH3 reduction over electro-
des with nanotubular geometries. (f) NH3 FE and yield rate of CuO,/TiO, at varying potentials. (g) Simulated NO,~ concentration distribution on
nanotubular and planar geometries. Reproduced from ref. 105 with permission from Elsevier, copyright 2022. (h) In situ electrochemical Raman
spectra of CuO nanowires at given potentials. (i) Free-energy diagram for the NOs™RR over Cu nanowires. Reproduced from ref. 106 with permission

from Wiley-VCH, copyright 2020.

To further enhance the electrocatalytic activity of Cu,O
toward the NO; RR, various strategies have been employed,
such as introducing oxygen defects'®®'®' and constructing
heterostructures.””' %% For example, Xu et al'®* designed
core-shell structural CuO@MnO, hierarchical nanoarrays
grown on Cu foam (CuO@MnO,/CF) for the NO; RR. The het-
erointerface between the CuO nanowires and MnO,
nanosheets enabled abundant catalytically active sites and
induced the formation of a built-in electric field, which were
beneficial to the capture of NO;~ and various intermediates
during the electrochemical reactions, as well as accelerate
ionic/electronic transfer at the interface. With these properties,
CuO@MnO,/CF achieved an impressive electrochemical per-
formance including a very-high NO;~ conversion of 99.38%,
NH; FE of 94.92%, and selectivity of 96.67%. Meanwhile, this
catalyst exhibits excellent stability, maintaining the NH; yield
rate and FE after 5 consecutive recycling tests. Qiu et al.'®
incorporated CuO, nanoparticles into a TiO,-nanotube reactor

This journal is © the Partner Organisations 2023

for highly selective conversion of NO;~ to NH;. In this CuO,/
TiO, catalyst system, TiO, nanotubes could efficiently hinder
the diffusion of NO,™ intermediate and promote the conver-
sion of NO3;~ to NH; (Fig. 9e and g). The constructed CuO,/
TiO, heterostructure achieved a yield rate of 1241.81 pg h™'
em 2, a high FE of 92.93% (Fig. 9f), and outstanding durability
with a stable FE during the ten successive cycles of electrolysis.

Cu-based oxidation catalysts present outstanding electro-
chemical activity toward selective reduction of NO;~ to NHj,
but the origin of their activity and the structural evolution that
occurs during the electrochemical reaction process were still
experimentally unclear. In this regard, Zhang and his co-
workers applied in situ characterization techniques to unveil
the active phase of the CuO electrocatalyst. Experimental
results suggested that CuO was transformed to Cu/Cu,O
during the reduction process of NO;™, and served as an active
phase for NO3;™~ conversion (Fig. 9h). Then, online differential
electrochemical mass spectrometry was adopted to analyze the

Inorg. Chem. Front., 2023, 10, 3489-3514 | 3503
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reaction pathway. NO;~ adsorbed on the surface of electrode
was firstly reduced to *NO, and *NO, in which *NO was hydro-
genated to give *NHON and *NH,OH. Subsequently, *NH,OH
was converted to *NH; and further desorbed from the surface
of the electrode generating NH;. DFT calculations also discov-
ered that the origin of the activity enhancement was attributed
to the reconstructed structure, in which electron transfer from
Cu,O to Cu at the interface could promote the generation of
the *NOH intermediate and limit the competing HER
(Fig. 9i).1%°

3.4.1.2 Titanium-based oxides. Titanium oxide (TiO,) is a
promising electrocatalyst candidate for the electrochemical
reduction of NO3;~ owing to its advantages in terms of cost and
robustness.'®”'°® For example, Jia et al'®® fabricated TiO,
nanotubes rich in oxygen vacancies as an electrocatalyst for
the NO; RR. An outstanding conversion rate of 95.2% for NH;
production from NO;™ electroreduction associated with a FE of
85% was achieved. DFT calculations revealed that NO;~ was
adsorbed on the surface of the electrode and preferentially
filled the oxygen defects existing in the TiO, nanotubes, which
weakened the N-O bonding, modulated the adsorption ener-
gies of the intermediates, and limited the generation of by-pro-
ducts. Analogously, oxygen-vacancy-TiO, nanomaterials com-
posed of rutile and anatase phases were fabricated as a catalyst
for NH; synthesis from the electroreduction of NO;~, which
could deliver an NH; FE of 78.0% and selectivity of 81.9%.
Online differential electrochemical mass spectrometry and
first-principle calculations revealed that the existence of
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oxygen vacancies (Ti’") and the heterointerface between the
rutile and anatase phases were favorable for modulating the
adsorption energy of NO;~ and facilitating the hydrogenation
reaction to form *NOH, which led to a relatively high NH;
selectivity and FE.''® However, the limited selectivity for NH;
and sluggish reaction kinetics hinder their further application
for NH; electrosynthesis.

In this regard, our group proposed a series of modification
strategies for improving the above-mentioned issues, such as
heteroatom doping, and constructing Schottky junctions and
p—n heterojunctions. For example, taking a Co-based catalyst
with high catalytic activity into consideration, we introduced
Co heteroatoms into a TiO, nanoribbon array supported on Ti
foil for electroreduction of NO;~ (Fig. 10a and b). Co-doping
can effectively improve the intrinsic electronic conductivity of
TiO, and increase the content of oxygen defects in TiO,, which
further facilitates the adsorption of NO;™ and transportation
of charge at the interface, as well as decreasing the energy
barrier of the potential-determining step (Fig. 10c). As a result,
Co-doped TiO, nanoribbon arrays delivered a large NH; pro-
duction rate of 1127 pmol h™" em™ and a high FE of 98.2%,
which was remarkably superior to that of its counterpart in
alkaline media (88.5 pmol h™" em™2; 35.1%), as presented in
Fig. 10d and e."" Inspired by this, we further constructed a
Schottky junction by integrating metallic Co nanoparticles into
TiO, nanobelt arrays (Co@TiO,) (Fig. 10f and g). A built-in
electric field formed at the heterointerface between Co and
TiO,, which was beneficial for the capture of NO;~ on the
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Fig. 10 (a) SEM and (b) HRTEM images of Co-doped TiO,. (c) Calculated free-energy changes of the NO3"RR on the Co-doped TiO,. (d) NH3 yield
rate and FE of Co-doped TiO, under given potentials. (¢) Comparison of NH3 yield rate and FE between TiO, and Co-doped TiO,. Reproduced from
ref. 111 with permission from The Royal Society of Chemistry, copyright 2022. (f) SEM and (g) HRTEM images of Co@TiO; heterojunction catalyst. (h)
LSV curves and (i) NH3 formation rate and FE at given potentials for Co@TiO,. (j) The long-term electrocatalytic performance of the Co@TiO, cata-
lyst. Reproduced from ref. 112 with permission from Wiley-VCH, copyright 2023.

3504 | Inorg. Chem. Front, 2023, 10, 3489-3514

This journal is © the Partner Organisations 2023


https://doi.org/10.1039/d3qi00554b

Published on 02 May 2023. Downloaded on 2/6/2026 4:29:08 PM.

Inorganic Chemistry Frontiers

surface of the electrocatalyst and thus facilitated mass transfer
during the electroreduction process of NO;™. Consequently, in
a neutral medium containing 0.1 M NO;™, the as-designed
Co@TiO, catalyst enabled a high NH; FE of 96.7% at —0.7 V
vs. RHE and a competitive NH; formation rate of 800 umol h™*
em ™ at —1.0 V (Fig. 10h and i). Meanwhile, this catalyst also
showed impressive durability during recycling tests and 50 h
of bulk electrolysis (Fig. 10j)."'> Following this,
Fe;0,@Ti0,,'"* CoP@TiO, ''* and FeS,@TiO, '*> p-n hetero-
junctions were constructed by our team and utilized as electro-
catalysts to convert NO;~ to NHj;, where the selectivity and
efficiency of bare TiO, for the NO; RR were significantly
enhanced.

3.4.1.3 Spinel oxide. Spinel-type oxides feature unique
advantages in terms of versatility, flexible ion arrangement,
multivalence structure, and superior electronic conductivity,
making them promising electrocatalysts for the NO, RR.'°
For example, Co;0,4 has been extensively utilized as a catalyst
for the electroreduction of NO;~, but its yield rate and selecti-
vity of the target product NH; are relatively low."'” To enhance
the electrocatalytic activity of Co;0y, our group''® designed
Co30,4 nanosheet arrays with Co vacancies on carbon cloth for
converting NO;~ to NH; (Fig. 11a and b). As presented in

gop
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Fig. 11c and d, Coz04 with Co vacancies delivered a high NH;
yield rate of 517.5 pmol h™ g* and a maximum FE of 97.2%
at —0.6 and —0.4 V vs. RHE in alkaline electrolyte, respectively,
which were higher than those of bare CozO, nanosheets
(183.8 pmol h™* g™ with a FE of 85.9%). Furthermore, DFT cal-
culations demonstrated that the introduction of Co vacancies
regulated the electron structure of Coz;O4 optimized the
adsorption energy of NO;~ and reduced the energy barrier of
the potential-determining step (*NHO to *NHOH), leading to
the high electrocatalytic activity (Fig. 11e and f). Similarly, we
adopted Fe as a dopant to modulate the electron structure of
Co30,, further elevating its selectivity and NH; yield rate
during the electroreduction of NO;~.""? In line with the above-
mentioned viewpoint, many bimetal spinel oxides, such as
FeC0,0,,"*° NiC0,0,,'*' ZnCo,0,,'** AlCo,0,,’”" and
NiFe,0,4,"** have been synthesized and investigated as electro-
catalysts for a highly efficient NO;"RR by our team. As demon-
strated in Fig. 11g and h, NiCo,0, nanowire arrays grown on
carbon cloth were synthesized for electrochemical NH; pro-
duction by conversion of NO;~. Owing to the synergistic effects
of the two metal sites, NiCo,O, nanowire arrays attained a
large NH; formation rate of 973.2 pmol h™" em™ and large FE
of 99.0% (Fig. 11i and j) in 0.1 M KOH with 0.1 M NaNO;.
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Fig. 11 (a) SEM and (b) TEM images of Co30,4 nanosheets with Co vacancies. (c) LSV curves and (d) NH3 yield rate, FE under different potentials for
Co304 nanosheets with Co vacancies. () Charge density distribution of Cos04 with/without Co vacancies. (f) Free-energy diagrams for the NOz"RR
on Coz04 with Co vacancies. Reproduced from ref. 118 with permission from the American Chemical Society, copyright 2022. (g and h) SEM and
mapping images of NiCo,0O,. (i) LSV curves and (j) yield rate and FE of NH3 under given potentials. Reproduced from ref. 121 with permission from
the Wiley-VCH, copyright 2022. Charge-density difference for NOs~ adsorption on NiCo,04 (k) and BCDs/NiCo,04 (l). (m) In situ Raman spectra of
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Impressively, the as-designed NiCo,O, nanowires displayed
exceptional durability with no significant fluctuations in both
NH; production rate and FE after 16 successive electrolysis
experiments. After that, taking the Lewis-base property of
NO;~ into consideration, Lu et al.*** further introduced abun-
dant Lewis acid sites on the surface of NiCo,O, nanowire
arrays for increasing the adsorption energy of NO;~ by coup-
ling with boron-doped carbon dots (BCDs/NiC0,0,4). As
revealed in Fig. 11k and 1, the incorporation of BCDs enhanced
the adsorption energy of NO;~ on the surface of the BCDs/
NiCo,0, electrode. Meanwhile, in situ Raman spectra shown in
Fig. 11m suggested that the intensity of the peak at 975 cm™
associated with the N-O stretching vibration was boosted
under the applied potentials, indicating that the Lewis acid
sites induced by BCD doping were critically important for
enhancing the adsorption ability of NO;~. As expected, the
BCDs/NiCo0,0, catalyst provided a nearly ~100% FE and a
large NH; production rate of 173.9 pmol h™" em™ at —0.55 V
vs. RHE (Fig. 11n).

Co;0, as an electrocatalyst for the NO; RR still suffers from
the critical issue that it is difficult to electrochemically
reduce NO3;~ to NO,  using this catalyst. As mentioned
above, Cu-based materials possess excellent electrocatalytic
activity for NO;~ to NO,”, and thus constructing a Coz;0,-
based heterostructure with Cu-based materials could achieve
promising electrochemical performance. Liu et al'*® fabri-
cated Co30, grown on CuO nanowire arrays to construct a
hierarchical heterostructure for an efficient NO3; RR. At
—0.23 V vs. RHE, CuO@Co3;0, provided an NH; yield rate of
1.915 mmol h™" em™2, which was higher than those of CuO
and Co030,. Fu et al.*?® built dual active sites on a C0;0,/Cu
electrode, in which Cu focused on the reduction of NO;™ to
NO,™, and then Co3;0, generated H* (active hydrogen) as a
strong reducing agent to further convert NO,” to NH;. As a
result, the Co30,/Cu catalyst presented a large NH; yield rate
of 684 pg mg™' h™' with 94.6% FE. Recently, Fan et al'*’
fabricated a CozO, nanosheet grown in situ on TiO,
nanosheet arrays for the NO; RR, which gave a large NH;
yield rate of 875 pmol mg™ h™' and a high FE of 93.1% in
alkaline electrolyte.

3.4.1.4 Other metal oxides. Other types of transition-metal
oxides have also been investigated for the NO; RR, such as
Bi,O;, Mn;0,, BiFeO;, and La,Cu0,.***' However, the
inferior electronic conductivity of metal oxides hinders their
electrocatalytic activity. Currently, regulating their electronic
structure through oxygen-defect engineering is a promising
strategy."*>'** For instance, Wang et al."** fabricated ultrathin
CoO, nanosheets with abundant surface oxygen as an NO3; RR
catalyst, attaining a large NH; yield of 82.4 + 4.8 mg h™" mg™"
with a FE of 93.4 + 3.8% at —0.3 V vs. RHE. The surface oxygen
on the Co sites was prone to stabilize the adsorbed hydrogen
on CoO,, and thus efficiently suppressed the formation of H,
and achieved a high selectivity for NH; synthesis. Zhang
et al."® reported a Co-doped Fe/Fe,O; catalyst for electro-
chemical NH; synthesis by reducing NO;~ under ambient con-
ditions. This catalyst afforded an NH; production rate of
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1505.9 pg h™' em ™ with a FE of 85.2% and a high NH; selecti-
vity of 99.0%. Recently, our group reported that CoTiO;_,
nanofibers with oxygen vacancies showed an NH; formation
rate of 30.4 mg h™" mg™"' and a large FE of 92.6% in 0.1 M
NaOH solution containing 0.1 M NO;."*® The CuWO, hollow
nanospheres with oxygen vacancies showed a high NH; FE of
94.6% and yield rate of 5.84 mg h™' mg™" at —0.7 V vs. RHE."*’

3.4.2 Metal phosphides. Metal phosphides featuring
metallic characteristics and high catalytic activities for the
HER have become fascinating electrocatalysts for converting
NO;~ to NHj;, which is attributed to the fact that they can
afford hydrogen at a small overpotential during the electrore-
duction process. So far, many transition-metal phosphides,
such as CoP, Ni,P, and Cu;P, have been used as catalysts for
NH; electrosynthesis."**™*> For example, Ye et al.'*’ reported
that CoP nanosheet arrays supported on carbon cloth exhibi-
ted a molar level NH; formation rate of 9.56 mol h™ m™ at
—0.3 V vs. RHE with a FE of ~100% under alkaline conditions
(Fig. 12a-c). Furthermore, the reaction mechanism of the
NO; RR on the surface of CoP was investigated by coupling
in situ characterization technology and theoretical calcu-
lations (Fig. 12d and e). As presented in Fig. 12f, Co 4p orbi-
tals directly participated in the adsorption of NO;~ via Co-
O-N bonds and the electron-transfer step of the NO; RR,
while phosphorus within CoP could stabilize the active
phase and reduce the reaction-energy barrier of the rate-
determining step during the electroreduction of NO;™, thus
leading to a highly selective electrosynthesis of NH; from
NO;™. Ni,P nanoparticles supported on Ni foam were syn-
thesized and regarded as an electrocatalyst for electrochemi-
cally converting NO;~ to NH; in neutral media with 50 mM
NO;™. A high NH; evolving rate of 0.056 mmol h™" ecm™
with a FE of 99.23%, and a selectivity of 89.1% were
obtained.’** As shown in Fig. 12g, our group'*' synthesized
Cu;P nanowire arrays anchored on copper foam for electro-
chemical conversion of NO;~ to NHj in neutral media. In
0.1 M phosphate-buffered saline (PBS) containing 0.1 M
NaNOj;, a CuzP nanowire catalyst delivered a large NH; for-
mation rate of 848.7 + 18.0 pg h™' cm™? and a high FE of
62.9 + 2.0% at —0.6 V vs. RHE (Fig. 12h and i).

3.4.3 Other metal compounds. Recently, other metal com-
pounds have also been applied as electrocatalysts for NO;™ to
NH; conversion at room temperature."**'*” Zhang et al'*®
fabricated NizN nanoparticles embedded on a carbon skeleton
and investigated its electrochemical performance as a catalyst
for the NO; RR. This catalyst provided a high NH; selectivity
of 89.5% and large yield rate of 9.185 mmol h™" mg™" at
—0.795 V vs. RHE in neutral media. Amorphous CoB, nano-
particles anchored on carbon paper were synthesized via a
simple wet chemical reduction method. When used for electro-
reduction of NO;~ to NH;, CoB, afforded a maximum FE of
94.0% and a yield rate of up to 0.787 mmol h™' em™2.'*° Wang
et al.’° reported that Fe;C nanoflakes embedded on N-doped
carbon nanosheets displayed an NH; yield rate of 1.19 mmol
h™ mg™", NH; FE of 96.7%, and selectivity of 79.0% at —0.5 V
vs. RHE.
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4. Conclusions

The electrochemical NO; RR has opened up a green and sus-
tainable route for NH; synthesis under ambient conditions,
which is associated with two advantages: (i) the electro-
chemical NH; synthesis from NO;™ utilizes water as a proton
source and is powered by renewable energy, which means
that this process avoids the utilization of fossil fuels and
reduces the NH; production cost; (ii) the benign reaction
conditions of the conversion of NO;~ would enable distribu-

This journal is © the Partner Organisations 2023

ted NH; production in smaller-scale devices, which facilitates
the production of fertilizer on demand and realizes a neutral
carbon footprint. The important electrochemical character-
istics of NH; yield rate, Faradaic efficiency and selectivity
largely depend on the electrocatalysts. Therefore, this review
briefly describes the electroreduction mechanism from NOz™
to NH; under mild environmental conditions and summar-
izes the recent development of various electrocatalysts
including noble-metal-based materials, single-atom metal
catalysts, and transition-metal-based materials. Meanwhile,
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various effective design strategies for enhancing the electro-
catalytic activity are outlined. Furthermore, it provides pro-
found insights into the knowledge behind various optimiz-
ation strategies, which are imperative for the development of
highly-efficient electrocatalysts for the electrochemical con-
version of NO;~ to NHj;. Although considerable progress has
been achieved so far, the following points should also be
considered in this field:

(i) As mentioned in the discussion above, ongoing research
into electrochemical NH; synthesis from NO;~ mainly focuses
on the design and investigation of metal-based materials; less
attention has been given to the exploration of metal-free elec-
trocatalysts. From the energy-saving and emission-reduction
points of view, it is of great significance to explore metal-free
electrocatalysts with high activity, large selectivity and excellent
stability for enabling the electrocatalytic NO; RR under
ambient conditions. As a consequence, more attention should
be given to elaborately developing carbon-based electrocata-
lysts for the NO; RR, providing an alluring strategy for large-
scale NH; production.

(ii) The electrochemical NO3; RR, as an emerging strategy
for NH; production under ambient conditions, has attained a
dramatic growth in interest and various catalysts have been
investigated in this field. However, none of the suitable cata-
lysts can be regarded as a benchmark catalyst for electro-
catalytic NO; RR research. Besides, the variety of experimental
details, such as the pH value of the electrolyte and the concen-
tration of the nitrogen resource, play a critical role in catalytic
activity and selectivity, and their effects on the electrochemical
performance remain to be thoroughly studied. Such issues
lead to incomparable results and thus limit the mutual com-
munication and promotion in the community. Therefore,
finding a standard catalyst and unification of experimental
parameters are urgently required in the field of the electro-
chemical NO; RR.

(iii) Many catalysts have exhibited superior catalytic activity
and high NH; selectivity during the electrochemical NO; RR
process, but their catalytic mechanisms and reaction processes
were only revealed by theoretical calculations and remain
unclear experimentally. For this reason, in situ characterization
to scrutinize the pristine catalyst surface evolution (surface
structure, element valence state, and exposed active sites) and
adsorbed intermediates should be elaborately developed to
uncover the real catalytic sites and reaction pathways upon the
electrochemical reaction process for the rational design of
electrocatalysts for the NO; RR.

(iv) From the point of view of practical application, besides
the fact that the electrochemical NO; RR to NH; process is
still developing and lacks a catalyst with excellent durability
and performance for supporting long-term electrolysis at the
moment, another challenge is that this process will generate a
tremendous amount of H, as a side-product during the electro-
lysis, which is directly vented off into the atmosphere, forming
a safety issue. Therefore, tremendous efforts are required
before the electrochemical NO;"RR to NH; can be put into
practical operation.
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