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Surface ligands are critical in the construction and stabilization of atomically precise metal nanoclusters
(NCs) with diverse structures, and ligand engineering remains one of the most effective ways to tailor their
properties. In this work, we report the synthesis, structure and surface engineering of novel copper nano-
clusters co-protected by carboxylic and thioate ligands. The two clusters share the same formula
Cu14(RCOO)g(AdmS)g (RCOOH is benzoic acid or 2-[(2,6-dichlorophenyl) amino] benzeneacetic acid, and
AdmSH is 1-adamantanethiol) and a similar molecular structure. What is surprising to us, however, is that
the optical properties, stability and assembly structures of the two clusters are significantly different, thus
strongly indicating the potential of engineering carboxylates for manipulating the physicochemical pro-
perties of atomically precise copper NCs. This work not only provides model clusters stabilized by car-
boxylic ligands for further study of the structure—property relationship, but also outlines the big picture of
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Introduction

Owing to ultra-small sizes, well-defined structures, and unique
electronic structures, atomically precise metal nanoclusters
(NCs) have attracted widespread interest across the fields
of bio-imaging, chemical sensing, catalysis, and
nanomedicine."”” The clusters with precise structures are
model platforms to explore the relationship between structures
and properties at the atomic level, and thus direct the syn-
thesis of functional nanomaterials for target applications in a
reasonable way.® ' In particular, the properties of metal NCs
heavily rely on their compositions, charges and structures, in
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carboxylic-stabilized metal nanoclusters that will flourish in the near future.

which the metal-ligand interface is crucial. It has been well
documented that electronic structures, local coordination
environments, and physicochemical properties are susceptible
to delicate changes of ligand-metal interfacial structures.'” >
Therefore, it is of significance to deepen the understanding of
the correlation between interfacial structures and physico-
chemical properties of metal NCs.'®?>?32¢ In the past
decades, great effort was made in engineering ligands for the
construction and stabilization of atomically precise metal NCs
with diverse interfacial structures, which are represented by
metal-phosphine, metal-thiol, metal-alkynyl, metal-halide, and
metal-N-heterocyclic carbene.>'!!219721,23,24,27-45

Close examination of the literature reveals that although
significant advancements have been made in illustrating the
interfaces of metal NCs by introducing diverse ligands, much
less explored in the community are carboxylates. Due to their
great affordability, availability, and variety, carboxylate ligands
have evolved to be some of the most common compounds that
find wide application in the fields of organometallics,
materials, catalysis, etc."®**° Of note, the presence of carbox-
ylate ligands on the surface of a handful of metal NCs is a pio-
neering implication for tailoring physicochemical properties
of metal NCs by engineering carboxylate groups.®*"®* Recently,
several important studies have clearly demonstrated that car-
boxylates have emerged as a new class of ligands in the field of
NCs. It has even been claimed from the viewpoint of theore-
tical calculations that carboxylates would enable great tunabil-
ity of geometric structures, hence making them attractive

This journal is © the Partner Organisations 2023
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ligands for endowing NCs with interesting catalytic, photo-
catalytic, and optical properties.®® Experimentally, the reports
by Liu and co-workers for determining the crystal structure of
all-carboxylate protected superatomic Agg for the first time,
and by Wang and co-workers for preparing amino carboxylate-
stabilized Ag,, with homochirality have clearly illustrated that
carboxylate-stabilized NCs feature interesting optical pro-
perties, thus providing us a bright prospect for further
functionalizations.®*®

Although carboxylate ligands have been introduced in the
protection of metal NCs in previous reports, engineering car-
boxylate ligands for manipulating the optical and assembly
properties of metal NCs such as copper, to the best of our
knowledge, has not been claimed. Herein, we report the syn-
thesis and structural determinations of two novel copper
clusters co-stabilized by carboxylate and thiol ligands:
[Cu;4(BEN)s(AdmS)g] (Cuys-1) and [Cuyy(diclofenac)s(AdmS)s]
(Cuy4-2) (BEN is benzoic acid, diclofenac is 2-[(2,6-dichlorophe-
nyl) amino] benzeneacetic acid, and AdmSH is 1-adamanta-
nethiol). Although the two Cuy, clusters share similar for-
mulas, charges and structures, the use of different carboxylate
ligands induces significant changes in their optical, stability
and assembly properties, which therefore indicates the bright
future of engineering carboxylate ligands for regulating the
properties of NCs.

Results and discussion

The two Cu,, clusters were prepared by the hydrothermal
reduction method reported by Melosh et al.®® Cu(RCOO), salts
were reduced by ethylene glycol under thermal treatment in the
presence of thiols to afford raw products (see the Experimental
section for details). Bright yellow crystals suitable for single
crystal X-ray diffraction analysis were obtained by vapor
diffusion of ether into the cluster solution (Fig. S1 and S27).

Structural analysis revealed that Cuy,-1 crystallized in a tri-
clinic system with a space group of P1, and Cu,4-2 in a mono-
clinic unit cell in the P2,c space group (Tables S1 and S27).
Due to the structural similarity of these two nanoclusters, we
here present only the detailed structure of Cuy,-1. The asym-
metric unit in the structure of Cu,4-1 contains 156 crystallogra-
phically independent sites, ie., fourteen Cu, eight AdmSH
ligands and six BEN ligands. In addition, no counterion was
observed in the lattice, which indicates that it is a neutral
molecule. Thus, the empirical formula of Cuy,4-1 was proposed
to be [Cuy4(BEN)s(Adms)g] (Fig. S3 and S47). On the basis of its
formula, all the 14 copper atoms are in the +1 oxidation state,
which suggests the effective reduction of Cu®* by ethylene
glycol under heating conditions.

The metal skeleton of Cu,4-1 was simultaneously protected
by different types of donors of hard Lewis groups of O and the
soft Lewis ones of S (Fig. 1a). The structure features a Cu;,Sg
core which could be viewed as two S atoms tetrahedrally
embedded in the Cu,, framework (Fig. 1b). Considering the
monovalent valence state of copper ions, the metal framework

This journal is © the Partner Organisations 2023

View Article Online

Research Article

of Cuy,-1 has an excessively positive charge. In order to make
the structure stable, the core of Cuy,-1 was further passivated
by six BEN ligands that are less sterically demanding to form
isolated neutral clusters. The metal framework of the cluster
can be regarded as a malformed prismatic structure consisting
of four prongs, and the thiol ligands act as bridging units to
connect the four prongs to each other (Fig. 1c). Besides, the
two Cu atoms at the end positions of each prong are capped
by BEN ligands with Cu-O bond lengths of 1.863-2.044 A
(Fig. 1d), which is consistent with the literature reports.®”
Compared with previously reported copper clusters capped
by thiolate ligands, the introduction of BEN ligands not only
makes the entire structure of Cu,4-1 distinct, but also brings
great significance for the construction of new connection pat-
terns within the clusters. For example, the structure of Cuy,-1
is highly different from that of Cuy4(CyB1oH10S:)s(CH3CN)g
(C3B1oH10S, is 1,2-dithiolate-o-carborane) which features a
cubic Cu,, core.’® Furthermore, in sharp contrast to [NEt,][Cu

Fig. 1 (a) The total structure of the [Cuy4(BEN)s(AdmS)s] cluster. (b) The
tetrahedral S; unit in the core. (c and d) The binding pattern between
the Cu atoms and ligands in the Cu;4 metal core (one of them is high-
lighted). (e) Cu4 plane at the center of the cluster. (f) Triangular conical
CusS (orange) and tetragonal conical Cu,S (blue) fragment units. Color
codes for atoms: blue spheres, Cu; orange spheres, O; yellow spheres, S;
grey spheres, C. All hydrogen atoms are omitted for clarity.
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(AdmS),] and [NEt,][Cus(AdmS)s], the copper atoms in the
center of Cuy,-1 are interconnected to form a planar quadrilat-
eral structure of Cu, (Fig. 1e).”>® Notably, Cu-Cu bonds (green)
with 2.94 A are found in the Cu, plane (Fig. 2a). The value
is slightly larger than the average Cu-Cu bond lengths
(Table S3t). The Cu-S-Cu bond lengths are of a wide range as
well, with values between 2.138 and 2.647 A, which is related
to the two bridging modes (pu3-S, py-S) within the cluster in tri-
angular conical CuzS (orange) and tetragonal conical Cu,S
(blue) fragment units, respectively (Fig. 1f). Furthermore, the
Cu-S-Cu bond angles thus are in a relatively large range of
66.99-129.11°.

To confirm the formula determined by X-ray crystallo-
graphic analysis, high-resolution electrospray ionization time-
of-flight mass spectroscopy (ESI-TOF-MS) of Cuy,-1 was then
conducted in the positive mode. As shown in Fig. S5, the
ESI-MS of Cuy,-1 in the positive mode shows one prominent
peak at ~2470 and a small peak ~3010 m/z. The two peaks can be
assigned to be [Cuy,(BEN);(AdmS)]" and [Cu,5(BEN)s(AdmS),]",
respectively. The excellent match of the experimental and simu-
lated isotope patterns verified the composition proposed by
single crystal diffraction analysis (Fig. S5,T inset).

With Cuy,-1 in hand, we thus in the following section
wonder whether its surface structure can be regulated by intro-
ducing different carboxylic ligands. 2-[(2,6-Dichlorophenyl)
amino] benzeneacetic acid (diclofenac) was selected here con-
sidering its large steric hindrance and wide use in the area of
medicine (Fig. 2). [Cuy4(diclofenac)s(AdmS)g] (Cu4-2) can be
readily obtained by a similar synthetic approach to that of
Cu,4-1 by using diclofenac instead of BEN (Fig. S6 and S77). It
is noteworthy that Cu,4-2, to the best of our knowledge, rep-
resents the first copper cluster stabilized by diclofenac.
Structural comparisons reveal that the metal core and coordi-

cl” ; o
NH
o~ " "o

Fig. 2 Structural comparisons of Cuj4-1 and Cuj4-2 clusters stabilized
by different acids. The angles of the Cu,4 plane are slightly different due
to the use of different acids. Color codes for atoms: blue spheres, Cu;
orange spheres, O; yellow spheres, S; grey spheres, C. All hydrogen
atoms are omitted for clarity.
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nation mode of Cuy,4-2 are similar to those of Cuy,4-1, with the
Cu-Cu bond lengths ranging from 2.609 to 2.842 A, Cu-O
from 1.876 to 2.026 A and Cu-S from 2.149 to 2.573 A, respect-
ively. Careful comparison reveals that the average Cu-Cu bond
lengths in Cuy,-2 are slightly shorter than those of Cuy,-1
(Table S31). Notably, the angles of the Cu, plane are highly
different for the two clusters. The angle of quadrilateral in
Cu,4-1 is 77.1°, while it is only 75.4° for Cu,,4-2 (Fig. 2).

Despite the small structural deviations induced by using
different carboxylic ligands, the physicochemical properties of
the two Cu,, clusters are highly different. As shown in Fig. 3
(red trace), the room temperature ultraviolet-visible spectrum
(UV-vis) of Cu,4-1 manifests a unique electronic structure, with
characteristic peaks at ~235, ~275 and ~330 nm, respectively.
To our surprise, the UV-Vis spectrum of Cu,4-2 is extremely
distinct from that of Cu,,-1, which displays several prominent
absorption bands at around 270, 350 and 500 nm, respectively
(Fig. 3, green trace). We note that the heavy dependence of the
optical properties on the surface ligands of Cu,, may facilitate
their application in optics down to the nanometer scale.

To understand why the two clusters exhibit significantly
different spectral properties, we have thus performed density
functional theory (DFT) calculation to investigate their elec-
tronic structures. The experimental structures of the clusters
were directly employed as the moieties for calculation (see
technical details in the Experimental section). The simulated
spectra of the two clusters, as shown in Fig. 3 (inset), exhibit
similar profiles to the experimental ones. The calculated
UV-Vis spectrum of Cuy,-1 mainly displays three absorption
band wavelengths at 364, 307 and 230 nm, respectively, which
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Fig. 3 Experimental UV-Vis spectra of Cui4-1 and Cuys-2 clusters in di-

chloromethane. The inset shows the simulated absorbance spectra of
Cuy4-1 and Cuy4-2 clusters.
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Fig. 4 Orbitals involved in the o, f and y transitions of Cus4-1 (a) and
CU14-2 (b).

are attributed to the transition of o« (HOMO to LUMO tran-
sition), f (HOMO-2 to LUMO) and y (HOMO-5 to LUMO+2),
respectively (Fig. 4a). As a comparison, the simulated UV spec-
trum of Cu,4-2 exhibits an electronic transition from HOMO-2
to LUMO+2 with the minimum wavelength at 268 nm (Fig. 4b).
It suggests that the energy levels for the electronic transitions
of the two clusters are different, therefore rationalizing their
distinct optical properties.

Not only absorbance features of the two clusters have been
tailored significantly by using different types of carboxylates,
but also their stability and self-assembly modes. As suggested

Fig. 5 Assembly structures of Cujs-1 (a) and Cuy4-2 (b) clusters along
the c-axis. Color codes for atoms: blue spheres, Cu; magenta and
orange spheres, O; yellow spheres, S. All other atoms are omitted for
clarity.
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by the time-dependent UV-Vis spectra (Fig. S8%), while Cuy,-1
exhibits high stability in the solution form, Cuy,-2 is prone to
decompose under similar conditions. Moreover, the two clus-
ters are in practically different space groups (P1 for Cu,,-1 and
P2;c¢ for Cuyy-2). Shown in Fig. 5 is the comparison of the
assembly structures of the two clusters. The packing structure
of Cuy4-1 is loosely arranged in the linear mode along the
c-axis (Fig. 5a), while that of Cuy,-2 is in a twisted style by
closely touching with each other (Fig. 5b). The distinction
observed above strongly indicates the efficiency of employing
different carboxylates as protective shells for regulating assem-
bly chemistry of metal clusters.

Conclusions

In summary, we report the synthesis and structural determi-
nation of two novel copper nanoclusters stabilized by carboxy-
late ligands, which motivates the wide exploration of carboxy-
lates as the next generation of surface ligands for the protec-
tion of metal nanoclusters. We have also introduced, for the
first time, diclofenac as a ligand for the stabilization of copper
clusters, implying their potential applications in medicine.
Moreover, it has been demonstrated that the metal skeleton,
surface structure, optical properties, stability, and assembly
structures of carboxylic-protected metal nanoclusters can be
tuned by employing different carboxylic groups. These Cuy,
clusters reported herein not only have application prospects in
the fields of optics and catalysis, but also can be regarded as a
model system to study the fundamental issue of structure-
activity relationship. More studies on preparing carboxylate-
functionalized metal nanoclusters are ongoing in our labora-
tories to deepen the understanding of metal-carboxylic inter-
faces and the relationship between their structures and
performances.

Experimental

Materials

Copper sulfate (CuSO,4, 99%), 2-[(2,6-dichlorophenyl) amino]
benzeneacetic acid (diclofenac, 98%), benzoic acid
(CeHsCOOH, 98%) and 1-adamantanethiol (AdmSH, 98%)
were purchased from Bidepharm (Shanghai, China).
Dichloromethane (CH,Cl,, A.R.), ethylene glycol ((CH,OH),, A.
R.), toluene (C;Hg, A.R.) and ether (C,H;,0, A.R.) were pur-
chased from Sinopharm Chemical Reagent Co. Ltd (Shanghali,
China). Water used in all experiments was ultrapure. All other
reagents were used as received without further purification.

Synthesis of Cu(C¢H;COO), and Cu(diclofenac),

Cu(C¢H5COO), was synthesized by dissolving 28.8 mg of
C¢H5COONa and 16 mg of CuSO, in 10 mL of deionized water.
After stirring for 2 h at room temperature, the reaction mixture
was filtered, and the green precipitate was washed with water
and dried in air. The resulting copper salts were obtained in

Inorg. Chem. Front., 2023, 10, 2618-2625 | 2621
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good yield. Cu(diclofenac), was prepared using a similar pro-
cedure except for the use of 32 mg of Na(diclofenac) and
16 mg of CuSO, as precursors.

Synthesis of Cu,,

Cuy,-1 was prepared by a modified procedure of copper-based
metal-organic chalcogenides. Typically, Cu(C¢HsCOO), and
AdmSH at a molar ratio of 1:1 were dissolved in a mixed
solvent of ethylene glycol and toluene. The mixture was heated
at 80 °C over a period of 48 h, resulting in a yellow solution.
The solution was then carefully filtered and dried up. To the
solid, dichloromethane was added, affording a yellow solution.
Yellow block crystals were obtained by vapor diffusion of ether
into the solution. Cu,4-2 was prepared by a similar procedure
of Cuys-1, except for the use of Cu(diclofenac), instead of
Cu(CH;5COO0),.

Characterization studies

UV-Vis spectra. UV-Vis spectra were collected using a Carry-
5000 Spectrophotometer using a quartz cuvette of 1 cm path
length. The scanning speed was 1000 nm min . The spectra
were recorded in diluted solutions of dichloromethane and the
signal of the blank solvent was subtracted.

ESI-MS. Electrospray ionization mass spectra (ESI-MS) were
recorded using an Agilent 6224 time-of-flight mass spectro-
meter in the positive mode. The samples dissolved in dichloro-
methane were filtered before the measurements. Then the
sample was directly infused at a flow rate of 1.2 mL h™" using a
syringe pump. Typical parameters used for the measurements
were as follows: capillary voltage: 4.0 kV; drying gas temp.:
150 °C; drying gas flow: 4 L min~"; nebulizer pressure: 20 psi.

Crystallography. X-ray single-crystal analysis: the diffraction
data of the single crystals of compounds Cuy4-1 and Cuyy-2
were collected using a Rigaku Oxford Diffraction system X-ray
single-crystal diffractometer using Cu Ko (4 = 1.54184 A) at
293 K. The data were processed using CrysAlis™™. The structure
was solved and refined using full-matrix least-squares based
on F, using ShelXT,*® ShelXL’® in Olex2,”* and Shelxle.”* The
thermal ellipsoids of the ORTEP diagram were generated at
50% probability. Detailed crystal data and structural refine-
ments for the two compounds are given in Tables S1 and S2.f
CCDC 2216708 and 2216705t contain the supplementary crys-
tallographic data for this paper.

Computational details

As for the optical-absorption spectrum and orbital infor-
mation, the density functional theory (DFT) calculations were
implemented in the quantum chemistry program Turbomole
V4.2.”® Geometry optimization of the two Cuy, clusters was
carried out by DFT calculations with the TPSS (Tao, Perdew,
Staroverov, and Scuseria) functional for electron exchange and
correlation and def2-SV(P) for orbital and auxiliary basis sets.”
Of note, the def2-SV(P) basis sets were used for S, N, O, Cl, C
and H, while effective core potentials which include scalar
relativistic corrections were considered for Cu.”>’® Then, the
time-dependent DFT computation of the optical absorption

2622 | Inorg. Chem. Front.,, 2023, 10, 2618-2625
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spectrum was performed at the PBE level with the def2-SV(P)
basis sets. All transitions together with their oscillator
strengths were then convoluted with a Gaussian line shape
of 0.5 eV broadening to generate the optical-absorption
spectrum.
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