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The impact of solution vs. slurry vs.
mechanochemical syntheses upon the sorption
performance of a 2D switching coordination
network†

Shi-Qiang Wang, *‡a,b Shaza Darwish ‡a and Michael J. Zaworotko *a

The selection and optimization of synthesis routes for porous metal–organic materials are critical for their

large-scale manufacture but remain largely underexplored. In this study, we compare mechanochemistry

vs. slurry vs. solution methods for the synthesis of a 1D chain coordination polymer {[Co(bpy)

(NCS)2(H2O)2]·bpy}n (chn-1-Co-NCS-H2O) that is an intermediate to the 2D switching coordination

network [Co(bpy)2(NCS)2]n, sql-1-Co-NCS (1 = bpy = 4,4’-bipyridine). Although neat mechanosynthesis

using Co(NCS)2 and bpy as the starting materials failed, both water slurry and water-assisted mechano-

chemical syntheses afforded the desired intermediate, chn-1-Co-NCS-H2O, in high yield. Nevertheless,

the resulting sql-1-Co-NCS products were observed to exhibit different CO2 sorption profiles depending

on the synthesis methods used to prepare chn-1-Co-NCS-H2O. This study reveals that water can play an

important role in mechanosynthesis, not only by inducing and accelerating the reaction process, but also

by enhancing product quality in a manner that is not readily detectable by PXRD.

Introduction

Switching coordination networks (CNs) are a subclass of the
third generation coordination polymers that undergo guest-
induced structural transformation(s) between “closed” nonpor-
ous and “open” porous phases.1–3 They represent a relatively
small but potentially important and steadily growing type of
flexible metal–organic frameworks (FMOFs) or soft porous
crystals (SPCs).4–9 The characteristic features of switching CNs
are their responsiveness to specific guest species and the
resulting stepped or type F-IV sorption isotherms, which could
enhance the working capacity and selectivity for gas storage
and separation applications.10–13 It is widely recognized that
CNs or MOFs have the potential to compete with conventional
sorbents such as zeolites and activated carbons,14–18 however,
the promise of large-scale applications is largely unrealized
despite >118 000 MOF entries having been archived in the

Cambridge Structural Database.19 A major issue that hinders
the further development of CNs as industrial sorbents is their
amenability to synthesis at large scale. This is perhaps the
biggest hurdle between laboratory bench discovery, where solu-
tion synthesis has dominated, and commercial development,
where the cost and efficiency of process methodology become
paramount.20–22

With respect to the discovery of CNs, solvent mediated
methods such as solvent diffusion (SD) and solvothermal (ST)
methods are commonly used for mg and g scale synthesis.
They offer an advantage of tending to result in single crystals,
which enables determination of crystal structures via single
crystal X-ray diffraction. Nevertheless, with respect to process
development, more efficient approaches are desired for scale
up of targeted CNs since SD and ST methods are generally low-
yield, high-waste and time-consuming.22 Recently, mechano-
chemical synthesis methods such as ball milling (BM), a batch
method, or twin-screw extrusion (TSE), a continuous method,
have emerged as candidates for large scale synthesis of CNs,
as well as alloys, oxides, halides, cocrystals, polymers, and
composites.23,24 BM and TSE offer the potential of high space–
time yield, low-waste processes and can thereby address the
inefficiencies of solvent-based methods. Further, IUPAC
recently highlighted mechanochemistry as one of “the top ten
technologies to change the world”.25 However, the mantra that
“the best solvent is no solvent” does not necessarily apply to
water,26–28 especially water slurry (WS), which could be suit-
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able for large-scale manufacture of water-stable, water-in-
soluble CNs.29–32

Recently, we reported that the previously known square
lattice (sql) CN,33,34 [Co(bpy)2(NCS)2]n (bpy = 4,4′-bipyridine),
sql-1-Co-NCS, exhibits recyclable switching between its
“closed” nonporous and “open” porous phases induced by
CO2 or C8 aromatics.35,36 We coined the term “switching adsor-
bent layered materials” (SALMAs) for such sorbents and they
hold promise for gas storage and hydrocarbon
separations,36–42 prompting us to explore the feasibility of
their large-scale manufacture. In our previous work,35 we pre-
pared sql-1-Co-NCS by applying heat under vacuum to its
guest-loaded variant sql-1-Co-NCS·2TFT (TFT =
α,α,α-trifluorotoluene), which was synthesized by self-assembly
of Co(NCS)2 and bpy using the SD method in the presence of
organic solvents (Fig. 1a and c and S1a†). This procedure gen-
erally takes 1–2 weeks to grow crystals and results in signifi-
cant solvent waste (ethanol and TFT). On the other hand, it
was found that the 1D chain coordination polymer {[Co(bpy)
(NCS)2(H2O)2]·bpy}n (chn-1-Co-NCS-H2O) has the requisite stoi-
chiometry to serve as an intermediate for preparing sql-1-Co-
NCS simply by heating (Fig. 1b and S2†).33,34 A similar
phenomenon was also reported for {[Cu(bpy)
(BF4)2(H2O)2]·bpy}n (preELM-11) and [Cu(bpy)2(BF4)2(H2O)2]n
(ELM-11).43 Whereas the structural transformation from sql-1-
Co-NCS·2TFT to sql-1-Co-NCS involves noncovalent bonds only
and chemical bonds are involved in activation of chn-1-Co-
NCS-H2O, the conditions required by the two routes are,
perhaps surprisingly, comparable (i.e. 50 °C under vacuum for
several hours).

With the above synthesis routes in hand, we wondered if
mechanochemistry would be feasible for direct preparation of
sql-1-Co-NCS or its intermediate chn-1-Co-NCS-H2O, since we
and others have been investigating the use of mechanochem-
ical synthesis to prepare coordination polymers and related
materials.44–50 In particular, we have previously reported that
reaction of a 1 : 1 molar ratio of bpy and hydrated metal
nitrates via BM and TSE afforded four 1D chain coordination

polymers.44 Herein, we compare the effectiveness of mechano-
chemical synthesis for preparation of chn-1-Co-NCS-H2O with
solution and slurry methods. We also assess if the sorption
properties of sql-1-Co-NCS are impacted by the synthesis
methods used to prepare its intermediate, chn-1-Co-NCS-H2O.

Results and discussion

With respect to the direct mechanosynthesis of sql-1-Co-NCS,
we first investigated neat BM experiments with 1 : 2 molar ratio
of Co(NCS)2 and bpy, consistent with the chemical formula of
sql-1-Co-NCS (Fig. S1b†). PXRD revealed that the reaction
between Co(NCS)2 and bpy did not occur during 5–30 min of
BM, and the starting materials became amorphous with color
change after 1–2 h of BM (Fig. S3 and S4†). We anticipated
that the presence of water in the reaction medium might be
important, as exemplified by success in previous reports.51–55

We then conducted mechanochemical synthesis of chn-1-Co-
NCS-H2O by adding aliquots of water to the BM experiments.
It was observed that such water-assisted BM reactions afforded
chn-1-Co-NCS-H2O and the amount of water used was found to
be a key parameter (Fig. 2). When the M : L : H2O corresponded
to its chemical formula (i.e. 1 : 2 : 2, Fig. S1c†), the formation
of chn-1-Co-NCS-H2O was not achieved after 5 min of BM.
Increasing the M : L : H2O ratio to 1 : 2 : 3 was also unsuccess-
ful. These results suggested to us that more water might be
needed to accelerate the reaction. Indeed, pure samples of
chn-1-Co-NCS-H2O were ultimately obtained when M : L : H2O
is 1 : 2 : 4 or higher, although ratios of 1 : 2 : 8 and above
resulted in solids that were caked.

We next investigated the preparation of chn-1-Co-NCS-H2O
by TSE. Neat TSE resulted in a physical mixture of starting
materials, consistent with the neat BM results. For water-
assisted TSE (Fig. S5†), we added water to the starting
materials by using an automatic syringe pump with variable
water flow rates (Table S1†). The parameters of feed rate and
screw speed were empirically optimized at 50 g h−1 and 50
rpm, respectively. PXRD studies revealed that chn-1-Co-
NCS-H2O was successfully formed with 18–26 mL h−1 of water
flow rate (Fig. S6†) while overwetting occurred when water flow
reached 26 mL h−1 or above (Fig. S7†).

That water plays a critical role in preparing chn-1-Co-
NCS-H2O using BM and TSE prompted us to consider the WS
method and chn-1-Co-NCS-H2O was indeed obtained by stir-
ring a slurry of Co(NCS)2 (1 mmol, 175 mg) and bpy (2 mmol,
312 mg) in water (10 mL) for 3 h (Fig. 3a and S8a†). This
finding contradicts our previous report on chn-1-M-NO3

materials, in which WS resulted in different phases to those
obtained through BM and TSE methods.44 In addition, 10×
scale-up of WS afforded almost 5 g of chn-1-Co-NCS-H2O in ca.
95% yield, which is a more efficient outcome than slurry in
ethanol conducted for 3 days.34 We also prepared single-crys-
tals of chn-1-Co-NCS-H2O by SD method using water and
ethanol as the solvents,33 but it took 2 weeks to obtain reason-
able yield of product (Fig. S8b†). chn-1-Co-NCS-H2O is there-

Fig. 1 Crystal structures of (a) sql-1-Co-NCS·2TFT; (b) chn-1-Co-
NCS-H2O; and (c) sql-1-Co-NCS prepared from sql-1-Co-NCS·2TFT or
chn-1-Co-NCS-H2O by heating. Brown: Co, blue: N, red: O, grey: C,
green: F, yellow: S. Hydrogen atoms are omitted for clarification.

Research Article Inorganic Chemistry Frontiers

3822 | Inorg. Chem. Front., 2023, 10, 3821–3827 This journal is © the Partner Organisations 2023

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 9
:4

7:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3qi00391d


fore accessible by four methods: BM, TSE, WS and SD. SEM
images of the BM and WS products are presented in Fig. 3. In
general, sample morphologies may vary due to the different
synthesis methods and conditions. The particle sizes of BM
products were observed to be in the range of 200–500 nm and
the primary particles further agglomerate to form aggregates
with a wide diameter range from 10 to 200 μm (Fig. S9a–e†).
The particle shapes of BM products appeared to have no
regular facets (ellipsoid or sub-rounded), while the WS sample
was observed to be flatter (plate-like) and formed agglomerates
in a narrower diameter range of 5 to 50 μm (Fig. S9f†).

The SD, WS, BM and TSE products were found to exhibit
matching PXRD patterns with the calculated PXRD of chn-1-
Co-NCS-H2O (Fig. 4a). The mechanochemically produced
samples (e.g., BM128 and TSE3, M : L : H2O are 1 : 2 : 8 and
1 : 2 : 12, respectively) were observed to exhibit broader PXRD
peaks than those produced by SD or WS. The TGA thermo-

grams also exhibit differences between the samples prepared
by BM/TSE and SD/WS (Fig. 4b). TGA of chn-1-Co-NCS-H2O
produced by SD/WS revealed 6.9 wt% loss before 100 °C,
corresponding to loss of two aqua ligands per formula unit
(calc. 6.9 wt%) and the formation of sql-1-Co-NCS, while BM/
TSE products did not fully transform until 120 °C. This could
be attributable to the compacted nature and agglomeration of
the BM and TSE particles.

In order to determine if the intermediate chn-1-Co-
NCS-H2O prepared from different methods and conditions
could impact the gas sorption properties of sql-1-Co-NCS,
195 K CO2 sorption isotherms were collected on each sample
after activation at 50 °C in vacuo for 10 h (Fig. 5). For the SD
sample, it exhibited the expected switching isotherm with a
steep adsorption step at 10 kPa as observed in our previous
study.35 The WS sample exhibited almost the same CO2 uptake
(138 cm3 g−1) but it showed a more gradual adsorption curve

Fig. 2 (a–i) Images of the water-assisted BM products using Co(NCS)2 (1 mmol) and 4,4’-bipyridne (2 mmol) with different amounts of water: (a)
2 mmol, (b) 3 mmol, (c) 4 mmol, (d) 5 mmol, (e) 6 mmol, (f ) 8 mmol, (g) 10 mmol, (h) 12 mmol, and (i) 15 mmol; ( j) comparison of the calculated
PXRD pattern of chn-1-Co-NCS-H2O with those of neat and water-assisted BM (25 Hz, 5 min) products using different molar ratios of M : L : H2O.

Fig. 3 SEM images of chn-1-Co-NCS-H2O for (a) BM1206, (b) BM1208, (c) BM1210, (d) BM1212, (e) BM1215 and (f ) WS product.
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after the sharp gate opening. As a result, the WS sample did
not reach full CO2 uptake until ca. 30 kPa. Notably, some
mechanochemical samples (e.g., BM126, BM128 and TSE3)
showed not only even more gradual sorption curves, but also
lower CO2 uptakes (ca. 115–123 cm3 g−1). This could be attribu-
table to differences in crystallinity and/or particle size.56–58 It
can be addressed by adding larger water aliquots into the
mechanosynthesis (e.g., BM1210). It is reasonable to assert
that stress caused by mechanical forces may affect the crystal
quality of BM and TSE samples and may also induce some
defects and mechanical damage in the coordination networks.
This may require in situ monitoring techniques for more in-
depth insights.59–61

Conclusions

Whereas it is recognized that the profiles (e.g., shape and
uptake) of gas sorption isotherms can vary to some extent for
the same CNs prepared by different methods or the same

methods under different conditions,61–63 it is reasonable to note
that flexible/switching CNs such as sql-1-Co-NCS might be more
sensitive than rigid CNs to the particle size and morphology.56–58

In this study, milder conditions and methods such as WS were
found to retain more comparable sorption performance to their
single-crystal counterparts. In addition, this work suggests that it
is unsuitable to estimate product quality of sorbents just based
on PXRD and/or TGA. Rather, gas sorption testing offered a more
quantitative approach to estimate the overall quality of products
obtained. Further, we found that neat BM and TSE methods were
ineffective whereas water-assisted mechanosynthesis required an
appropriate amount of water otherwise CO2 sorption perform-
ance was compromised. Considering elapsed time, ease of oper-
ation, yield and waste, WS is at least in this case a promising
alternative, apart from mechanosynthesis, for the scale-up prepa-
ration of chn-1-Co-NCS-H2O and its analogue materials. Indeed,
the Fe and Ni variants of chn-1-Co-NCS-H2O were also prepared
even using three ingredients (FeSO4/NiSO4, NaSCN, and bpy) via
the WS method.39 Further studies to explore WS and mechano-
chemical methods for other CN systems are in progress.
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Fig. 4 (a) PXRD and (b) TGA profiles of SD, BM, TSE and WS products.

Fig. 5 195 K CO2 adsorption isotherms of SD, BM, TSE and WS
samples.
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