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Atomically isolated and unsaturated Sb sites
created on Sb2S3 for highly selective NO
electroreduction to NH3†

Kai Chen, Ying Zhang, Wenyu Du, Yali Guo and Ke Chu *

Sb2S3 comprising an atomically isolated and unsaturated Sb (SbAIU) site is demonstrated as a fascinating

catalyst for highly selective electrochemical NO-to-NH3 conversion (NORR). Theoretical calculations

reveal the crucial function of SbAIU sites to favor the adsorption and activation of NO, accelerate the pro-

tonation energetics of the NO-to-NH3 pathway and impede the coverage of H2O/H species, thereby

boosting both NORR activity and selectivity. Consequently, the developed SbAIU-rich Sb2S3 catalyst exhi-

bits an excellent NO-to-NH3 faradaic efficiency of 93.7% and a high NH3 yield rate of 168.6 μmol h−1

cm−2, representing the highest NORR selectivity among all reported NORR catalysts.

1. Introduction

Ammonia is a pivotal chemical that is widely applied in many
aspects of social and economic development.1–3 Recently, N2

electrofixation emerged as a promising technology for green
NH3 synthesis, whereas its efficiency is greatly limited by
intractable issues of ultrastable NuN bonds.4–10 Alternatively,
NO possesses a relatively low NvO bond energy and thus
electrochemical NO-to-NH3 conversion (NORR) represents a
more prospective approach than N2 electrofixation for NH3

electrosynthesis.11–14 Nevertheless, the NORR effectiveness is
greatly retarded by the sophisticated five-electron reaction
process and severe competition from the hydrogen evolution
reaction (HER),1 and it is imperative to explore efficient NORR
electrocatalysts capable of boosting the NO-to-NH3 pathway
with high selectivity.15–20

Transition metal-based catalysts commonly exhibit high
NORR activity owing to their partially occupied d-orbitals
boosting NO adsorption.21–27 Nevertheless, d-orbitals also
favor the formation of metal–H bonds to trigger the competi-
tive HER, giving rise to low NORR selectivity.28 Promisingly,
main group p-block metals (Sb, In, Bi, etc.) are catalytically
inert in the HER because of their closed d-band shells.29

Meanwhile, the partially occupied p-orbitals in p-block metals
are confirmed to be active for NvO bond dissociation, making
p-block metal-based materials promising as a new class of
NORR catalysts.30–34 P-block Sb-based catalysts are appealing

NORR candidates owing to the great capability of Sb sites to
impede the HER and activate the nitrogen-containing mole-
cules.35 On the other hand, catalysts with atomically isolated
sites are known to present outstanding catalytic performance
because of their high atom utilization and optimal binding
with intermediates and reactants.36–38 Besides, defect engin-
eering by creating vacancies or unsaturated sites is considered
an effective strategy to tailor the electronic structure of cata-
lysts with enhanced catalytic activities.39–41 In view of the
above, creating atomically isolated and unsaturated Sb sites is
therefore an attractive strategy for designing high-efficiency
NORR catalysts.

In this study, p-block Sb2S3 is designed as a fascinating
catalyst for highly selective NORR, which exhibits an excellent
NO-to-NH3 faradaic efficiency (FENH3

) of 93.7% and a high
NH3 yield rate of 168.6 μmol h−1 cm−2, representing the
highest NORR selectivity among all reported NORR catalysts.
Detailed structural characterization and theoretical compu-
tations reveal that atomically isolated and unsaturated Sb sites
created on Sb2S3 play a crucial role in greatly enhancing the
NORR activity and selectivity.

2. Results and discussion

A solvothermal method was utilized to synthesize Sb2S3. The
XRD pattern of the as-synthesized Sb2S3 (Fig. 1a) shows dis-
tinct peaks that are assigned to the pure orthorhombic Sb2S3
phase with a good crystallinity. The SEM image of Sb2S3
(Fig. 1b) shows a typical nanoflower morphology consisting of
numerous vertically aligned nanosheets. The nanosheet
feature can be further confirmed by the TEM image (Fig. 1c).
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As shown in the HRTEM image (Fig. 1c, inset), the lattice
spacing of Sb2S3 nanosheets is determined to be 0.352 nm,
corresponding to the (130) facet of orthorhombic Sb2S3, in line
with the XRD result (Fig. 1a). The XPS Sb spectrum of Sb2S3
(Fig. 1d) can be split into Sb3+2p3/2 (539.3 eV) and Sb3+2p5/2
(529.8 eV), while the deconvolution of the S2p spectrum
(Fig. S1†) shows two peaks of S2p1/2 (163.6 eV) and S2p3/2
(161.8 eV), in good accordance with those reported for
Sb2S3.

42–44

We employ X-ray absorption near-edge structure (XANES)
and extended X-ray absorption fine structure (EXAFS) charac-
terizations to further examine the valence states and coordi-
nation structures of Sb2S3. The Sb K-edge XANES spectra
(Fig. 1e) show that the white line of Sb2S3 is slightly lower than
that of Sb2O3, suggesting the valence state of Sb to be smaller
than the intrinsic Sb valence of Sb2S3 (+3), which is caused by
the presence of coordinatively unsaturated Sb sites in Sb2S3.

The Sb K-edge EXAFS spectra (Fig. 1f) show that Sb2S3 exhibits
a dominant peak at 2.03 Å assignable to the Sb–S bond, which
largely differs from those of Sb foil (Sb–Sb: 2.66 Å) and Sb2O3

(Sb–O: 1.62 Å, Sb–O–Sb: 3.18 Å), indicating that Sb2S3 com-
prises the isolated state of Sb and no oxidized Sb species are
present on Sb2S3. Likewise, the corresponding wavelet trans-
form (WT) contour plots (Fig. 1h) show only one intensity
maximum at 6.3 Å−1 corresponding to the Sb–S coordination,
suggesting the existence of atomically dispersed Sb atoms. The
EXAFS fitting data (Fig. 1g and Table S1†) reveal the average
coordination number (CN) of Sb2S3 to be 4.2, much smaller
than the crystallographic value of Sb2S3 (CN = 5),45 corroborat-
ing the existence of plentiful unsaturated Sb sites in Sb2S3.
These XAS results reveal that the prepared Sb2S3 naturally con-
tains abundant atomically isolated and unsaturated Sb (SbAIU)
sites, which are considered to be catalytically active towards
NORR.

Fig. 1 Characterization of Sb2S3: (a) XRD pattern, (b) SEM image, (c) TEM image and HRTEM image (inset), (d) XPS Sb2p spectrum, (e) Sb K-edge
XANES spectra, (f ) EXAFS spectra and (h) WT profiles of Sb2S3 and reference samples. (g) EXAFS fitting curve of Sb2S3.

Inorganic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2023 Inorg. Chem. Front., 2023, 10, 2708–2715 | 2709

Pu
bl

is
he

d 
on

 2
8 

M
ar

ch
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
1/

20
25

 1
0:

07
:2

7 
A

M
. 

View Article Online

https://doi.org/10.1039/d3qi00268c


Electrocatalytic NORR measurements were carried out
using a gas-tight H-type electrolytic cell containing 0.5 M
Na2SO4 solution.46 Several colorimetric approaches (Fig. S2
and S3†) were performed to detect the liquid products, while
the gaseous products were detected by gas chromatography.
We conducted linear sweep voltammetry (LSV) measurement
to initially assess the NORR activity of Sb2S3. It is displayed in

Fig. 2a that Sb2S3 presents a noticeable current density ( j )
enhancement in the NO-saturated electrolyte relative to the Ar-
saturated one, proving that Sb2S3 has a high NORR activity. We
then quantitatively determined the NORR performance of
Sb2S3 with the integration of chronoamperometry (Fig. 2b) and
colorimetric tests at various potentials. As shown in Fig. 2c,
with increasing the potential, both the NH3 yield rate and

Fig. 2 (a) LSV curves of Sb2S3 in Ar/NO-saturated 0.5 M Na2SO4. (b) Chronoamperometry test of Sb2S3 at various potentials, and the resulting (c)
NH3 yield rates and FENH3

. (d) Comparison of NH3 yield rates and FENH3
between Sb2S3 and the recently reported NORR catalysts. (e) FEs of different

products on Sb2S3 after NORR electrolysis at various potentials. (f ) NH3 yield rates and FENH3
of Sb2S3 and a-Sb2S3 at −0.7 V.
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FENH3
of Sb2S3 exhibit a volcanic shape and reach their highest

values of 168.6 μmol h−1 cm−2 and 93.7% at −0.7 V, respect-
ively. Strikingly, as shown in Fig. 2d (see Table S2 for details†),
the FENH3

of Sb2S3 shows the highest NORR selectivity among
all the reported NORR catalysts, while its NH3 yield rate is also
superior to those of most reported NORR catalysts. Meanwhile,

Fig. 2e shows that the FEs of N-containing side products (N2O
and N2H4) are rather low at all considered potentials, in good
accordance with the partial current density data (Fig. S4†), sig-
nifying the outstanding NO-to-NH3 selectivity of Sb2S3.
Regarding the NORR stability, the chronopotentiometric test
presents a stable current density for at least 20 h of electrolysis

Fig. 3 (a and b) Atomic structures of absorbed NO on (a) the SbP site and (b) the SbAIU site of Sb2S3. (c) Charge density difference of *NO on the
SbAIU site (yellow: accumulation; cyan: depletion). (d) Schematic of two NORR pathways (NHO and NOH) on Sb2S3. (e) Free energy profiles of the
NORR process (NHO pathway) on SbP and SbAIU. (f ) Binding free energies of *H2O, *H and *NO on SbAIU.
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(Fig. S5†), and the resulting FENH3
shows very small attenu-

ations, indicating the good long-term stability of Sb2S3.
Besides, no remarkable fluctuations in the NH3 yield rate and
FENH3

occur during the seven electrolysis cycles (Fig. S6†),
proving the favorable cycling stability of Sb2S3.

47–50

We conducted several experiments to verify the NH3 origin.
First, NH3 is almost undetectable in the control colorimetric
tests (Fig. S7†).32 In addition, upon feeding 15NO gas, the
resulting 1H nuclear magnetic resonance (NMR, Fig. S8†)
spectra reveal the characteristic 15NH4

+ doublets, whereas
feeding Ar gas leads to the absence of 15NH4

+ doublets.51–53

Furthermore, the switching NO–Ar test (Fig. S9†) reveals sig-
nificant NH3 production in NO cycles, whereas NH3 is nearly
undetectable in Ar cycles. All these results validate that the
produced NH3 stems from the electrochemical NORR process
catalyzed by Sb2S3.

For comparison, we evaluated the NORR property of
annealed Sb2S3 (a-Sb2S3) with much reduced SbAIU (Fig. S10
and Table S1†) under identical measurement conditions at
−0.7 V. Impressively, Fig. 2f shows that the NORR performance
of a-Sb2S3 is significantly poorer than that of the original
Sb2S3, revealing that the SbAIU sites play a vital role in dramati-
cally boosting the NORR property of Sb2S3. Electrochemical
surface area (ECSA, Fig. S11 and S12†) measurements show
that the ECSA-normalized NORR performances of the two cata-
lysts (Fig. S13†) present the same trend as that shown in

Fig. 2f. Besides, both catalysts have comparable charge trans-
port kinetics (Fig. S14†).54–57 These findings demonstrate the
intrinsic superior NORR property of Sb2S3.

Theoretical computations were carried out to shed light on
the boosted NORR property of Sb2S3. To start, we evaluated the
adsorption behaviors of the NO molecule on two sites of Sb2S3,
namely the pristine Sb (SbP) site and the SbAIU site, as the NO
adsorption is the initial critical step to trigger the NORR.46

Upon absorbing NO on the SbP site (Fig. 3a), *NO exhibits a
rather small NvO elongation (1.163 Å, 1.159 Å for original
NO) with negligible Sbp-to-*NO electron transfer (−0.02 |e|),
which means poor NO adsorption on the SbP site. As a sharp
comparison, *NO on the SbAIU site (Fig. 3b) presents dramatic
NvO bond elongation (1.205 Å) and SbAIU-to-*NO electron
transfer (−0.13 |e|), indicating largely improved NO adsorption
on SbAIU. Additionally, the charge density difference (Fig. 3c)
clearly shows strong *NO/SbAIU electronic interactions, where
both remarkable positive and negative charge aggregations can
be seen on *NO, proving that SbAIU enables powerful NO acti-
vation via a “donation–backdonation” mechanism.

To investigate the entire NORR process, we initially con-
ducted online differential electrochemical mass spectrometry
(DEMS) measurements to experimentally probe the reaction
intermediates formed on Sb2S3 during the NORR electrolysis.
The online DEMS spectra (Fig. S15†) reveal the generation of
distinct NH3 (m/z = 17) and NH2OH (m/z = 33) signals.

Fig. 4 (a) Initial, transition and final simulated states of the dynamic adsorption process of *H2O, *H and *NO on SbAIU, and the corresponding (b)
RDF and (c) integrated RDF curves of the interactions between SbAIU and *NO, *H and *H2O.
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Specifically, N (m/z = 14), which is the key intermediate
involved in the NOH pathway, is absent in the NORR electroly-
sis, demonstrating that Sb2S3 preferentially undergoes the
NHO pathway to drive the NORR process,58 as illustrated in
Fig. 3d. As displayed in the free energy profiles of the ener-
getic-preferred NHO pathway (Fig. 3e and Fig. S16†), the Sbp
site exhibits a large energy barrier of 0.78 eV to drive the first
protonation step of *NO → *NOH as the potential-determining
step (PDS). In stark contrast, by virtue of powerful NO acti-
vation, the SbAIU site presents a largely reduced barrier of 0.21
eV for the same *NO → *NOH, suggesting that the initial pro-
tonation step can be greatly boosted on the SbAIU site. The PDS
of SbAIU is changed to *NHOH → *NH2OH with only 0.36 eV
uphill, corroborating the significantly enhanced NORR ener-
getics over the SbAIU site that renders a high NORR activity of
Sb2S3. We then investigated the catalytic behavior of the SbAIU
site towards the HER, which is the main competitive reaction
for NORR.24 The calculated binding free energies (G) of
various species (Fig. 3f) show that G*NO (−0.44 eV) is much
more negative than G*H2O (1.05 eV) and G*H (1.26 eV), demon-
strating that the SbAIU site preferentially absorbs NO over
H2O/H species to impede the competing HER.

Molecular dynamics (MD) simulations were conducted to
further examine the competitive adsorption of NO and H2O/H
on SbAIU. After simulation, the snapshots (Fig. 4a) show promi-
nent NO aggregation on SbAIU together with an enhanced
SbAIU–*NO interaction over SbAIU–*H2O and SbAIU–*H inter-
actions, as displayed in the radial distribution function (RDF,
Fig. 4b) curves and the corresponding integrated RDF curves
(Fig. 4c),58–62 proving a high tendency of SbAIU for the adsorp-
tion and coverage of NO over H2O/H, which is greatly favorable
for HER suppression to obtain a high NORR selectivity.

3. Conclusion

In summary, SbAIU-rich Sb2S3 has been corroborated as a high-
performing p-block metal catalyst for NORR. Theoretical com-
putations reveal the critical role of SbAIU sites in promoting the
activation and protonation of NO, while concurrently prohibit-
ing the coverage of H2O/H species. This work not only high-
lights the critical design of atomically isolated and unsaturated
sites to dramatically enhance the catalytic NORR activity and
selectivity, but also demonstrates the promising prospects of
p-block metal elements in the design of high-efficiency NORR
electrocatalysts.
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