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LaAeAl3S7 (Ae = Ca, Sr): Cairo pentagonal layered
thioaluminates achieving a good balance between
a strong second harmonic generation response
and a wide bandgap†

Jingjing Xu,b Kui Wu, *a Bingbing Zhang, b Haohai Yu*a and Huaijin Zhang*a

Breaking through the incompatibility between a strong second harmonic generation (SHG) response and

a wide bandgap in an infrared nonlinear optical (IR NLO) crystal is still a huge challenge. With this in mind,

we have proposed a feasible design strategy involving rational combination of highly electropositive rare-

earth (Re3+) and alkaline-earth metals (Ae2+) as cations and a strongly covalent AlS4 anionic group as the

“NLO-active unit” into the crystal structure, which affords the successful synthesis of two new quaternary

IR NLO thioaluminates: LaAeAl3S7 (Ae = Ca, Sr). Note that the unprecedented Cairo pentagonal (AlS4)n
layers in LaAeAl3S7 can be viewed as the first discovery among the structures of all reported thioalumi-

nates and this layered structure benefits from the strong optical anisotropy that further achieves the

imperative phase matchability in LaAeAl3S7. Both of them possess the widest optical bandgaps (Ca: 3.76

and Sr: 3.78 eV) in known rare-earth NLO chalcogenides. Remarkably, LaAeAl3S7 were also proven to be

the first cases concurrently exhibiting wide bandgaps (>3.5 eV) and strong SHG effects (>0.5 × AgGaS2)

among known rare-earth NLO chalcogenides. Theoretical analysis verifies that their excellent NLO pro-

perties originate from the synergistic effect between AlS4 and (La/Ae)S8 anionic groups. This work will

inspire exploration into new IR NLO candidates in rare-earth thioaluminate systems to achieve a superior

property balance.

Introduction

Nonlinear optical (NLO) crystals have shown extensive appli-
cations in tunable laser systems.1–15 As for an excellent infra-
red (IR) NLO crystal, it should satisfy the following perform-
ance conditions: a wide IR transmission region, strong second
harmonic generation (SHG) response, large optical bandgap,
high laser damage threshold (LDT), and reliable chemical
stability.16–18 Unfortunately, there is still the undesirable
incompatibility between the strong SHG response and wide
bandgap in IR NLO crystals because of their inherent inverse
relationship,19,20 which is also reflected in several commercial
crystals such as AgGaQ2 (Q = S, Se)21 and ZnGeP2.

22 They
exhibit a good SHG response but relatively narrow energy

bandgaps and low LDTs, which further limit their application.
Based on this, a good balance between a strong SHG response
(dij > 0.5 × AgGaS2) and wide bandgap (Eg > 3.5 eV) has become
an urgent challenge for the discovery of new excellent IR NLO
crystals and many researchers have proposed several effective
design strategies and research systems.23–29 For example,
mixed alkali/alkaline-earth metal sulfides possess wide band-
gaps but relatively small SHG effects; introduction of halogen
ions into the structures of typical chalcogenides means the
mixed-anion chalcohalides can achieve a suitable property
balance but the halides will corrode and destroy the silica
tubes and further enhance the difficulty of the material syn-
thesis. Considering the above status, we have focused on other
research systems and thioaluminates exhibit native advantages
to obtain a wide bandgap because their strongly covalent Al–S
bond has a minor influence on optical absorption. However,
up to now, thioaluminates have rarely been studied in NLO
and only a few NLO thioaluminates have been reported for
their NLO performances such as Al0.50Dy3(Si0.50Al0.50)S7 (2.22
eV and 2 × KTiOPO4 (KTP)), Al0.38Dy3(Si0.85Al0.15)S7

30,31 (2.03
eV and 1 × KTP), BaAl4S7

32 (3.95 eV and 0.5 × AgGaS2) and
LiAlS2

33 (5.13 eV and 0.2 × AgGaS2). Besides, the inherent
relationship between the AlS4 anionic group and the SHG
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origin has not been clearly determined so far. Recent study
indicates that rare-earth centered polyhedral ReSn units make
a great contribution to the origin of the NLO response, there-
fore, rare-earth based thioaluminates appear to have a high
potentiality to break the incompatibility between the critical
performances (Eg and dij) based on the synergistic effect
between ReSn and AlS4 units. With this in mind, we have pro-
posed one design strategy involving rational combination of
rare-earth (La3+) and alkaline-earth metals (Ae2+) as cations
into the structures of thioaluminates to achieve the birth of
two new rare-earth thioaluminates: LaAeAl3S7 (Ae = Ca, Sr).
Both of them exhibit the first examples of Cairo pentagon
layers composed of AlS4 tetrahedra in reported thioaluminates
after a detailed survey of the Inorganic Crystal Structure
Database (ICSD) (Fig. 1a) (Table S1†). Their performances were
systematically measured and the results show that LaAeAl3S7
were proven to be promising IR NLO materials because of the
successful breakthrough in the incompatibility between the
large Eg (>3.5 eV) and strong dij (>0.5 × AgGaS2). First-prin-
ciples calculation analysis demonstrates that their SHG
responses originate from the synergistic effect between AlS4
and (La/Ae)S8 units. Moreover, we have also summarized the
critical properties (Eg and dij) in all known rare-earth chalco-
genides (Fig. 1b) (Table S2†) and the survey results show that
LaAeAl3S7 could be regarded as the first cases achieving the
breakthrough of the “3.5 eV wall” among all reported rare-
earth NLO chalcogenides.31,34–48

Experimental methods
Synthesis

All raw materials, including La2S3 powder (99.99%), Al slice
(99.99%), CaS and SrS powder (99.99%), and S powder
(99.99%), were purchased from Beijing Hawk Science &
Technology Co., Ltd. As for air-unstable La2S3, SrS and CaS
powder, an Ar-filled glovebox was selected to complete the
whole preparation process.

Single crystals of LaAeAl3S7 were firstly synthesized with a
non-stoichiometric ratio based on the raw materials of La2S3,

CaS/SrS, Al, S = 0.37 : 1 : 3 : 3. However, under this ratio, the
yield of LaAeAl3S7 was very low and many AeAl2S4by-products
were found. Thus, we gradually adjusted the proportion of raw
materials after many attempts and the maximum yield (>90%)
of LaAeAl3S7 was obtained under the optimal nonstoichio-
metric ratio of La2S3, CaS/SrS, Al, S = 0.56 : 1 : 3 : 3. Raw
materials were loaded into vacuum-sealed silica tubes and
then put into a temperature-programmed furnace with the fol-
lowing temperature controlling curves: heated up to 1473 K
within 30 h and held for 90 h, then cooled to room tempera-
ture within 150 h. The transparent and colorless LaAeAl3S7
single crystals were obtained.

Single crystal X-ray diffraction

Selected high-quality crystals were used for data collection on
a Bruker D8 VENTURE diffractometer using Mo Kα radiation (λ
= 0.71073 Å) at room temperature. A multi-scan method was
used for absorption correction. The crystal structures were
solved by a direct method and refined using the SHELXTL
program package. After the first refinement, the formula was
firstly refined to be the unbalanced “La2Al3S7”. The occupancy
of La and Ca atoms in one site appeared to be 0.49 : 0.51 after
the first random refinement. In order to obtain the balanced
formula, we defined the actual occupancy of La and Ca atoms
to be 0.5 : 0.5 and the final balanced formula is LaCaAl3S7.
Similarly, this refinement process was extended to those of
LaSrAl3S7 in this work. Rational anisotropic thermal para-
meters for all atoms were obtained by the anisotropic refine-
ment and extinction correction. Detail refinement parameters
and crystal data are shown in Table S3.†

Powder X-ray diffraction

Powder X-ray diffraction (PXRD) patterns were collected on a
Bruker D2 X-ray diffractometer with Cu Kα radiation (λ =
1.5418 Å) at room temperature. The 2θ range was 10–70° with a
step size of 0.02° and a fixed counting time of 1 s per step.
Note that the calculated XRD patterns were derived from the
respective single-crystal data. We have also carefully investi-
gated the experimental XRD patterns of the title compounds
and compared the extra peaks with those of other known
related compounds.

UV–Vis–Near-IR (NIR) diffuse-reflectance spectra

Diffuse-reflectance spectra were measured by a Shimadzu
SolidSpec-3700DUV spectrophotometer in the wavelength
range of 200–1100 nm at room temperature.

Raman spectra

Hand-picked crystals were firstly put on a glass slide and then
a LABRAM HR Evolution spectrometer equipped with a CCD
detector by a 532 nm laser was used to record the Raman
spectra.

Second-harmonic generation measurement

Through the Kurtz and Perry method, powder SHG responses
were investigated by a Q-switch laser (2.09 μm, 3 Hz, 50 ns)

Fig. 1 (a) Dimensional distribution of AlS4 units in the known thioalumi-
nates (Table S1†); (b) a summary of the SHG response and bandgap
among the title LaAeAl3S7 and reported rare-earth NLO chalcogenides,
the well-balanced area is limited between Eg > 3.5 eV and dij > 0.5 ×
AgGaS2. Compounds 1–21 are listed in Table S2.†
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with different particle sizes, including 38–55, 55–88, 88–105,
105–150, 150–200, and 200–250 μm. The as-synthesized
AgGaS2 microcrystals were selected with the same sizes as
references.

Theory calculations

In order to further investigate the relationship of structure–
property, the electronic structures of the title compounds were
studied by density functional theory (DFT) based on ab initio
calculations. The exchange–correlation potential was calcu-
lated using the Perdew–Burke–Ernzerhof (PBE) functional
within the generalized gradient approximation (GGA) with the
scheme. The following orbital electrons were treated as valence
electrons: La: 5s2 5p6 5d1 6s2; Ca: 3p6 4s2; Sr: 4p6 5s2; Al: 3s2

3p1; S: 3s2 3p4. To achieve energy convergence, the plane-wave
basis set energy cutoff was 660 eV within normal-conserving
pseudo-potential (NCP). As key parameters for NLO crystals,
the SHG coefficient and birefringence were also calculated.
Owing to the discontinuity of exchange correlation energy, the
experimental value is usually larger than that of the calculated
band gap. Thus, scissors operators are used to make the con-
duction bands agree with the experimental values and the real-
space atom-cutting method was used to analyse the contri-
bution of anionic groups.

Results and discussion

In this work, single crystals of title LaAeAl3S7 thioaluminates
were synthesized with an optimized nonstoichiometric ratio
after many attempts. Submillimeter-level single-crystals were
handpicked to be used for the data collection on single-crystal
XRD (Table S3†). The phase-purity was verified by a powder
XRD technique (Fig. S1†). The experimental PXRD patterns are
basically consistent with those of the theoretical ones and a
few extra tiny peaks are attributed to the AeAl2S4 by-products.

LaAeAl3S7 (Ae = Ca, Sr) crystallize in the P4̄21m space group
of the tetragonal system. In view of their similar structures,
LaCaAl3S7 was selected as the representative to depict their
structural features. La and Ca atoms are located at the one site
with the occupied ratio (0.5 : 0.5). One AlS4 unit is linked to
four AlS4 units to form a [Al5S16]

17− windmill cluster and these
clusters further link together to compose the 2D Cairo penta-
gonal layers located at the ab plane. (La/Ca)S8 polyhedra were
located within the interlayers to bridge adjacent layers together
to compose the overall 3D network. In this work, various link
modes of AlS4 units in structures of thioaluminates were also
summarized and most of them (about 80%) possess the 0D
link modes after the survey in the ICSD (Fig. 1a) (Table S1†). In
addition, only three of the thioaluminates (Rb4Al2S5,

49

Bi2Al4S8
50 and Cccm-SrAl2S4

51) exhibit 1D (AlS4)n chains but
the link modes of the AlS4 units in the 1D chains are different,
for example, AlS4 units connect with each other by edge-
sharing to form similar 1D chains in Bi2Al4S8 (Fig. S2a and b†)
and Cccm-SrAl2S4 (Fig. S2e and f†), which is different to the
way AlS4 units link together by edge and corner-sharing to

form a 1D chain structure in Rb4Al2S5 (Fig. S2c and d†). Note
that the ratio of the 3D network is only 9% and seven of them
possess 3D networks formed by AlS4 units. For instance, AlS4
units link together by corner-sharing to form a 3D network
and Ba atoms are located within the 3D tunnels to form the
whole structure of BaAl4S7 (Fig. S3c†). In particular, Al atoms
have two different coordination modes: AlS4 and AlS6 units in
the structure of Ln6Al3.3S14

52 and AlS6 units link together by
sharing faces to form a 1D chain structure and AlS4 units are
existed in isolation (Fig. S3a and b†). Note that 2D (AlS4)n
layers were also rarely discovered and only a few ternary thioa-
luminates exhibit 2D layered structures, such as FeAl2S4,

53

TlAlS2
54 and AeAl2S4

55 (Ae = Ca, Sr). Although they have
layered structures, the link modes of their AlS4 units are
different to those in the title LaAeAl3S7 (Fig. 2b and e).
Therefore, the Cairo pentagonal layers in the title LaAeAl3S7
can be viewed as the first discovery in the known thioalumi-
nates. For instance, 6-membered rings (MRs) exist in the struc-
ture of CaAl2S4 and its interlayer spacing (1.654 Å) is smaller

Fig. 2 (a) The crystal structure of LaCaAl3S7 along the b-axis; (b) the 2D
layer is composed of AlS4 units in LaCaAl3S7; (c) the windmill configur-
ation [Al5S16]

17− cluster; (d) the crystal structure of CaAl2S4 along the
b-axis; (e) the 2D layer is composed of AlS4 units in CaAl2S4; (f ) the con-
nection mode of AlS4 unit in CaAl2S4; (g) the local coordination asym-
metry between (La/Ca)S8 and AlS4 units in LaCaAl3S7; and (h) the local
coordination symmetry between CaS8 and AlS4 in CaAl2S4.
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than that of LaCaAl3S7 (2.393 Å) (Fig. 2a and d). Besides, AlS4
is connected with three AlS4 units in CaAl2S4 which is different
to the [Al5S16]

17− windmill cluster in the LaCaAl3S7 (Fig. 2c and
f). Moreover, one (La/Ca)S8 is linked to ten AlS4 units but the
inherent link modes are different and not symmetrical,
showing local asymmetry in the LaCaAl3S7, which is also
different to that (local coordination symmetry) in the CaAl2S4
(Fig. 2g and h). We have also calculated the distortion degrees
(Δd ) of (La/Ae)S8 in the LaAeAl3S7 and AeS8 dodecahedra in
AeAl2S4 (Table S4†) and the results show that (La/Ae)S8 have a
larger Δd (Sr: 2.763‰; Ca: 2.686‰) in LaAeAl3S7 than those
of SrS8 (0.030–0.092‰) and CaS8 (0.0007–0.140‰) in AeAl2S4.
Such a large Δd is beneficial to achieve the local coordination
asymmetry and promotes a potential structural change from
centrosymmetric (CS) AeAl2S4 to NCS LaAeAl3S7.

Diffuse-reflectance spectra of LaAeAl3S7 were measured and
their optical bandgaps are 3.76 for LaCaAl3S7 and 3.78 eV for
LaSrAl3S7, respectively (Fig. 3a and b), which are much larger
than that of commercial AgGaS2 (2.64 eV) and comparable to
other famous NLO crystals such as BaAl4S7

32 (3.95 eV),
LiZnPS4

56 (3.44 eV), K3Ga3PS8Cl
57 (3.60 eV), BaGa2SiS6

58 (3.75
eV) and Li2ZnSiS4

59 (3.90 eV). Note that LaAeAl3S7 exhibit the
widest optical bandgaps and they can be also viewed as the
first cases to achieve the breakthrough of “3.5 eV wall” in all
the reported rare-earth NLO chalcogenides. Analysis into the
calculated electronic structures and density of states (DOS)
shows that the title LaAeAl3S7 are indirect-bandgap com-
pounds and their theoretical bandgaps are 2.505 for LaCaAl3S7
and 2.527 eV for LaSrAl3S7, respectively (Fig. 3c and d). As can

be seen from their DOS diagrams, the top of the valence band
(VB) and the bottom of the conduction band (CB) region are
mainly occupied by the S-p and La-d with a minor contribution
of Al-p orbitals and Ae-s,p orbitals producing a negligible
effect on the optical bandgaps. Therefore, optical absorptions
in LaAeAl3S7 are determined by the inherent electronic tran-
sition in La–S units (Fig. 3e and f). Note that the wide
bandgap has a huge influence on improving the inherent laser
damage threshold (LDT), thus, their LDTs were measured
under the 1.06 μm laser with the commercial AgGaS2 as refer-
ence. Both of them have a high laser damage resistance of
about 9.0 times that of AgGaS2, which are comparable to those
of IR NLO sulfides such as KYGeS4

39 (10 × AgGaS2),
LiGaGe2S6

60 (6 × AgGaS2), Li2ZnSiS4
59 (10 × AgGaS2) and

Li0.6Ag0.4GaS2
61 (8.6 × AgGaS2). The measured Raman spectra

exhibit no obvious absorption peaks in the wavenumber range
from 500 to 4000 cm−1, indicating wide IR transmission
ranges (2.5–20 μm) (Fig. 4a and b). Several Raman peaks
located at 300–500 cm−1 are attributed to the Al–S bond inter-
action, such as (334, 374, 423, 500 cm−1) for LaCaAl3S7 and
(334, 422, 498 cm−1) for LaSrAl3S7, which are similar to those
of other known thioaluminates, such as K(AlS2)(GeS2)

62

(375 cm−1) and Ba2AlSbS5.
63 Other peaks located at

200–300 cm−1 belong to the La–S bond vibration, which are
similar to those of the previously reported La2S3.

Through the typical Kurtz–Perry method, we have investi-
gated the powder SHG responses of LaAeAl3S7 with different

Fig. 3 Experimental optical bandgaps of LaCaAl3S7 (a) and LaSrAl3S7 (b);
(c–f ) band structures and PDOS of the title compounds.

Fig. 4 Raman spectra of LaCaAl3S7 (a) and LaSrAl3S7 (b); (c) powder
SHG response versus particle size for LaAeAl3S7 with AgGaS2 as refer-
ence; (d) calculated birefringences for LaAeAl3S7 and AeAl2S4; (e) calcu-
lated birefringence for Cccm-SrAl2S4; and (f ) the 1D (AlS2)n chain in
Cccm-SrAl2S4.
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particle sizes under 2.09 μm pulse laser and the as-synthesized
AgGaS2 crystal as reference was selected. The measured results
show that SHG intensity displays a similar growing trend with
the increasing particle size. At the maximum particle size
(200–250 μm), the title LaAeAl3S7 possess large SHG responses
about 0.8 times that of AgGaS2 for LaCaAl3S7 and 1.1 × AgGaS2
for LaSrAl3S7, respectively (Fig. 4c), which are comparable to
those of wide-bandgap NLO chalcogenides such as LiZnPS4

56

(0.8 × AgGaS2), KYGeS4
39 (1.0 × AgGaS2), Li0.6Ag0.4GaS2

61 (1.1
× AgGaS2), Na2ZnGe2S6

64 (0.9 × AgGaS2) and
[Ba4Cl2][ZnGa4S10]

65 (1.1 × AgGaS2). In view of the fact that the
NLO coefficient (d36) of AgGaS2 is 13.0 pm V−1,66 we have also
calculated the theoretical NLO coefficients (dij) and their
maximal dij are 6.83 for LaCaAl3S7 and 7.02 pm V−1 for
LaSrAl3S7, respectively, which are basically consistent with the
experimental results. The origin of the NLO effect was analyzed
by the SHG-density calculation and the results show that their
NLO origin was derived from the synergistic effect between
AlS4 and (La/Ae)S8 anionic groups (Fig. 5). Note that the SHG
responses (0.8–1.1 × AgGaS2) of LaAeAl3S7 are larger than that
(0.5 × AgGaS2) of BaAl4S7, which also further verifies that incor-
poration of lanthanide (Ln) atoms into crystal structures pro-
vides a great strategy to enhance the SHG response. Moreover,
we have also calculated the birefringence versus wavelength
curves for title the LaAeAl3S7 and they exhibit a large optical
anisotropy (Δn = 0.059 for Ca and 0.077 for Sr@2 μm), such a
large Δn also further verifies the rationality of experimental
phase-matching (PM) behavior. Herein, we have also calculated
the Δn of CaAl2S4 (Fddd ) and SrAl2S4 (Fddd and Cccm) and the
results show that Fddd-AeAl2S4 exhibit a relatively larger Δn
(0.042 and 0.043) than that of Cccm-SrAl2S4 (0.026) (Fig. 4d). In
general, the whole birefringence has a close relationship with
the microscopic anisotropic polarizability of functional
groups. In the title LaAeAl3S7, coplanar AlS4 units connect with
each other to compose the Cairo pentagonal layers and such
layered structures are beneficial to the optical anisotropy. We

have also calculated the contribution of anionic groups (AlS4
and (La/Ae)S8) on the birefringences of title LaAeAl3S7 by the
real-space atom-cutting method and the calculated results
show that the AlS4 unit provides the main contribution (∼76%)
on the birefringence with a minor contribution (∼24%) of the
(La/Ca)S8 unit in LaCaAl3S7, which is similar to those in
LaSrAl3S7 (AlS4: 80%; (La/Sr)S8: 20%). Besides, anisotropic dis-
tortions (Δd ) of (La/Ae)S8 units in title LaAeAl3S7 are much
larger than those of AeAl2S4, which also contributes to the
improvement of birefringence. Thus, the microscopic addition
of AlS4 and (La/Ae)S8 groups makes the LaAeAl3S7 exhibit a
relatively larger optical anisotropy than those of Fddd-AeAl2S4
(2D layer), Cccm-SrAl2S4 ((AlS2)n chain) (Fig. 4e and f) and
BaAl4S7 (Δn = 0.0328, 3D network) since the contribution of
alkaline-earth cations on birefringence is negligible.
Therefore, combination of Cairo pentagonal layers and lantha-
nides into crystal structures is conducive to improving optical
anisotropy, which provides a useful structure-directing design
for the discovery of new potential PM NLO crystals. To sum up,
considering the overall performances of title LaAeAl3S7, they
exhibit wide bandgaps (Eg: 3.76–3.78 eV), large SHG responses
(dij: 0.8–1.1 × AgGaS2), high LDTs (9.0 × AgGaS2) and good
chemical stability, indicating that title LaAeAl3S7 could be
viewed as the first cases satisfying the excellent property
balance (Eg > 3.5 eV and dij > 0.5 × AgGaS2) in rare-earth NLO
chalcogenides.

Conclusions

In summary, two new LaAeAl3S7 thioaluminates were firstly
synthesized and their measured performances verify them to
be potential IR NLO candidates. Synergistic contributions
between (La/Ae)S8 and AlS4 units afford strong NLO responses
in LaAeAl3S7. The novel Cairo pentagonal layered structures in
LaAeAl3S7 have the benefit of improving the optical anisotropy,
which provides a structure-directing strategy for the discovery
of PM crystals. This study indicates that Ln-based thioalumi-
nates could be expected to be feasible research systems for the
breakthrough in the incompatibility between a strong SHG
response and a wide bandgap to achieve the imperative prop-
erty balance.
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