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Uranyl-silicotungstate-containing hybrid building
units {α-SiW9} and {γ-SiW10} with excellent catalytic
activities in the three-component synthesis of
dihydropyrimidin-2(1H)-ones†

Jian-Hua Ding,‡a Yu-Feng Liu,‡a Zhao-Teng Tian,a Pei-Jie Lin,a Feng Yang,c

Ke Li, *a Guo-Ping Yang *a,b and Yong-Ge Wei *b

A novel uranyl-containing polytungstate, {K4.2Na18.9H0.9(H2O)20[K4(UO2)3(H2O)6(α-SiW9O34)(γ-SiW10O36)3]}·

ca.16H2O (U3), was synthesized using the Keggin-type precursor [γ-SiW10O36]
8− ({γ-SiW10}) and UO2(OAc)2

and was further characterized by single-crystal X-ray diffraction and various techniques. Single crystal

X-ray diffraction analysis showed a quadrahedron-like structure of U3 with interesting tarot-like (top view)

and crown-like (side view) views, among which one central {K4(UO2)3(H2O)3} cluster was surrounded by

one {α-SiW9} and three {γ-SiW10} building units. In addition, a more significant aspect is that U3 shows good

catalytic activity in the dehydration condensation of aldehydes, acetoacetates, and urea to green synthesize

dihydropyrimidin-2(1H)-ones. The advantages of this transformation include solvent-free conditions, water

as the sole by-product, available starting materials, good compatibility, and operational simplicity.

Introduction

Self-assembly of metal–oxygen clusters with definite structures
makes it possible to design and synthesize metal oxide
materials from micro- to macro-scale. Polyoxometalates
(POMs) are a kind of molecular metal–oxygen-cluster with
various structures and important properties involving appli-
cations in catalysis, photoelectric materials, medicine, etc.1–9

In general, in situ and precursor strategies are the mainstream
methods used in the synthesis of 3d/4f-metal-containing
POMs. Thousands of 3d/4f-metal-containing POMs have been
reported and show fascinating properties. The in situ method
offers more driving powers to intrinsically build new POMs by
adjusting the reaction steps and conditions, while the usage of
lacunary POMs precursors makes it easier to predict the struc-

tures of the obtained POMs. However, the development of acti-
nide-containing POMs may be limited by synthetic methods,
and the study still lags far behind 3d/4f-metal-containing
POMs comparing the research contents and depth, which
includes structure-based research and applications.10

Actinides that have unique 5f electrons and bigger atomic radii
may show more abundant oxidation states and are good
members to synthesize POMs.11–16 For these stable actinides,
thorium and uranium are most accessible to study, and
U-containing heteropolytungstates (U-POWs) are the most
explored. But it is disappointing to note that less than ten
cases were in situ synthesized and dozens of U-POWs were all
synthesized using lacunary POM precursors among these
U-POWs.17–22 Thus, the knowledge of the structural diversities
of actinide-containing POMs still needs exploitation.

It should be noted that the synthesis of POMs that contain
more than one lacunary POM building unit is quite challen-
ging due to the complexity of the self-assembly. Most of the
U-POWs are based on one type of building unit and there are
only four cases that contain more than one type of lacunary
POM building unit, named hybrid structures. The first structure
reported by Pope in 2001 was [(UO2)3(H2O)5As3W29O104]

19−,
which consisted of a trivacant Keggin-{AsW9} and a Dawson-
like {(AsW9)2(W2)} building units.23 The second one,
[(UO2)3(H2O)4As3W26O94]

17−, was based on Keggin-{AsW9} and
a rare Dawson-like {(AsW8)2W} building units.24 The third showed
an iso-heteropolytungstate hybrid structure, [(H3Sb

IIIW17O59)
UIV(HW5O18)]

11−, which was in situ constructed from simple
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materials with monovacant Lindqvist-{W5} and monovacant
Dawson-{SbW17} building units.18 Recently, Zhang’s and our
group have reported the fourth hybrid U-POW, K1.5Na13.25
[(UO2)3(SeO3)3Na5(H2O)6(SeW6O21)(SeW9O33)3]·26H2O, which
was in situ synthesized with one Anderson-{SeW6} and three
Keggin-{SeW9} building units.22

The usage of lacunary POM precursors indeed makes it
efficient to synthesize new POMs, but the relatively strong
stabilities of lacunary POM precursors also reduce the struc-
tural uncertainties of the obtained new POMs.25–27 Thus, these
changeful and relatively unstable lacunary POM precursors
with low stabilities are preferred to build new U-POWs.28–33

For example, Kortz reported a horseshoe-like U-POW, e.g.,
K6Li19[Li(H2O)K4(H2O)3{(UO2)4(O2)4(H2O)2}2(PO3OH)2P6W36O136]·
74H2O, which was synthesized using the precursor
[H6P4W24O94]

18− ({P4W24}).
34 {P4W24} transformed into a rare

{P2W12}-trimeric {P6W36} building unit in an LiAc buffer in the
synthetic procedure. Another representative case is the third
hybrid U-POW, (NH4)17[(UO2)3(H2O)4As3W26O94]·16H2O, as
mentioned earlier, which was synthesized from {AsW9}
(Na9[AsW9O33]·27H2O).

24 A part of {AsW9} lost another {WO6}
and assembled into a rare Dawson-like {(AsW8)2W} building
unit. {γ-SiW10} is one of the most changeful lacunary POM pre-
cursors and could undergo complicated transformations into
monovacant {SiW11}, trivacant {SiW9}, and other species in
solution.35 Thus, new U-POWs may be obtained using
{γ-SiW10} under specific conditions.

Regarding the aforementioned cases, we report a new
U-POW with hybrid polyanions: {K4.2Na18.9H0.9(H2O)20[K4(UO2)3
(H2O)6(α-SiW9O34)(γ-SiW10O36)3]}·ca.16H2O (U3), which is syn-
thesized by a one-pot method using K8[γ-SiW10O36]·12H2O and
UO2(OAc)2. A part of {γ-SiW10} transformed into trivacant
{α-SiW9} in the aqueous solution and joined in the assembly of
the polyanion. The polyanion of U3 shows a quadrahedron-like
configuration based on a {K4(UO2)3(H2O)6} cluster chromo-
phore and two kinds of lacunary silicotungstate building units,
e.g., trivacant {α-SiW9} and bivacant {γ-SiW10}. This work pro-
vides the first case of U-POW that is constructed from two
kinds of Keggin-type lacunary building units. Besides,
U3 shows good catalytic activity in the synthesis of dihydropyri-
midin-2(1H)-ones (DHPMs) via the dehydration condensation
of aldehydes, acetoacetates, and urea. The solvent-free con-
ditions, water as the sole by-product, and simple starting
materials make this method suitable for the green synthesis
of DHPMs.

Experimental
Materials and methods

The precursor K8[γ-SiW10O36]·12H2O was synthesized accord-
ing to the method reported by Hervéa.36 Other reagents were
purchased from the reagent manufacturers and used without
further purification. CAUTION! Although the uranyl salt used is
depleted, it is still radioactive and toxic. Appropriate protective
measures are still necessary for handling all radioactive materials.

Synthesis of U3

In a NaCl aqueous solution (0.25 M, 20 mL), UO2(OAc)2·2H2O
(0.1 mmol, 0.0424 g) and K8[γ-SiW10O36]·12H2O (0.4 mmol,
1.1884 g) were dissolved successively. The pH value of the
mixture was then adjusted to 5.9 using 1 M HCl. The cloudy
solution was heated and stirred at 85 °C for 30 min. During
the heating procedure, this cloudy solution would transform
from cloudy to clear and then cloudy again. After cooling down
to room temperature, NaCl (4 g) was added to the solution and
stirred for 5 min. The resulting solution was filtered and the
filtrate was left to evaporate at room temperature. A cold room
temperature (below 10 °C) is necessary for the formation of U3.
Unknown and cubic crystals will appear if the room tempera-
ture is higher.37 Yellow-green crystals of U3 with rod-like
shapes were collected after two weeks (yield: 11% based on
UO2(OAc)2·2H2O). Elemental analysis (ICP-OES, %) for
H84.9K8.2Na18.9O190Si4U3W39, found: Na, 3.37; K, 2.49; W,
55.68. IR (cm−1): 3388 (s), 1624 (m), 1005 (w), 945 (m), 847 (vs),
787 (s), 722 (vs), 689 (vs), 558 (m).

Typical procedure of dehydration condensation reaction
catalyzed by U3

Benzaldehyde (1 mmol), ethyl acetoacetate (1.5 mmol), urea
(1 mmol), and U3 (0.2 mol%) were added to a 4 mL reaction
vial. Then the reaction was carried out at 100 °C for 3 h. After
cooling down to room temperature, the crude product was dis-
solved in hot EtOH (10 mL). After simple filtration, the filtrate
was cooled in an ice bath to promote the recrystallization of
the desired product. The purified products were all character-
ized by NMR and the corresponding data are provided in the
ESI.†

Results and discussion
Analysis of U3

The single-crystal analysis demonstrates that U3 crystallizes in
the P1̄ space group. The polyanion in U3 consists of three
parts, including one {K4(UO2)3(H2O)6} chromophore at the
centre of the polyanion, one {α-SiW9} and three {γ-SiW10} moi-
eties (Fig. 1A). In the triangular {K4(UO2)3(H2O)6} chromo-
phore, all the three U(VI) atoms (U1/U2/U3) show a similar 7-co-
ordinated distorted pentagonal bipyramidal geometry at the
peak of the triangle. The polar oxygen atoms from the U(VI)
pentagonal bipyramid could be divided into two groups based
on the positions relative to U(VI) atoms (Fig. S1†). The bond
lengths of three inner polar oxygen atoms and the corres-
ponding U(VI) atoms (O1 for U1, O3 for U2, and O5 for U3) are
in the range of 1.795(18) to 1.811(17) Å, which are slightly
longer than the typical OvUvO bonds (1.75–1.79 Å), while
the outside polar oxygen atoms (O2 for U1, O4 for U2 and O6
for U3) show normal UvO bond lengths (1.736(16) Å for O2–
U1, 1.794(18) Å for O4–U2 and 1.781(17) for O6–U3). The bond
angles for OvUvO bonds are also distorted compared with a
standard uranyl ion (178.048(13)° for U1, 179.418(10)° for U2
and 178.997(11)° for U3). For the five equatorial oxygen atoms,
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four oxygen atoms coordinated with K(I) ions are offered by
{α-SiW9} and {γ-SiW10}, while the other oxygen atoms (O7/O8/
O9) are coordinated with water molecules. The five equatorial
oxygen atoms (O7/O10/O11/O16/O17) for U1 are almost copla-
nar and the deviation is less than 0.05 Å. But O8 is 0.0848 Å
away from the plane constructed by O12/O13/O18 for U2. For
U3, the four equatorial oxygen atoms (O14/O15/O20/O21)
offered by polyanions are almost coplanar and O9 is 0.1433 Å
away from the plane of O14/O15/O20.

In the typical coordination bond lengths of K–O bonds
(2.9 Å), K1 is coordinated by four equatorial oxygen atoms
(O10/O12/O17/O18), one coordinated water molecule (O151),
and two other oxygen atoms (bridging oxygen atoms offered by
{γ-SiW10}) (Fig. S1†). K2 is coordinated by three equatorial
oxygen atoms (O14/O19/O20), one coordinated water molecule
(O152), and one oxygen atom offered by {γ-SiW10}. Similarly,
K3 is also coordinated by three equatorial oxygen atoms (O11/
O16/O21), one coordinated water molecule (O153) and the
other two oxygen atoms offered by {γ-SiW10}. Thus, a triangular
arrangement is constructed by the connection of three U(VI)
pentagonal bipyramids and three K(I) ions. K1 to K3 have weak
coordination interactions with adjacent oxygen with distances
from 2.9161(3) to 3.2179(3) Å. K4 is located at the position
above the centre of this triangle and is coordinated by two
inner polar oxygen atoms (O1/O5) from U1 and U3 with bond
lengths of 2.8974(2) and 2.8993(2) Å, respectively. The distance
from K4 to the plane of U1/U2/U3 is 2.3507 Å. Besides, K4 also
has weak coordination interactions with adjacent oxygen
atoms and two halves of water molecules (O154/O155) in the
range of 2.9188(3)–3.2768(3) Å. In short, a triangular
{K4(UO2)3(H2O)6} chromophore is constructed dexterously by
the connection of U(VI) and K(I) ions and oxygen atoms offered
by {α-SiW9} and {γ-SiW10}. Three U(VI) ions are at the peaks of
the triangle and K1 to K3 are located at the centre of the edges.

In addition, one {α-SiW9} offers all the six peak oxygen
atoms (O16–O21) to coordinate with three U(VI) and K(I) ions
from the direction perpendicular to the plane of the triangle at
the opposite side from K4. All the three {γ-SiW10} building
units that act as inorganic multidentate ligands only offer two
terminal oxygen atoms and one or two bridging oxygen atoms
to coordinate with U(VI) and K(I) ions from directions perpen-
dicular to the edges of the triangle, respectively. Thus, the

three {γ-SiW10} units are all unsaturated. The plane con-
structed by Si2 to Si4 from three {γ-SiW10} units is not parallel
to the plane formed by U1 to U3; the dihedral angle is 2.768°,
while the distance between K4 and plane Si2 to Si4 is only
0.0930 Å. As a result, a hybrid quadrahedron-like polyanion in
U3 is constructed dexterously from a one {α-SiW9}, three
{γ-SiW10} and one {K4(UO2)3(H2O)6} cluster with a formula of
[K4(UO2)3(H2O)6(α-SiW9O34)(γ-SiW10O36)3]

24− (Fig. 1B–E and 2A).
Besides, adjacent [K4(UO2)3(H2O)6(α-SiW9O34)(γ-SiW10O36)3]

24−

ions are alternately connected by K(I) and Na(I) ions and coor-
dinating water molecules to form a one-dimensional chain in
the typical coordination bond lengths of K–O bonds (2.9 Å)
and Na–O bonds (2.6 Å) (Fig. S2†).

It is worth noting that there are strong hydrogen bonds
between the six coordinated water molecules (O7/O8/O9/O151/
O152/O153) and six uncoordinated peak oxygen atoms (O145–
O150) from three {γ-SiW10} (Fig. 2B). The distances between
the donors and the acceptors are in the range of 2.67(3)–3.17
(3) Å (Table S4†). Twelve oxygen atoms are connected in a
zigzag manner by hydrogen bonds to form a heart-like arrange-
ment. These hydrogen bonds help stabilize the unsaturated
coordination structure.

The formula of U3 was determined by various characteriz-
ation methods. The ICP-OES results reveal that the mass frac-
tions of K, Na, and W in U3 were 2.49%, 3.37%, and 55.68%,
respectively. Thus, the number of K : Na :W should be
8.2 : 18.9 : 39 and there was 0.9 hydrogen ion for charge
balance. The TGA curve of U3 gives a 5.86% weight loss from
room temperature to 300 °C, which corresponds to about 42
water molecules (Fig. S3†). The number of lattice water mole-
cules removed by the SQUEEZE procedure is 16. Thus, the
formula of U3 should be {K4.2Na18.9H0.9(H2O)20[K4(UO2)3
(H2O)6(α-SiW9O34)(γ-SiW10O36)3]}·ca.16H2O. The elementary
composition of U3 was also confirmed by energy dispersive
spectroscopy (EDS) mapping results (Fig. S4†). Electrospray
ionization mass spectrometry (ESI-MS) results demonstrated
the chemical behaviours of U3 in water (Fig. S5 and Table S6†).
The unsaturated coordination structure of U3 partly decom-
posed in electrospray ionization, but the polyanion of U3 could
also maintain a degree of stability. U3 could be used as a cata-
lyst under mild conditions. Besides, Fourier transform infra-
red, Raman, and solid-state luminescence spectra of U3 were
also recorded to assess the properties of U3 (Fig. S7–S9†).

Fig. 1 (A) Schematic depiction of the units in the polyanion of U3; (B)
top view and (C) side view of the polyanion in U3; and (D) and (E) the
simplified schematic depiction of the polyanion in U3.

Fig. 2 (A) Ball-and-stick view of the polyanion in U3 and (B) schematic
depiction of the hydrogen bonds in U3.
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Evaluation of the catalytic activity of U3

The evaluation of the catalytic activity of U3 was performed in
the synthesis of DHPMs through the dehydration conden-
sation of aldehydes, acetoacetates, and urea.37–40 DHPMs play
an extremely important role in organic synthesis and pharma-
ceutical chemistry, and have received great attention from
organic chemists.41–45 Certain derivatives have good effects in
anti-tumour, anti-inflammatory, and anti-bacterial activities,
etc., and especially, some functional DHPMs are considered to
have great development potential in the clinical treatment of
calcium channel block, adrenergic antagonism, neuropeptide
Y antagonism, and so on.46–49 This research would provide a
promising catalytic system for the synthesis of DHPMs in good
yields through a green method.

The reaction was carried out with benzaldehyde (1a), ethyl
acetoacetate (2a), and urea (3a) as the model substrates, U3 as
the catalyst, and various reaction conditions were optimized
including the solvent, reaction temperature and time, the
dosage of the catalyst, and the proportion of substrates
(Fig. 3A). From Fig. 3B, there is no doubt that the catalytic
activity of U3 is better under solvent-free conditions than in
other solvents. Besides, from Fig. 3C–F, it is obvious that the
product 4a yield increases with an increase of temperature,
time, the dosage of the catalyst, and the proportion of the sub-
strates. By screening, the optimum reaction conditions of the
catalytic system were obtained as follows: 0.2 mol% U3,
solvent-free, 100 °C, 3 h, and 1a : 2a : 3a = 1 : 1.5 : 1.

Having established the optimal reaction conditions, the
scope of this transformation was further investigated (Table 1).
A range of benzaldehyde derivatives (1) having both electron-
donating groups (p-Me, m-Me, o-Me, p-iPr, p-OMe, and p-OEt)
and electron-withdrawing groups (p-F, p-Cl, p-Br, and p-N
(Me)2) were tested with ethyl acetoacetate (2a) and urea (3a).
Generally, all the reactions proceeded smoothly with good

Fig. 3 (A) Model reaction: benzaldehyde (1a, 1 mmol), ethyl acetoacetate (2a, 1 mmol), urea (3a, 1 mmol), U3 (0.1 mol%), solvent (1 mL), 100 °C, and
2 h; (B) screening of the reaction solvent (EG: ethylene glycol and DMF: N, N-dimethylformamide); (C and D) optimizing reaction temperature and
time; (E) exploring the dosage of the catalyst; and (F) investigating the proportion of substrates (1a : 2a : 3a).

Table 1 Synthesis of DHPMs catalyzed by U3
a

a Reaction conditions: benzaldehydes (1, 1.0 mmol), ethyl acetoace-
tates (2, 1.5 mmol), urea (3, 1.0 mmol), U3 (0.2 mol%), solvent-free
conditions, 100 °C, and 3 h.
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yields of the corresponding products (4b–4j, and 4m). In
addition, it was found that 2-naphthaldehyde and 5-methyl
furfural can also react with ethyl acetoacetate (2a) and urea
(3a) to generate the desired products 4k and 4l in moderate
yields. Subsequently, we studied the reaction of benzaldehyde
(1a), methyl acetoacetate (2b), and urea (3a), giving the
product 4n in a yield of 86%. More interestingly, our protocol
is applicable to the reaction of benzaldehyde (1a), ethyl acetoa-
cetate (2a), and thiourea (3b), delivering the corresponding
product 4o in a yield of 87%.

Conclusions

In summary, we have synthesized and fully characterized a
new hybrid U-POW based on two kinds of Keggin-type building
units. A part of {γ-SiW10} transformed into trivacant {α-SiW9}
in the aqueous solution and joined in the assembly to access
the polyanion. U3 represents a rare hybrid U-POW that is built
based on one {α-SiW9} and three {γ-SiW10} building units.
Besides, U3 was demonstrated to be a good catalyst for the syn-
thesis of dihydropyrimidin-2(1H)-ones via the condensation of
aldehydes, acetoacetates, and urea. Importantly, the solvent-
free conditions, water as the sole by-product, and available
starting materials mean that this protocol provides a green
and efficient multicomponent reaction for the synthesis of
DHPMs. This work provides another case of rare hybrid
U-POWs and the application of U-POWs in catalytic synthesis
chemistry and may benefit the development of related
research.
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