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From AgTeO,F and Ag,(TeO,F,) to AgzFs(TeF)
(TeO,)1,: the first silver tellurite oxyfluorides with
linear and nonlinear optical properties+
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The first examples of silver fluorotellurites, namely, AgTeO,F and Ag.(TeO,F,), and the first silver fluoride
tellurite, AgsFs(TeFg)(TeOy)12, have been obtained successfully under mild hydrothermal conditions.
AgTeO,F displays a new 2D structure composed of a 2D silver oxide layer strengthened by 1D [TeO,F],
chains. Ag,(TeO5F,) exhibits a new 3D construction consisting of a 3D silver oxyfluoride framework with
1D polyhedral ring channels occupied by the isolated TeO,F, groups. AgzFz(TeFg)(TeO,),» features the first
3D neutral [TeO,],, open framework with 8- and 4-MPR channels along the a-, b- and c-axes. AgTeO,F
and Ag(TeO,F,) crystallize in the centrosymmetric space group while AgsFs(TeFg)(TeO,)s» is in a non-
centrosymmetric space group. AgszFz(TeFg)(TeO,)1» shows a unique nonlinear optical property with an
SHG intensity of about 70% that of commercial KH,PO,4, while AgTeO,F and Ag,(TeO,F,) present an
apparent linear optical property and their birefringence is calculated as 0.078 and 0.032@1064 nm,
respectively. This work further confirms that fluorination in tellurium(iv) oxides can greatly enrich the
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Introduction

Second harmonic generation (SHG) materials have continued
to be in great demand due to their capacity of laser frequency
conversion, material micromachining, photolithography and
so on.”™ The first requirement for an SHG material is a non-
centrosymmetric (NCS) structure since it is a physical quantity
described by an odd-order tensor.'®** The lone pair cation of
Te(v), with a 5s> electronic configuration, can exhibit three
different kinds of asymmetric coordination mode, namely,
TeO; trigonal pyramid, TeO, seesaw-like group, and TeOs tetra-
gonal pyramid, when it coordinates with oxygen ligands due to
the hybridization between the s- and p-orbitals of the cation
and anions.'® These polar tellurite groups can stimulate the
formation of NCS structures, making metal tellurites good can-
didates for SHG materials."®?® Metal tellurites can also

“State Key Laboratory of Structural Chemistry, Fyjian Institute of Research on the
Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
E-mail: kongfang@fjirsm.ac.cn, mjg@fjirsm.ac.cn

bCollege of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China

“University of Chinese Academy of Sciences, Beijing 100049, P. R. China

tElectronic supplementary information (ESI) available: Crystallographic data,
important bond distances and angles, simulated and measured PXRD patterns,
infrared spectra, and computational method. CCDC 2214235-2214237. For ESI
and crystallographic data in CIF or other electronic format see DOI: https://doi.
0rg/10.1039/d2qi02272a

1328 | /norg. Chem. Front., 2023, 10, 1328-1337

structural chemistry and optical properties of metal tellurites.

display plentiful structure types because the polar oxyanions
can join together by condensation to generate 0D clusters,*’ >
1D chains,**™” 2D layers®®° and even 3D frameworks.?%**
Fluorine, as the most electronegative element, could replace
oxygen ligands due to their similar ionic radii.**"** When fluo-
rine atoms are introduced into oxide compounds, fluoride
compounds often can display excellent comprehensive per-
formance and abundant structure types,>>® such as
RbTeMo,0gF (27 x KDP, 3.63 eV),* Ba(MoO,F),(TeO3), (7.8 x
KDP, 2.96 eV),*® and BaF,TeF,(OH), (3 x KDP, 5.9 eV)*" in
metal tellurites. Fluorine-containing tellurite compounds (or
tellurite oxyfluorides) can be classified into fluoride tellurites
and fluorotellurites according to the connection mode of the
fluorine element. In fluorotellurites, the fluorine atoms are
connected with the lone pair cation of Te(wv); in other words,
there are Te(wv)-F bonds in the structures, such as BizF(TeOs3)
(TeO,F,);** and HgTeO,F(OH).** BaF,TeF,(OH), is the first
reported SHG material in metal fluorotellurites, which has
proved to be a promising UV nonlinear optical material.** The
Te-F bonds in BaF,TeF,(OH), play an important role in the
wide band gap. In fluoride tellurites, there are no Te(w)-F
bonds, and the fluorine atoms are linked with the other
cations, such as d° transition metals (TM), RbTeMo,OgF>° and
Ba(MoO,F),(Te05),,*° and alkali metals, Li,(TeO;);F.**
RbTeMo,0OgF containing a MoOsF octahedron features the
strongest SHG material of metal tellurites at both the visible
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and near-infrared ranges, and the MoO;F octahedron contribu-
ted the most to the SHG efficiency of RbTeMo,OgF. Therefore,
fluorination in tellurites not only broadens the band gap of
metal tellurites, but can also increase the SHG intensity of
crystals. However, compared with tellurite oxides, tellurite oxy-
fluorides, including fluoride tellurites and fluorotellurites, are
still rare due to their synthetic difficulty. It is still very necess-
ary to enrich the structural chemistry and the SHG crystal
types in metal tellurite oxyfluorides.

To increase the success rate of NCS structures, the d'® TM
cation Ag" was chosen to balance the charge due to its large
polar displacement.?®*>™*® After an extensive survey, we found
that no silver tellurites with the fluorine element have been
reported yet. Our efforts in the silver-tellurite-fluorine system
successfully result in the first examples of silver fluorotellur-
ites and the first silver fluoride tellurite, namely, AgTeO,F and
Ag,(TeO,F,), and Ag;F;(TeFs) (TeO,);,. Among these com-
pounds, Ag;F;(TeFs) (TeO,);, crystallized in an NCS space
group and presented a moderate SHG response of 0.7 x
KH,PO, (KDP) at 1064 nm. Herein, we report their syntheses,
crystal structures, and thermal and optical properties from
theoretical and experimental aspects.

Experimental section

Reagents

Silver fluoride (AgF, 98+%, AR), tellurium dioxide (TeO,,
99.9%, AR) and hydrofluoric acid (HF, 40+%, AR) were
obtained commercially and used as received. Caution!
Hydrofluoric acid is toxic and corrosive! It must be handled
with extreme caution and with the appropriate protective
equipment and training.

Syntheses

The three compounds were successfully synthesized via a mild
hydrothermal method based on the following chemical pro-
portions: AgF (0.127 g, 1.0 mmol), TeO, (0.160 g, 1.0 mmol),
hydrofluoric acid (0.25 mL) and 1 mL of deionized water for
AgTeO,F; AgF (0.127 g, 1.0 mmol), TeO, (0.080 g, 0.5 mmol),
hydrofluoric acid (0.25 mL) and 1.5 mL of deionized water for
Ag,(TeO,F,); AgF (0.102 g, 0.8 mmol), TeO, (0.256 g,
1.6 mmol), hydrofluoric acid (0.25 mL) and 0.5 mL of de-
ionized water for Ags;F;(TeF)(TeO,);,. It is worth noting that
the amount of deionized water is critical in these reactions
besides the proportions of the raw materials. The mixtures
were placed in a 23 mL Teflon liner equipped with a stainless-
steel autoclave. These samples were heated to 220 °C, main-
tained for 48 h, and then cooled to 30 °C at 2.3 °C h™'. After
washing with deionized water, the products were dried in air at
room temperature. As shown in Fig. S1,7 the three compounds
exhibit three different morphologies: lamellar AgTeO,F, colum-
nar Ag,(TeO,F,) and octahedral Ag;F;(TeFg)(TeO,),, and the
three kinds of crystals were obtained in yields of about 58%,
43% and 75% (based on Te), respectively. The existence and
distribution of Ag, Te and F were demonstrated via the elemen-

This journal is © the Partner Organisations 2023

View Article Online

Research Article

(a)

(b)

()

Ag Te F

Fig.1 SEM images of AgTeO,F (a), Ag,(TeO,F,) (b) and AgsFs(TeFe)
(TeO,)12 (c) and their elemental distribution maps.

tal distribution maps (Fig. 1). As shown in Fig. S2,} the experi-
mental powder X-ray diffraction (PXRD) patterns are in good
agreement with the calculated ones, so their purities are
certified.

Single-crystal structure determination

Single-crystal X-ray diffraction data of AgTeO,F, Ag,(TeO,F,)
and Ag;Fs(TeFs) (TeO,);, were collected on an Agilent
Technologies SuperNova dual-wavelength CCD diffractometer
with graphite-monochromated Mo Ka radiation (4 = 0.71073 A)
at room temperature. Cell refinement and data reduction were
conducted with CrysAlisPro and absorption correction based
on the multi-scan method was applied.*® The structures were
determined by direct methods and refined by full-matrix least-
squares fitting on F*> using the SHELXL-2017 software
package.’® The atoms were refined with anisotropic thermal
parameters. The detailed crystallographic data of the three
structures are listed in Table 1, and some selected atomic coor-
dinates, bond lengths and angles are listed in Tables S1-S3.7}
Detailed information on the crystal structure of the three com-
pounds can be obtained from the Cambridge Crystallographic
Data Center.

Powder X-ray diffraction

Powder X-ray diffraction (PXRD) data of the three crystals were
recorded on a Rigaku Miniflex600 diffractometer equipped
with graphite-monochromated Cu Ko radiation at room temp-
erature. The 20 range is set to 5-70°, and the scan step size is
0.02°.

Energy-dispersive X-ray spectroscopy

Microprobe elemental analysis was conducted with the aid of a
field-emission scanning electron microscope (JSM6700F) out-
fitted with an energy-dispersive X-ray spectroscope (Oxford
INCA).
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Table 1 Summary of crystal data and structural refinements for
AgTeO,F, Ag,(TeO,F,) and AgzFs(TeFe)(TeOs)12

Molecular formula AgTeO,F Ag,(TeO,F,) AgsF5(TeFs)(TeOy)12
Formula weight 286.47 413.34 2575.07
Crystal system Monoclinic Orthorhombic Cubic
Space group P24/c Pbca Pi3n
Temperature (K) 292.38(10) 293.39(10) 294.15
F(000) 728 2880 2245

alA 8.7523(14) 15.6642(13)  11.3998(5)
b/A 6.3759(9) 6.8862(5) 11.3998(5)
c/A 5.4505(8) 16.5328(12) 11.3998(5)
a () 90 90 90

£(°) 91.396(14) 90 90

7 () 90 90 90

VIA® 304.07(8) 1783.3(2) 1481.47(19)
V4 4 16 2

D, (g cm™) 6.258 6.158 5.773

GOF on F* 1.008 1.073 1.138

Flack factor — — 0.48(9)

Ry, WR, [I> 26(1)]"
Ry, WR, (all data)®

aRl = z”Fol - |FC|I/E|F0|! WR, :{ZW[(FO)Z

0.0223, 0.0439 0.0306, 0.0704
0.0267, 0.0462 0.0377, 0.0750

= (FPIEw((Fo) .

0.0200, 0.0434
0.0251, 0.0460

Spectroscopic measurements

The IR spectrum was recorded using a Magna 750 FT-IR
spectrometer under an air background, and the selected range
is 4000-400 cm™". The UV-vis-NIR diffuse reflection spectrum
was measured using a PerkinElmer Lambda 950 UV-vis-NIR
spectrophotometer with a BaSO, powder board as a reference
for 100% reflectance, and the recording range was
200-2000 nm. Absorption data were calculated from the
diffuse reflection data by the Kubelka-Munk function: a/S =
(1 — R)*2R, in which a and S represent the absorption
coefficient and the scattering coefficient, respectively. The
band gap value can be given by extrapolating the absorption
edge to the baseline in the a/S versus energy graph.

Thermal analysis

A NETZCH STA 449F3 thermal analyzer was used to analyze
the thermal stability of the three crystals. The three samples
were heated in alumina crucibles from 20 °C to 1000 °C under
nitrogen gas at a rate of 15 °C min™~".

SHG measurements

Powder SHG measurements were carried out using a modified
method of Kurtz and Perry. An irradiation laser beam (1 =
1.064 pm) is generated with a Nd:YAG solid-state laser
equipped with a Kurtz and Perry setup.” The SHG signal oscil-
loscope traces of the Ag;F;(TeF)(TeO,);, and KDP samples in
a particle size range (150-210 pm) were both recorded.

Results and discussion
Structure of AgTeO,F

Equivalent silver and tellurium sources resulted in the pro-
duction of AgTeO,F. AgTeO,F crystallizes in the monoclinic
space group P21/c. Its asymmetric unit contains 1 Ag, 1 Te, 2 O

1330 | /norg. Chem. Front., 2023, 10, 1328-1337
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Fig. 2 Silver oxide layer in the bc plane (a), the 1D chain of Te-O-F (b),
and the layer structure of AgTeO,F (c).

and 1 F atoms (Table S1}). The Ag(1) atom is 4-coordinated
into a distorted tetrahedron AgO, with the lengths of Ag-O
bonds ranging from 2.319(4) to 2.478(5) A. The Te(1) atom con-
nects with 3 O and 1 F atoms, forming a polar TeO;F group in
a seesaw-like configuration. The Te-O bond distances are in
the range of 1.832(4)-2.162(4) A and the Te-F bond length is
2.029(4) A, which are consistent with the reported metal
tellurites.***>” The calculated total bond valences for Ag and
Te are 0.825 and 4.031, indicating their oxidation states of +1
and +4 respectively (Table S27).

AgTeO,F presents a new 2D layered structure. Within the
structure, the AgO, tetrahedra were corner- and edge-shared
into a silver oxide layer parallel to the bc plane (Fig. 2a). The
TeOsF groups were corner-shared into a zigzag chain along the
c-axis (Fig. 2b). The fluorotellurite 1D chains were linked on
the both sides of the silver oxygen layers via Te-O-Ag bonds,
forming the 2D layered structure of AgTeO,F (Fig. 2c). The lone
pairs of tellurites were pointed to the space between layers.
The interlayer distance was calculated as 8.75 A.

Structure of Ag,(TeO,F,)

When we increased the ratio of silver, a new compound of
Ag,(TeO,F,) was achieved. Ag,(TeO,F,) presents a new 3D con-
struction composed of a 3D silver oxygen framework strength-
ened by TeO,F, units. The structure crystallized in the ortho-
rhombic space group Pbca. Its asymmetric unit includes 4 Ag,
2 Te, 4 O and 2 F atoms. Both of the Te(iv) cations were four-co-
ordinated in seesaw-like TeO,F, groups with the Te-O and
Te-F bonds in the ranges of 1.848-1.869 A and 2.021-2.068 A,
respectively (Fig. S3a and S3bt). The four Ag" cations were con-
nected with both O and F atoms, forming Ag(1)O;F, Ag(2)O;F,,
Ag(3)O,4F, and Ag(4)OsF polyhedra, respectively. The Ag-O and
Ag-F bond distances were in the ranges of 2.19(6)-2.663(8) and
2.458(6)-2.68(6) A, respectively. The oxidation states of the Ag
and Te atoms were proved to be +1 and +4, respectively. The
calculated total bond valences for Ag(1), Ag(2), Ag(3), Ag(4),
Te(1) and Te(2) are 0.769, 0.961, 0.711, 0.809, 4.007, and 4.066,
respectively.

The Ag(1)OsF polyhedra were corner-shared in a Ag(1) chain
along the b-axis, so were the Ag(2) polyhedra (Fig. 3a and b).

This journal is © the Partner Organisations 2023
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Fig. 3 Ag(1)-O-F zigzag chain (a), Ag(2)-O-F wave chain (b), 1D
Ag(3)-Ag(4)—O-F chains (c), and 3D structure of Ag,(TeO,F») (d).

The Ag(3)O,F and Ag(4)OsF polyhedra were corner- and edge-
shared into a 1D Ag(3)Ag(4) chain along the b-axis with four-
member polyhedral rings (MPRs) (Fig. 3c). The Ag(3)Ag(4)
chains were connected by the Ag(1) chain to form a 2D layer
parallel with the ab plane (Fig. S3cf), which were further
linked by the Ag(2) chains to a 3D silver oxyfluoride open
framework with 1D 18-MPR channels along the b-axis
(Fig. S3dt). The isolated Te(1)O,F, and Te(2)O,F, units were
filled in the 18-MPR channels to strengthen the 3D structure
of Ag,(TeO,F,) (Fig. 3d). Due to the blocking effect of TeO,F,
groups, the 18-MPR channels have been shrunk to 10-MPR
channels with the lone pairs of tellurites pointed to the center
of them.

Structure of Ag;F;(TeF,)(TeO,):,

A mixed valence tellurium compound of Ag;F;(Te""F)
(Te™0,);, was obtained when we adjusted the reaction con-
ditions further. Ag;F;(TeF¢)(TeO,);, is crystallized in the cubic
space group P43n. There are 1 Ag, 2 Te, 2 O and 2 F atoms in
the asymmetric unit. Tetravalent Te(1) is coordinated with four
0O”” anions into a TeO, quadrangular pyramid with the Te-O
bond lengths ranging from 1.827(4) to 2.107(5) A while the
hexavalent Te(2) atom connects with 6 F atoms to form a TeF,
octahedron with a Te-F bond length of 1.906(17) A (Fig. S4at).
The Ag" cation is 8-coordinated into AgOs polyhedra with the
length of Ag-O bonds ranging from 2.589(7) to 2.559(7) A
(Fig. S4bft). The oxidation state of Ag, Te(1) and Te(2) atoms
was proved to be +1, +4 and +6, respectively, based on the cal-
culated total bond valences of 1.000, 4.078 and 6.180 for Ag,
Te(1) and Te(2), respectively.

Ag;F;(TeFg)(TeO,);, features an interesting 3D structure
formed by the 3D Ag;F;(TeO,),, framework embedded with
the isolated (TeFs) octahedra. The tetravalent Te(1)O, units
were interconnected into a 3D neutral [TeO,]., open framework
by corner-sharing with 8- and 4-MPR channels along the a-, b-
and c-axes (Fig. 4a). The Ag(1) cations were located in the two
different 1D channels to form the 3D cationic framework of
[Ags(TeO,)1,]*" (Fig. S4ct). Interestingly, the silver cations were
situated at the sites with symmetry of 222, namely, the twelve
axis-center and the six face-center of the unit cell. The body
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Fig. 4 The 3D skeleton with two different 1D channels (a), and the
structure chart of AgOg and TeFg residing in the centre of 8-MPRs and
4-MPRs (b).

center of the cubic structure was empty, and was filled by the
isolated F(2) atoms and the (TeFs) octahedron to balance the
charge and support the framework, respectively (Fig. 4b). So,
the structure of Ag;F;(TeFg)(TeO,)1, can be described as a 3D
construction composed of a 3D Ag;F;(TeO,);, framework
embedded with the neutral (TeFs) octahedra.

From the elucidation of the structures, we can find that the
quantity and site of the fluorine element are totally different in
the three tellurite oxyfluorides. In AgTeO,F, only one oxygen
was replaced in the TeO;F groups while two oxygen atoms were
substituted in TeO,F, of Ag,(TeO,F,). Only the Te(vi) groups
were fluoride in Ag;F;(TeFe)(TeO,);,. We think that the differ-
ence should be caused by the different synthesis conditions,
especially from the molar ratio of AgF to TeO,. When the ratio
of AgF/TeO, was 1/1, AgTeO,F was obtained, of which the tell-
urite was a mono-substituted TeOz;F group. If the ratio was
increased to 2/1, Ag,(TeO,F,) was isolated and disubstituted
TeO,F, groups were found. When the ratio was decreased to
1/2 and the content of solvent water was halved, partial Te(iv)
oxidized into Te(vi) and mixed valence Ag;F;(TeFe)(TeO,);, was
achieved. In the structure of Ag;F;(TeFs)(TeO,),, only Te(vi)
groups were fluoride, which can be explained by the Hard-
Soft-Acid-Base (HSAB) theory. Compared with a Te(wv) ion,
Te(vi) has higher charge and a smaller radius, so it has
stronger acidity. The fluorine element with strong electro-
negativity can be regarded as a hard base, which is liable to
coordinate with cations with strong acidity. This work revealed
that the fluorination in tellurium(iv) oxides can enrich the
structural chemistry of metal tellurites greatly.

Thermal analyses

Thermogravimetric analyses (TGA) were performed to explore
the thermal behavior of the three compounds. From Fig. 5a we
can find that there are slight weight losses of about 0.94% and
0.97% in the ranges of 294-494 °C and 271-509 °C for
AgTeO,F and Ag,(TeO,F,), respectively, corresponding to the
escape of partial F, molecules. We checked the thermal stabi-
lity of AgTeO,F and Ag,(TeO,F,) at 20, 300, 400 and 500 °C,
respectively, by PXRD measurements. From the results shown
in Fig. S5,f we can find that the PXRD patterns of the two

Inorg. Chem. Front,, 2023, 10, 1328-1337 | 1331
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Fig. 5 TGA curves of AgTeO,F and Ag,(TeO,F,) (a), and the TG-MS
curves of AgsFs(TeFg)(TeO5):, (b).

samples at 300 °C could not match the patterns at room temp-
erature, which indicates that the two crystals have been decom-
posed at 300 °C. The release of the TeO, molecule occurred at
about 662 °C and 689 °C for AgTeO,F and Ag,(TeO,F,), respect-
ively. The thermogravimetric-mass spectrometry (TG-MS)
measurement was performed for Ag;F;(TeFg)(TeO,):, (Fig. 5b).
The TG curve of Ag;Fs(TeF¢)(TeO,);, involves two steps of
weight-losses. The first one (exp. 6.6%) in the range of 328 to
524 °C is consistent with the release of 4.5 F, molecules (cal.
6.7%). The second weight loss that occurred above 684 °C can
be attributed to the evaporation of the TeO, molecules, which
did not complete even at 1000 °C, just like the situations in
AgTeO,F and Ag,(TeO,F,). The ion current curves of
Ag;F;(TeFg)(TeO,);, indicate the existence of the fluorine
element and the absence of the OH™ group or the H,O mole-
cule, which further proved the correctness of the formula.

IR and UV-vis-NIR spectra

The IR spectra revealed that no obvious absorption was found
in the region 4000-800 cm™" for the three compounds, indicat-
ing no hydroxy bonds in the structures (Fig. S5t). Their
vibration bands were focused over the range of 400-780 cm ™,
which can be attributed to the Te-O and Te-F vibrations.
These  assignments correspond to the  reported

tellurites.>>°8°63
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spectra of AgTeO,F (a),

The UV-vis-NIR diffuse-reflectance spectra of the three com-
pounds show that they have no obvious absorption in the
range of 500-2000 nm (Fig. 6). The ultraviolet absorption
cutoff edges of AgTeO,F, Ag,(TeO,F,) and Ag;F;(TeFg)(TeO,):,
were 283, 328 and 276 nm, respectively, and their optical band
gaps were measured as 3.41, 3.22 and 3.69 eV, respectively.

SHG measurements

For Ag:F;(TeFg)(TeO,);,, measurement of the powder fre-
quency-doubling effect was carried out by the method of Kurtz
and Perry, employing a Q-switched Nd:YAG laser under
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Fig. 7 The oscilloscope traces of the SHG signals for the samples
(150-210 pm) of AgsFs(TeFe)(TeO,)1> and KDP under laser irradiation at
1064 nm.

1064 nm radiation. A sieved sample (70-100 mesh) was used
to assess its second-order susceptibility coefficient. Powder
SHG examination revealed that Ag;F;(TeF¢)(TeO,),, displayed a
moderate frequency-doubling efficiency of about 0.7 x KDP

(Fig. 7).

Theoretical calculation

To access the birefringence of AgTeO,F and Ag,(TeO,F,), their
linear optical properties have been studied using CASTEP
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Fig. 8 Calculated band structures of AgTeO,F (a) and Ag,(TeO,F») (b).
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based on DFT methods. Such work has not been performed
for Ag;F;(TeFs)(TeO,),, due to its isotropic nature.

Fig. 8 presents the band structures along the high symmetry
points of the first Brillouin zone for AgTeO,F and Ag,(TeO,F,).
The state energies of the CBs and highest VBs of the two struc-
tures are shown in Table S4.1 For AgTeO,F, the maximum of
VBs is situated at the Z point and the minimum of CBs is
placed at the G point with a band gap of 2.29 eV, indicating
that it is an indirect band gap compound (Fig. 8a). For
Ag,(TeO,F,), the top of the VBs is located at the X point while
the bottom of CBs is placed at the G point with a band gap of
1.64 eV, which shows that it also is an indirect band gap
material (Fig. 8b). The calculated band gaps are much smaller
than the experimental results, which was caused by the discon-
tinuity of the exchange-correlation functional.®® Therefore,
scissor operators are 1.12 eV and 1.58 eV for AgTeO,F and
Ag,(TeO,F,), respectively, which are used in the following
optical property calculations.

The total and partial density of states are displayed in
Fig. 9. The TDOS and PDOS of the two structures are very
similar. In AgTeO,F and Ag,(TeO,F,), the VBs in the lower
energy from —20 to —17 eV mostly originate from O 2s and Te
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Fig. 9 The total and partial density of states for AgTeO,F (a) and
Agz(TeO,F,) (b).
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5s5p. The CBs in the higher energy between 3.0 and 10.0 eV
are composed of Te 5s5p and O 2p states primarily. To assign
the electronic bands explicitly, we have concentrated our atten-
tion on the top of VBs and the bottom of CBs close to the
Fermi level, which are able to clarify the majority of the
bonding character. In AgTeO,F and Ag,(TeO,F,), we can find
that the O-2p states and F-2p states match well with the states
of Te-5p, which indicates the strong Te-O and Te-F bonding
interactions. For AgTeO,F and Ag,(TeO,F,), the maximum of
valence bands are mainly from the O-2p and Ag-4d non-
bonded states, while the minimum of valence bands come
from the empty Te-5p and Ag-5s orbitals primarily (Fig. 9).
Therefore, the band gaps of AgTeO,F and Ag,(TeO,F,) are
determined by O, Ag and Te atoms.

The linear optical response properties were calculated by
the complex dielectric function e(w) = &(w) + iey(w). The
dispersion curves of refractive indices based on the formula
n*(w) = e(w) displayed strong anisotropy. The frequency-
dependent refractive indices for AgTeO,F and Ag,(TeO,F,) are
shown in Fig. 10. For AgTeO,F, the refractive indices follow the
order of ng19 > Noo1 > Nigo- The birefringence of AgTeO,F is
0.078 at 1064 nm. For Ag,(TeO,F,), the refractive indices are in

2.2

Ny90

Ny19

Moo1
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Fig. 10 Calculated refractive index dispersion curves of AgTeO,F (a)
and Ag,(TeO,F,) (b).
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a sequence of 71p91 > Ng10 > N1go at 1064 nm. The birefringence
of Ag,(TeO,F,) was calculated to be 0.032 at 1064 nm, which is
much smaller than that of AgTeO,F. The large birefringence of
AgTeO,F can be attributed to the regularly arranged TeO;F
groups.

Conclusions

The first cases of silver tellurite oxyfluorides, namely, AgTeO,F,
Ag,(TeO,F,) and Ag;F;(TeFg)(TeO,)1,, have been successfully
synthesized through a facile hydrothermal method. AgTeO,F
and Ag,(TeO,F,) exhibit the first examples of silver fluorotel-
lurites and the NCS Ag;F;(TeFs)(TeO,);, is the first silver fluor-
ide tellurite. The tellurite groups in these structures display
three different dimensional structures, namely, 1D [TeO,F],
chains in AgTeO,F, 0D (TeO,F,) groups in Ag,(TeO,F,) and a
3D [TeO,]. architecture in Ag;F3(TeFs)(TeO,),. The neutral
[TeO,]., open framework with 8- and 4-MPR tunnels along
three crystallographic axes is first reported here. In addition,
the NCS Ag;F;(TeF)(TeO,);, can exhibit a moderate powder
SHG effect of about 0.7 times that of commercial KDP.
The birefringence of AgTeO,F was calculated to be
0.078@1064 nm, which is much larger than that of
Ag,(TeO,F,) (0.032@1064). This work has enriched the synth-
eses, structures and optical properties of tellurite oxyfluorides
further. Other related works about metal fluorotellurites and
fluoride tellurites are underway.
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