Polymer Chemistry

PAPER

View Article Online
View Journal | View Issue

Cite this: *Polym. Chem.*, 2023, **14**, 720

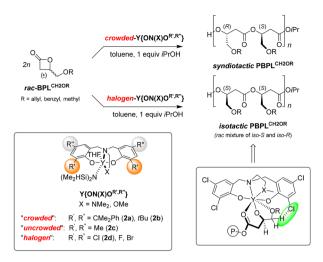
Stereo-electronic contributions in yttrium-mediated stereoselective ring-opening polymerization of functional *racemic* β-lactones: ROP of 4-alkoxymethylene-β-propiolactones with bulky exocyclic chains†

Rama M. Shakaroun,^a Ali Dhaini,^a Romain Ligny,^a Ali Alaaeddine,^b Sophie M. Guillaume (1) **a and Jean-François Carpentier (1) **a**

Stereoselective ring-opening polymerization (ROP) of cyclic esters is the privileged strategy to access stereoregular polyesters that are widely applied in various domains, such as in particular the biomedical and packaging fields. The production of synthetic stereo-enriched polyhydroxyalkanoates (PHAs) derived from *racemic* β-lactones by ROP is still a challenge. In this context, linear, high molar mass, narrowly dispersed PHAs, namely PBPL^{CH₂OiPr}, PBPL^{CH₂OtBu} and PBPL^{CH₂OTBDMS} ($M_{n,SEC}$ up to 94 300 g mol⁻¹; D_{M} = 1.06-1.18; TBDMS = SitBuMe₂), with syndiotactic enrichment ($P_r = 0.76-0.87$) were successfully synthesized by stereoselective ROP of the corresponding functional racemic β -propiolactones, rac-BPL^{CH₂O/Pr}, rac-BPL^{CH₂OtBu} and rac-BPL^{CH₂OTBDMS}, respectively, which are promoted by diverse achiral diamino-bis(phenolate) yttrium complexes featuring various R'/R" substituents (Y{ONNO^{R',R'}), **2a-d**). The influence of the steric hindrance of the BPLFG side-functionality, with FG = CH2OiPr, CH2OtBu, and CH₂OTBDMS, on the ROP kinetics, stereoselectivity and thermal properties of the resulting PHAs, as a function of 2a-d catalysts, was compared to that of the previously reported similar but less hindered BPL^{FG} monomers, with FG = CH₂OMe, CH₂OAllyl, CH₂OBn, and CH₂OPh. Overall, this study evidenced that, for the newly prepared rac-BPL^{CH₂O/iPr}, rac-BPL^{CH₂OtBu} and rac-BPL^{CH₂OTBDMS} monomers, due to steric constraints induced by the monomer alkoxy/silyloxy side-functionality, all ROPs afforded syndioenriched polyesters, regardless of the catalyst used. Conversely, only combinations of a BPL^{FG} monomer containing two sets of methylene hydrogens within the side-functionality, i.e. with $FG = CH_2OCH_2X$ with X = H, $CH = CH_2$ and C_6H_5 as in BPL^{CH_2OMe} , $BPL^{CH_2OAllyl}$, and BPL^{CH_2OBn} , with a yttrium catalyst bearing ortho/para-chloro substituents (2a), gave isotactic functional PHAs. With the latter three monomers, a catalyst with highly sterically crowded substituents on the ligand platform (2a,b) was necessary to recover syndio-enriched PBPL^{CH2OMe,OAll,OBn}

Received 17th December 2022, Accepted 6th January 2023 DOI: 10.1039/d2py01573k

rsc.li/polymers


Introduction

Stereoselective ring-opening polymerization (ROP) of chiral *racemic* lactones is a field of topical interest as it allows accessing polymers with variable microstructures (*i.e.*, tacticities),

and hence polymer materials with differentiated and controlled properties.¹ One of the most ubiquitous examples in this area is probably the ROP of *racemic* lactide (*rac-*LA) which has opened large avenues, in particular toward the formation of isotactic PLA stereocomplexes with significantly enhanced thermal characteristics.¹ a-e The formation of isotactic polyesters from the ROP of *racemic* lactones is clearly much less common than that of their syndiotactic (heterotactic) counterparts; indeed, the latter syndio/hetero tacticities are often the result of a chain-end stereocontrol¹ a,b where the minimization of steric tilting in the transition state induces the regular, alternated enchainment of consecutive monomer units with the opposite configuration. On the other hand, the formation of isotactic polyesters from *racemic* cyclic esters usually requires


^aUniv. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35042 Rennes, France. E-mail: sophie.guillaume@univ-rennes.fr, jean-francois.carpentier@univ-rennes.fr

bUniv. Libanaise, Campus Universitaire Rafic Hariri Hadath, Faculté des Sciences, Laboratoire de Chimie Médicinale et des Produits Naturels, Beirut, Lebanon † Electronic supplementary information (ESI) available: General conditions, synthesis and characterization of BPL^{CH2OR} monomers, NMR and mass spectra, and DSC traces. See DOI: https://doi.org/10.1039/d2py01573k

Scheme 1 Previously reported stereoselective ROP of 4-alkoxymethylene- β -propiolactones by Y{ON(X)O^{R',R''}} catalytic systems, with stereoselectivity outcomes depending on the stereo-electronic characteristics of the catalyst. The bottom-right structure depicts the transition state with attractive non-covalent Cl...H interactions allegedly driving the isoselectivity.7

the use of chiral catalysts, most often metal-based ones,2 to proceed via a so-called enantiomorphic site control; isoselective ROP of racemic lactones with achiral catalysts is even less frequent and largely focused on rac-LA. 1,3 A recent, remarkable addition is the stereoselective ROP of eight-membered racemic cyclic diolides mediated by discrete rare earth-based catalysts developed by the group of Chen, which affords a variety of perfectly isotactic (P_m up to 0.99)‡ polyhydroxyalkanoates (PHAs).⁴ In our longstanding research on the stereoselective ROP of racemic β-lactones⁵ with achiral alkoxyamino- or diaminobisphenolate-yttrium catalysts ({Y{ON(X)OR',R"}}),6 we have reported that only the use of catalysts bearing halogeno ortho/ para-substituents (R',R" = Cl, F or Br) on the phenolate ligand platform allowed the highly isoselective ROP of the specific racemic 4-alkoxymethylene-β-propiolactones (rac-BPL^{CH₂OR}, Scheme 1);⁷ actually, this was proved to be effective (*i.e.*, isoselective) only for R = 4-methoxy (OMe), -allyloxy (OAll) or benzyloxy (OBn) derivatives, that is, the monomers having two methylene groups apart from the oxygen in the side-functionality (i.e., with a CH2(referred to as "inner")-O-CH2(referred to as "outer")X group).8 As supported by DFT computations, such isoselectivity apparently relies on attractive non-covalent interactions (NCIs)⁹ between the halogen *ortho*-substituents on the yttrium ligand with the "inner" and/or "outer" methylene hydrogens within the side-functional group of the last inserted monomer unit within the growing polymer chain (Scheme 1).⁷ As a matter of fact, the ROP of rac-BPLCH2OR monomers without such an "outer" methylene group, e.g. with R = OPh, or with two

Scheme 2 4-Alkoxymethylene-β-propiolactones with bulky alkoxy side-functionalities depleted of an "outer" methylene group, investigated in the present study.

"inner" methylene groups, i.e. rac-BPLCH2CH2CH2Ph, with an isoselective Y{ONNO^{Cl,Cl}} catalytic system, all recovered syndioenriched polymers ($P_r = 0.75-0.77$). The contribution of the "outer" methylene group in the pendant arm of BPLCH2OCH2X is thus still an open question.

To gain a better insight into the factors that govern the isoselectivity observed in the ROP of some rac-BPLCH2OR monomers mediated by the Y{ONNO^{Cl,Cl}} catalytic system and to probe further the possible decisive influence of "outer" methylene hydrogens (-CH2OCH2X), we have herein explored the yttrium-mediated ROP of three β-propiolactones which do not feature an "outer" methylene group within the alkoxide moiety and which display an alkoxy tertiary or quaternary carbon/silicon, namely rac-BPLCH2OiPr, rac-BPLCH2OiBu, and rac- $BPL^{CH_2OTBDMS}$ (TBDMS = $SitBuMe_2$; Scheme 2),¹¹ respectively, in comparison with the related rac-BPLCH2OPh which is depleted of the outer methylene (-OCH2X) moiety. 10 These three rac-BPL^{CH₂OiPr/OtBu/OTBDMS} monomers, two of which are new and all of which are readily prepared by carbonylation of the parent glycidyl ethers (see the ESI†), 11,12 have been chosen so as to replace the "outer" methylene hydrogens (as in R = OCH_2H , $OCH_2CH = CH_2$ and OCH_2Ph) with one or two methyl groups (as in R = OiPr and OtBu). This should allow one to assess whether the "outer" alkoxide methylene may contribute to the iso-stereocontrol of the ROP of such functional BPL^{CH₂OR}s. In addition, rac-BPL^{CH₂OTBDMS} was selected to probe, besides the impact of a missing "outer" methylene in the side function of the monomer, the impact of the steric bulkiness on the alkoxy functionality (OiPr and OtBu vs. OSiMe₂tBu). Further comparison with the β -propiolactone featuring a somewhat bulky aryloxy moiety, namely BPLCH2OPh, which was shown to give a syndiotactic polyester, 10 could then be made. In addition, PHAs derived from rac-BPL CH2OTBDMS are of further interest as they could subsequently provide access to hydrophilic polyesters upon deprotection of -OTBDMS into pendant hydroxyl groups also available for post-polymerization modification, as for instance to chemically bound a biological moiety for theranostic outcomes. Four catalysts {Y{ONNO^{R',R"}}, 2a-d, having different R',R" ortho/para-substituents installed on the bisphenolate platform and which have previously revealed quite distinctive and effective stereocontrol abilities in the ROP of racemic functional β-lactones due to their

§ Note that, similarly, the ROP of the parent sulfur BPL H sPh recovered the corresponding syndiotactic PHA; see ref. 10.

 $[\]ddagger P_{\mathrm{m}}$ is the probability of meso linkages, that is, the enchainment of two monomer units with the same configuration. $P_{\rm m} = 1 - P_{\rm r}$, where $P_{\rm r}$ is the probability of racemo linkage, that is, the enchainment of two monomer units with the opposite configuration.

different stereo-electronic characteristics, ^{6,7} have been selected for the present study.

Experimental section

See the ESI† for additional details.

Synthesis and characterization of BPL^{CH₂OR} monomers

BPL^{CH₂OR} monomers were synthesized by carbonylation of the corresponding *racemic* or enantiopure glycidyl ethers (rac-/(S)-Glyc^{CH₂OR}) using a previously reported procedure. ^{11,12} All *rac*-BPL^{CH₂OR} and (S)-BPL^{CH₂OR} monomers were characterized (refer to the ESI) and stored under argon at -27 °C.

Typical BPL^{CH₂OR} polymerization procedure

In a typical experiment, 13 in a glovebox, a Schlenk flask was charged with [Y(N(SiHMe₂)₂)₃](THF)₂ (8.8 mg, 14 µmol) and $\{ONNO^{tBu2}\}$ (1d, 7.4 mg, 14 µmol), and toluene (0.25 mL) was next added. To this solution, iPrOH (107 μ L of a 1% (ν/ν) solution in toluene, 1 equiv. vs. Y) was added under stirring at room temperature (ca. 20 °C). After 5 min of stirring, a solution of rac-BPLCH2OR (0.84 mmol, 60 equiv.) in toluene (0.5 mL) was added rapidly and the mixture was stirred at 20 °C for 1 h. The reaction was quenched by the addition of acetic acid (ca. 0.5 mL of a 1.6 mol L⁻¹ solution in toluene). The resulting mixture was concentrated to dryness under vacuum and the conversion was determined by ¹H NMR analysis of the residue in CDCl₃. The crude polymer was then dissolved in CH₂Cl₂ (ca. 1 mL), precipitated in cold pentane (ca. 5 mL), filtered and dried. PBPLCH2OiPr, PBPLCH2OiBu and PBPLCH2OTBDMS were recovered as a colorless oil, yellowish oil, and colorless solid, respectively. All recovered polymers were then analyzed by NMR spectroscopy, mass spectrometry, SEC, and DSC analyses.

Results and discussion

ROP of rac-BPLCH2OiPr

The ROP of rac-BPL^{CH₂OiPr} was explored under the same general operating conditions as those used for the above-mentioned reference ROPs mediated by similar Y{ONNO^{R',R''}} catalytic systems, that is, in toluene solution at room temperature, using $in \ situ$ combinations of 2a-d/iPrOH (1:1) (Table 1). The reactivity trend observed for the different yttrium catalytic systems followed the one established with other similar β -lactones: 6b,7 the Cl substituted catalyst 2d was the least active, with only partial conversion of 30 monomer equiv. even after prolonged reaction time (TOF_{2d} = ca. 0.2 h⁻¹, entry 1); the Me-substituted catalyst 2c achieved nearly complete consumption of ca. 60 and 100 monomer units within 12 and 24 h, respectively (TOF_{2c} = ca. 5 h⁻¹, entry 2); a much higher reactivity was observed with the catalytic systems bearing bulky substituted ligands (cumyl, tBu, t

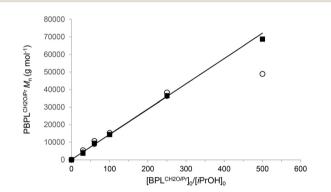


Fig. 1 Illustration of the variation of $M_{n,\mathrm{NMR}} = M_{n,\mathrm{SEC}} \bigcirc$, and $M_{n,\mathrm{theo}}$ (the solid line) molar mass values of PBPL^{CH2OiPr} synthesized from the ROP of rac-BPL^{CH2OiPr} mediated by the 2b/iPrOH (1:1) catalytic system as a function of the BPL^{CH2OiPr} monomer loading/conversion (Table 1, entries 4–8).

Table 1 ROP of rac-BPL^{CH2OiPr} mediated by the 2a-d/iPrOH catalytic systems^a

Entry	Cat.	$\begin{array}{c} \left[\mathrm{BPL}^{\mathrm{CH_{2}O}i\mathrm{Pr}}\right]_{0} / \\ \left[2\right]_{0} / [i\mathrm{PrOH}]_{0} \end{array}$	Time ^b (min)	BPL ^{CH₂OiPr} Conv. ^c (%)	$M_{ m n,theo}^{d} ({ m g\ mol}^{-1})$	$M_{ m n,NMR}^{e}$ (g mol ⁻¹)	$M_{ m n,SEC}^{f}$ (g mol ⁻¹)	$\partial_{\mathbf{M}}{}^f$	$P_{ m r}{}^g$
1	2d	30:1:1	24×60	19	850	1100	1400	1.15	0.70
2	2c	60:1:1	12×60	96	8350	7550	9500	1.09	0.71
3	2c	100:1:1	24×60	90	13 000	15 000	15 900	1.18	0.72
4	2b	30:1:1	5	100	4400	3700	5400	1.09	0.84
5	2b	60:1:1	5	100	8700	9400	10 700	1.11	0.84
6	2b	100:1:1	15	100	14450	14 400	15 300	1.13	0.85
7	2b	250:1:1	20	100	36 050	36 500	38 300	1.08	0.85
8	2b	500:1:1	210	100	72 100	68 700	48 900	1.06	0.86
9	2a	60:1:1	5	100	8700	9000	10 050	1.10	0.82
10	2a	100:1:1	15	100	14450	17 000	18 600	1.13	0.82
11^h	2b	30:1:1	60	94	4100	4600	5600	1.10	<0.05

^a Reactions performed with [BPL^{CH₂OiPr}]₀ = 1.0 M in toluene at room temperature. ^b Reaction times were not necessarily optimized. ^c Conversion of BPL^{CH₂OiPr} as determined by ¹H NMR analysis of the crude reaction mixture. ^d Molar mass calculated according to $M_{n,theo} = ([BPL^{CH₂OiPr}]_0/[2]_0 \times conv._{BPL(CH₂OiPr)} \times M_{BPL(CH₂OiPr)}) + M_{iPrOH}$ with $M_{BPL(CH₂OiPr)} = 144$ g mol⁻¹ and $M_{iPrOH} = 60$ g mol⁻¹. ^e Molar mass determined by ¹H NMR analysis of the isolated polymer, from the resonances of the terminal OiPr group. ^f Number-average molar mass (uncorrected values) and dispersity (M_w/M_n) determined by SEC analysis in THF at 30 °C ν s. polystyrene standards. ^g P_r is the probability of racemic linkages between BPL^{CH₂OiPr} units as determined by ¹³C{¹H} NMR analysis of the isolated PBPL^{CH₂OiPr}s. ^h ROP of enantiopure (S)-BPL^{CH₂OiPr}s.

conversion of 30–250 equiv. of rac-BPL CH_2OiPr was typically achieved within 5–20 min (TOF $_{2a-b}$ > 750 h $^{-1}$, entries 4–10).

The ROP of rac-BPL^{CH₂OiPr} with the **2a–d**/iPrOH systems proceeded with quite good control in terms of macromolecular parameters. All the polymers showed a linear topology with α -isopropoxycarbonyl and ω -hydroxy chain-end groups, as unambiguously established by 1 H and J-MOD NMR spectroscopy and MALDI-ToF mass spectrometry analyses (see the ESI; Fig. S1–S6 \dagger). Also, alongside narrow dispersities ($D_{\rm M}=1.06-1.18$), the calculated ($M_{\rm n,theo}$) and experimental ($M_{\rm n,NMR}$, $M_{\rm n,SEC}$) molar mass values were in quite good agreement. A

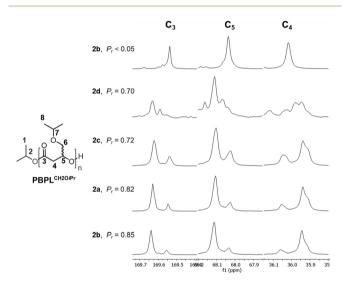


Fig. 2 Zoomed regions of the ¹³C{¹H} NMR spectra (125 MHz, CDCl₃, 23 °C) of PBPL^{CH₂OiPr} prepared by ROP of *rac*-BPL^{CH₂OiPr}, except for the top spectrum of enantiopure (S)-BPL^{CH₂OiPr} (Table 1, entry 11), mediated by the **2a**, **2b**, **2c**, or **2d**/iPrOH (1:1) catalytic systems (Table 1, entries 9, 7, 3 and 1, respectively).

linear relationship between the experimental molar mass values and the rac-BPL $^{\text{CH}_2\text{O}/\text{Pr}}$ monomer loading/conversion up to 250 equiv. was observed with the 2b/iPrOH (1:1) catalytic system (Fig. 1). Altogether, these results confirm the limited extent or the absence of irreversible transfer/side-reactions (typical inter- and intra-molecular undesirable transesterification reactions, *i.e.* reshuffling and backbiting reactions, respectively) and suggest essentially active polymerization features.

A close examination of the carbonyl ($\delta r = ca$. 169.65, $\delta m =$ *ca.* 169.55 ppm), methine ($\delta r = ca.$ 68.12, $\delta m = ca.$ 68.03 ppm) and methylene ($\delta r = ca. 35.94$, $\delta m = ca. 36.05$ ppm) mainchain carbons' signals in the 13C NMR spectra allowed establishing the polymers' tacticity (Fig. 2). For the sake of comparison, a pure isotactic PBPL^{CH2OiPr} system was prepared from the ROP of enantiopure (S)-BPL^{CH₂OiPr} (Table 1, entry 11). Regardless of the catalyst used in the 2a-d series, the ROP of rac-BPL^{CH₂OiPr} gave syndio-enriched polymers. It is noteworthy that the 2c system (Me substituents) exhibited approximately the same syndiotacticity ($P_r = 0.71-0.72$) as the one obtained from 2d (Cl substituents, $P_r = 0.69-0.70$). This suggests the absence of any electronic effect from 2d but, instead, the preponderance of a pure, yet limited steric control, in tuning the tacticity of PBPL^{CH₂O/Pr}. Along the same line, catalytic systems 2a-b that bear bulkier cumyl and tert-butyl substituents resulted in better syndio-enrichments ($P_r = 0.82-0.85$), which are close to those obtained for PBPLCH2OMe, PBPLCH2OAll and $PBPL^{CH_2OBn} (P_r = 0.78-0.90).^7$

ROP of rac-BPLCH2OtBu

The stereoselective ROP of rac-BPL^{CH₂OtBu} was similarly examined (Table 2). The activity trend of catalysts **2a–d** (ca. 75 monomer equiv.) was very comparable to the aforementioned ROP of rac-BPL^{CH₂OtPr}: TOF_{2d} = ca. 0.7 h⁻¹ (entry 1) vs. TOF_{2e} = ca. 10 h⁻¹ (entry 4) vs. TOF_{2a–b} > 900 h⁻¹ (entries 6 and

Table 2 ROP of rac-BPL^{CH2OtBu} mediated by the 2a-d/iPrOH catalytic systems^a

Entry	Cat.	$\mathrm{[BPL^{CH_2OtBu}]_0}/$ $\mathrm{[2]_0/[\it{i}PrOH]_0}$	Time ^b (min)	BPL $^{\text{CH}_2\text{O}t\text{Bu}}$ Conv. c (%)	$M_{ m n,theo}^{d} ({ m g\ mol}^{-1})$	$M_{ m n,NMR}^{e}$ $({ m g~mol}^{-1})$	$M_{ m n,SEC}^{f}$ (g mol ⁻¹)	$\partial_{\mathbf{M}}{}^f$	$P_{ m r}{}^g$
1	2d	25:1:1	24×60	67	2600	2500	2400	1.12	0.70
2	2d	75:1:1	27×60	28	3300	3400	3000	1.06	0.71
3	2c	25:1:1	60	100	3600	3100	3200	1.09	0.74
4	2c	75:1:1	7 h	90	10 700	10 900	13 600	1.16	0.75
5	2b	30:1:1	30	100	4300	3900	4300	1.12	0.83
6	2b	73:1:1	5	100	11 600	11 300	14 800	1.10	0.84
7	2b	120:1:1	10	100	18 800	18 800	$24\ 000$	1.14	0.83
8	2b	250:1:1	15	99	39 100	40 000	49 900	1.15	0.84
9	2b	500:1:1	15	99	78 300	80 000	94 300	1.18	0.84
10	2a	30:1:1	30	100	4300	4300	4000	1.12	0.78
11	2a	75:1:1	5	100	11 900	10 900	15 200	1.14	0.78
12^h	2b	70:1:1	30	100	11 100	10 300	14 300	1.09	<0.05

^a Reactions performed with [BPL^{CH₂OtBu}]₀ = 1.0 M in toluene at room temperature. ^b Reaction times were not necessarily optimized. ^c Conversion of BPL^{CH₂OtBu} as determined by ¹H NMR analysis of the crude reaction mixture. ^d Molar mass calculated according to $M_{\rm n,theo}$ = ([BPL^{CH₂OtBu}]_o/[2]₀ × conv._{BPL(CH₂OtBu)} × $M_{\rm BPL(CH₂OtBu)}$) + $M_{i\rm PrOH}$ with $M_{\rm BPL(CH₂OtBu)}$ = 158 g mol⁻¹ and $M_{i\rm PrOH}$ = 60 g mol⁻¹. ^e Molar mass determined by ¹H NMR analysis of the isolated polymer, from the resonances of the terminal OiPr group. ^f Number-average molar mass (uncorrected values) and dispersity ($M_{\rm w}/M_{\rm n}$) determined by SEC analysis in THF at 30 °C ν s. polystyrene standards. ^g $P_{\rm r}$ is the probability of racemic linkages between BPL^{CH₂OtBu} units as determined by ¹³C{¹H} NMR analysis of the isolated PBPL^{CH₂OtBu}s. ^h ROP of enantiopure (S)-BPL^{CH₂OtBu}.

11). Also, the corresponding characteristic data of PBPL^{CH₂OtBu} (NMR spectra, $M_{\rm n}$ and dispersity values, and linear molar mass increase correspondingly to larger monomer loadings) revealed well-defined α -isopropoxycarbonyl, ω -hydroxy telechelic PHAs with chain-end fidelity and an overall quite good control of the polymerization (see the ESI, Fig. S7–S11†).

The stereochemistry of PBPL^{CH₂OtBu} prepared by ROP of *rac*-BPL^{CH₂OtBu} mediated by the **2a-d**/*i*PrOH systems closely resembles that of PBPL^{CH₂OtPr}. All the isolated PBPL^{CH₂OtBu} samples revealed a syndio-enrichment regardless of the catalyst used **(2a-d)** (Fig. 3) (δ r(C=O) = ca. 169.77, δ m(C=O) = ca. 169.70 ppm; δ r(CH) = ca. 62.18, δ m(CH) = ca. 62.11 ppm; δ r(CH₂) = ca. 35.97, δ m(CH₂) = ca. 36.06 ppm). While **2d**

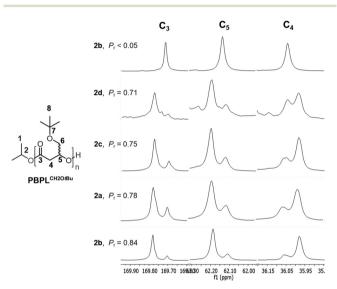
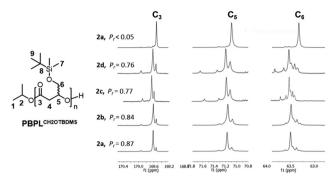


Fig. 3 Zoomed regions of the ¹³C{¹H} NMR spectra (125 MHz, CDCl₃, 23 °C) of PBPL^{CH₂OtBu} prepared by ROP of *rac*-BPL^{CH₂OtBu}, except for the top spectrum of enantiopure (S)-BPL^{CH₂OtBu} (Table 2, entry 12), mediated by the **2a**, **2b**, **2c**, or **2d**/*i*PrOH (1:1) catalytic systems (Table 2, entries 2, 4, 6 and 11, respectively).

(Cl substituents) afforded almost the same enrichment of PBPL $^{\text{CH}_2\text{O}t\text{Bu}}$ as that of PBPL $^{\text{CH}_2\text{O}t\text{Pr}}$ ($P_r = ca.~0.70$), catalyst 2c (Me substituents) contributed to a slightly higher syndiotacticity ($P_r = 0.75 \ vs.~0.71$), while catalyst 2a (cumyl substituents) exhibited a slightly inferior syndio-regularity ($P_r = 0.78 \ vs.~0.82$). Finally, catalyst 2b (tBu substituents) produced the highest enrichment of PBPL $^{\text{CH}_2\text{O}t\text{Bu}}$ ($P_r = 0.84$), again reminiscent of that of PBPL $^{\text{CH}_2\text{O}t\text{Pr}}$ ($P_r = 0.85$). Hence, the general reactivity trend of the 2a-d catalysts to yield syndio-enriched PBPL $^{\text{CH}_2\text{O}t\text{Bu}}$ is the same as the one observed for PBPL $^{\text{CH}_2\text{O}t\text{Pr}}$, but with minor differences in the PHA enrichment in the case of catalysts 2a,c.

ROP of rac-BPL CH2OTBDMS


Representative results of the investigation of the ROP of rac-BPL $^{\text{CH}_2\text{OTBDMS}}$ mediated by the $2\mathbf{a}$ - \mathbf{d}/i PrOH catalytic systems are summarized in Table 3. With both $2\mathbf{c}$ - \mathbf{d} systems (Me, Cl substituents), incomplete low monomer conversions were obtained for rac-BPL $^{\text{CH}_2\text{OTBDMS}}$ loadings of 30–60 equiv. after 2–3 days (entries 1–3), exhibiting very low $\text{TOF}_{2\mathbf{c}$ - $\mathbf{d}}$ of ca. 0.1–0.2 h $^{-1}$. The $2\mathbf{a}$ - \mathbf{b} systems (tBu and cumyl substituents) led to complete or almost complete conversions of 30–500 equiv. of rac-BPL $^{\text{CH}_2\text{OTBDMS}}$ after 1–8 h (entries 4–9), with higher $\text{TOF}_{2\mathbf{a}$ - $\mathbf{b}}$ > 100 h $^{-1}$. Hence, the $2\mathbf{a}$ - \mathbf{d}/i PrOH catalytic systems featured a regular trend toward the ROP of rac-BPL $^{\text{CH}_2\text{OTBDMS}}$, yet with an overall lower activity as compared to the ROP of rac-BPL $^{\text{CH}_2\text{O}i\text{Pr}}$ and rac-BPL $^{\text{CH}_2\text{O}i\text{Bu}}$.

The $M_{\rm n}$ and dispersity data summarized in Table 3, the linear variation of the $M_{\rm n,NMR}$ and $M_{\rm n,SEC}$ molar mass values of PBPL^{CH2OTBDMS} as a function of the monomer loading/conversion and the NMR spectra (see the ESI Fig. S12–S16†), all testify a similar well-controlled polymerization of rac-BPL^{CH2OTBDMS} to the 2a-d/iPrOH catalytic systems, as that observed for rac-BPL^{CH2OiPr} and rac-BPL^{CH2OiBu}, affording well-defined α -isopropoxycarbonyl, ω -hydroxy end-capped PHAs. Also, similar to PBPL^{CH2OiPr} and PBPL^{CH2OiBu} discussed above,

Table 3 ROP of rac-BPL^{CH₂OTBDMS} mediated by the 2a-d/iPrOH catalytic systems^a

Entry	Cat.	$\mathrm{[BPL^{CH_2OTBDMS}]_0}/\mathrm{[2]_0/[iPrOH]_0}$	Time ^b (h)	BPL $^{\text{CH}_2\text{OTBDMS}}$ Conv. c (%)	$M_{ m n,theo}^{d} ({ m g\ mol}^{-1})$	$M_{ m n,NMR}^{e}$ (g mol ⁻¹)	$M_{ m n,SEC}^{\ \ f}$ (g mol ⁻¹)	$\partial_{\mathbf{M}}^{f}$	$P_{\mathrm{rM}}{}^{g}$
1	2d	30:1:1	48	16	1800	2500	1000	1.07	0.76
2	2c	30:1:1	8	30	2000	1600	2500	1.14	$n.d.^i$
3	2c	60:1:1	72	25	3300	3750	3000	1.12	0.77
4	2b	60:1:1	4	96	12 500	13 500	9000	1.13	0.83
5	2b	120:1:1	8	95	24 700	23 400	19 200	1.12	0.84
6	2b	250:1:1	5	100	47 100	37 600	24 300	1.07	0.81
7	2b	500:1:1	5	100	94 300	86 900	30 000	1.06	0.81
8	2a	30:1:1	1	98	6400	7600	8000	1.11	0.87
9	2a	60:1:1	4	99	12 900	12 350	10 000	1.10	0.87
10^h	2a	50:1:1	4	99	10 300	9100	8400	1.15	< 0.05

^a Reactions performed with [BPL^{CH₂OTBDMS}]₀ = 1.0 M in toluene at room temperature. ^b Reaction times were not necessarily optimized. ^c Conversion of BPL^{CH₂OTBDMS} as determined by ¹H NMR analysis of the crude reaction mixture. ^d Molar mass calculated according to $M_{\rm n,theo}$ = ([BPL^{CH₂OTBDMS}]_o/[2]₀ × conv._{BPL(CH₂OTBDMS)} × $M_{\rm BPL(CH₂OTBDMS)}$) + $M_{i\rm PrOH}$ with $M_{\rm BPL(CH₂OTBDMS)}$ = 216 g mol⁻¹ and $M_{i\rm PrOH}$ = 60 g mol⁻¹. ^e Molar mass determined by ¹H NMR analysis of the isolated polymer, from the resonances of the terminal O*i*Pr group. ^f Number-average molar mass (uncorrected values) and dispersity ($M_{\rm w}/M_{\rm n}$) determined by SEC analysis in THF at 30 °C ν s. polystyrene standards. ^g $P_{\rm r}$ is the probability of racemic linkages between BPL^{CH₂OTBDMS} units as determined by ¹³C{¹H} NMR analysis of the isolated PBPL^{CH₂OTBDMS}s. ^h ROP of enantiopure (S)-BPL^{CH₂OTBDMS}. ⁱ Not determined.

Fig. 4 Zoomed regions of the 13 C(1 H) NMR spectra (125 MHz, CDCl₃, 23 °C) of PBPL^{CH₂OTBDMS} prepared by ROP of rac-BPL^{CH₂OTBDMS}, except for the top spectrum of enantiopure (S)-BPL^{CH₂OTBDMS} (Table 3, entry 10), mediated by the **2a**, **2b**, **2c**, or **2d**/*i*PrOH (1:1) catalytic systems (Table 3, entries 9, 5, 3 and 1, respectively); *stands for residual monomer resonances.

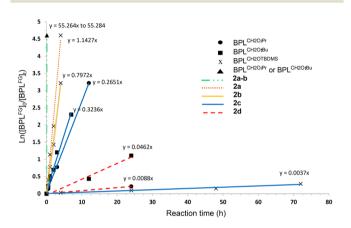


Fig. 5 Semi-logarithmic first-order plots for the ROP of rac-BPL FG s (FG = CH₂OiPr, CH₂OtBu, and CH₂OTBDMS) mediated by 2a-d/iPrOH (20 °C, toluene; [BPL FG] $_0/\{[2a-c]_0/[i$ PrOH] $_0\}$ = 60-75:1:1 and [BPL FG] $_0/\{[2d]_0/[i$ PrOH] $_0\}$ = 25-30:1:1): 2a (Table 1, entry 9; Table 2, entry 11; Table 3, entry 9); 2b (Table 1, entry 6; Table 2, entry 6; Table 3, entry 4); 2c (Table 1, entry 2; Table 2, entry 4; Table 3, entry 3) and 2d (Table 1, entry 1; Table 2, entry 1); plots from 2a-b all overlap due to similar higher activity of these catalysts regardless of the monomer functionality, and are represented as Δ . The slow kinetics of the ROP of rac-BPL OTBDMS with 2d (Table 3, entry 1) is not shown.

Kinetics of the ROP of rac-BPL^{CH2OiPr/OtBu/OTBDMS}

Monitoring of NMR-scale polymerizations of rac-BPL^{CH2OiPr/} OtBu/OTBDMS performed with 2a-d/iPrOH confirmed the kinetic trends assessed from the batch experiments (Tables 1-3). Linear semi-logarithmic plots established that all reactions were first-order in the monomer, with apparent rate constants $k_{\rm app} > 55~{\rm min^{-1}}$ for BPL^{CH₂OiPr/OtBu}/2a-b (complete conversion was observed after only 5 min under these conditions; see Table 1, entry 9 and Table 2, entry 11); $k_{\rm app}$ = 1.143 ± $0.072 \text{ min}^{-1} \text{ for } BPL^{CH_2OTBDMS}/2a; 0.797 \pm 0.031 \text{ min}^{-1} \text{ for }$ $BPL^{CH_2OTBDMS}/2b$; 0.323 ± 0.033 min^{-1} for $BPL^{CH_2OtBu}/2c$; $0.265 \pm 0.032 \text{ min}^{-1} \text{ for BPL}^{\text{CH}_2\text{O}i\text{Pr}}/2\text{c}; 0.046 \pm 0.041 \text{ min}^{-1} \text{ for}$ $BPL^{CH_2OtBu}/2d$; 0.0088 ± 0.0021 min⁻¹ for $BPL^{CH_2OtPr}/2d$; $0.0037 \pm 0.0033 \text{ min}^{-1} \text{ for BPL}^{\text{CH}_2\text{OTBDMS}}/2c$ (Fig. 5). Overall, the major trend for the ability of the monomers to ring-open polymerize was thus $BPL^{CH_2OtBu} \ge BPL^{CH_2OtPr} \gg BPL^{CH_2OTBDMS}$ while the catalysts' activity thus generally followed the order $2a-b \gg 2c \gg 2d$, as previously observed for the ROP of various BPL^{FG}s β-lactones (FG = CH₂OAll, CH₂OBn, CH₂OMe, CH₂OPh, CH₂CH₂OBn, and CH₂SPh) promoted by these catalytic systems (vide supra).7,10

The thermal characteristics of PBPL^{CH₂OR}s synthesized by ROP of *rac*-BPL^{CH₂OR} (R = iPr, tBu, and TBDMS) were enhanced by the **2a–d** catalytic systems.

The thermal signature of the new functional PHAs synthesized in this work was briefly investigated by differential scanning calorimetry (DSC, Fig. S17–S20†). The glass transition temperature (T_g) values of syndio-enriched

Table 4 Overall sketch of the stereoselective ROP of rac-BPL $^{CH_2OMe/CH_2OAll/CH_2OBn/CH_2OiPr/CH_2OtBu/CH_2OTBDMS}$ as a function of catalytic systems {Y{ON (X)O $^{R',R''}$ } 2a-d, with P_r , T_g and T_m values of the resulting PBPL $^{CH_2OMe/CH_2OAll/CH_2OBn/CH_2OiPr/CH_2OtBu/CH_2OTBDMS}$

rac -BPL FG s Cat 2 (R' = R")	rac-BPL ^{CH2OMe} [7]	rac-BPL ^{CH₂OAll} [7]	rac-BPL ^{CH₂OBn} [7]	rac-BPL ^{CH₂OiPr} (this work)	rac-BPL ^{CH₂OtBu} (this work)	rac-BPL ^{CH₂OTBDMS} (this work)
Crowded (cumyl, tBu) (2a-b)	Syndiotactic $P_r = 0.78-0.81$ $T_g = -12$ °C $T_m = 116$ °C	Syndiotactic $P_r = 0.81-0.84$ $T_g = -38$ °C $T_m = 85$ °C	Syndiotactic $P_{\rm r}$ = 0.85–0.90 $T_{\rm g}$ = 0 °C no $T_{\rm m}$ obsv.	Syndiotactic $P_{\rm r} = 0.82 - 0.86$ $T_{\rm g} = -18 ^{\circ}{\rm C}^a$ no $T_{\rm m}$ obsv. a	Syndiotactic $P_r = 0.78-0.84$ $T_g = -6 ^{\circ}C^b$ no T_m obsv. b	Syndiotactic $P_{r} = 0.81-0.87$ $T_{g} = 9 ^{\circ}C^{c}$ $T_{m} = 119 ^{\circ}C ^{c}$
Aliphatic non-crowded (Me; 2c)	Atactic $P_{\rm r} = 0.49$ $T_{\rm g} = -18 ^{\circ}\text{C}$	Atactic $P_{\rm r} = 0.49$ $T_{\rm g} = -40 ^{\circ}\text{C}$	Atactic $P_{\rm r} = 0.50$ $T_{\rm g} = -6 ^{\circ}\text{C}$	Syndiotactic $P_r = 0.71-0.72$ T_g , $T_m = n.d.^d$	Syndiotactic $P_{\rm r} = 0.74-0.75$ $T_{\rm g}, T_{\rm m} = {\rm n.d.}^d$	Syndiotactic $P_{\rm r} = 0.77$ $T_{\rm g}$, $T_{\rm m} = {\rm n.d.}^d$
Halogenated non-crowded (Cl, 2d)	Isotactic $P_{\rm r} = 0.10$ $T_{\rm g} = -18 ^{\circ}{\rm C}$	Isotactic $P_{\rm r} = 0.09$ $T_{\rm g} = -39 ^{\circ}{\rm C}$	Isotactic $P_{\rm r} = 0.10$ $T_{\rm g} = 0 ^{\circ}{\rm C}$	Syndiotactic $P_r = 0.70$ T_g , $T_m = \text{n.d.}^d$	Syndiotactic $P_{\rm r} = 0.70-0.71$ $T_{\rm g}, T_{\rm m} = {\rm n.d.}^d$	Syndiotactic $P_r = 0.76$ T_g , $T_m = \text{n.d.}^d$

^a Table 1, entry 8. ^b Table 2, entry 5. ^c Table 3, entry 6; similar values ($T_g = 8$ °C, $T_m = 118$ °C) were recorded for the sample in Table 3, entry 7. ^d Not determined.

PBPL CH2OIPI/CH2OIBU/CH2OTBDMS slightly changed from one to another PHA, and ranged from -18 to +9 °C (Table 4). When compared to the corresponding values gathered for PBPL CH2OMe/CH2OAllyl/CH2OBn ($T_{\rm g}$ ranging from -38 to 0 °C, Table 4), these values appear to grossly increase with the steric hindrance imparted by the alkoxy/silyloxy side-functionality which decreases the motion of the macromolecules. Also, among the different syndio-enriched polymers herein prepared, only PBPL CH2OTBDMS featured a semi-crystalline behavior with $T_{\rm m}$ values of 118–119 °C (Fig. S19 and S20†).

Conclusions

Table 4 summarizes the stereoselectivity outcome of the ROP of rac-BPL CH₂OMe/CH₂OAll/CH₂OBn/CH₂OiPr/CH₂OtBu/CH₂OTBDMS function of yttrium catalytic systems, differentiating the latter ones according to the presence of highly sterically crowded substituents (i.e., tBu, cumyl; 2a-b), simple aliphatic noncrowded substituents (Me, 2c) and halogeno non-crowded substituents (Cl, 2d). Highly syndio-enriched PBPLCH2OiPr/OtBu/ OTBDMS were obtained from 2a-b, alike PBPLCH2OMe/OAll/OBn $(P_{\rm r} = 0.78 - 0.87 \text{ } \nu \text{s. } 0.78 - 0.90; \text{ respectively}). \text{ However, substi-}$ tution of one or two hydrogen atoms in the alkoxide "outer" methylene group of rac-BPLCH2OMe/OAll/OBn by one or two methyl groups - as in rac-BPLCH2OiPr and rac-BPLCH2OtBu - or with rac-BPLCH2OTBDMS resulted in: (i) changing the stereoregularity of the polymer from atactic to syndio-enriched polymers with catalyst 2c ($P_r = 0.49/0.50 \text{ vs. } 0.71-0.77$, respectively), and (ii) switching from isotactic to syndio-enriched polymers with catalyst 2d ($P_r = 0.09-0.10 \text{ } \nu s. 0.76-0.71$, respectively). Obviously, these observations evidence that the stereocontrol in the ROP of racemic 4-alkoxymethylene-β-propiolactones is driven, systematically by steric considerations, but in a few specific cases by electronic ones as well. For rac-BPLCH2OiPr, rac-BPL^{CH₂OtBu} and rac-BPL^{CH₂OTBDMS}, apparently due to the large steric constraints induced by the alkoxy(silyloxy) sidefunctionality, all reactions lead to the formation of syndioenriched polymers, regardless of the catalyst - a crowded one or a non-crowded one - used. This is what is expected from a 'regular' chain-end stereocontrol mechanism, in which minimization of steric repulsions in the transition state favors the enchainment of monomer units alternately with opposite absolute configurations (and hence the formation of syndiotactic/heterotactic polymers). Only the specific combination of a BPLFG monomer containing two methylene hydrogens apart from the central oxygen on the methylene alkoxy side-functionality (i.e., FG = CH₂OMe, CH₂OAllyl, and CH₂OBn) with a catalyst bearing chloro-substituents (2a) produced isotactic PHAs; this is assumed to arise from attractive interactions between the ligand chloro substituents and the hydrogen atoms on the alkoxy (methoxy, allyloxy, and benzyloxy) side chain of the ring-opened monomer/growing polymer chain. On the other hand, a catalyst with highly sterically crowding substituents on the ligand platform is necessary to recover syndio-enriched PHAs from the latter BPLCH2OMe,CH2OAll,CH2OBn monomers,

which show no major steric bulkiness on the side chain alkoxymethylene moiety. Thus, at this stage of our investigations, in a ROP mediated by a typically isoselective yttrium catalyst, bulkiness of the –OR methylene-alkoxy/silyloxy moiety of BPL $^{\rm CH_2OR}$ monomers is not sufficient to impart isoselectivity, while the presence of two methylene groups adjacent to the oxygen within these BPL $^{\rm CH_2OMe,CH_2OAllyl,CH_2OBn}$ still appears mandatory to access desirable synthetic isotactic PHAs that mimic their natural analogues. Ongoing work by our group aims at examining further the contribution of the two methylene groups, apart from the oxygen in the side-functionality, in the stereoselective ROP of functional PHAs.

Author contributions

CRediT: Rama M. Shakaroun: investigation (lead) and writing – original draft (supporting); Ali Dhaini: investigation (supporting) and writing – review & editing (supporting); Romain Ligny: investigation (supporting); Ali Alaaeddine: supervision (supporting); Sophie Guillaume: conceptualization (lead), supervision (lead), writing – original draft (supporting), and writing – review & editing (lead); Jean-François Carpentier: conceptualization (lead), supervision (lead), writing – original draft (lead), and writing – review & editing (lead).

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This research was financially supported in part by the University of Rennes (Ph.D. grants to R. S., A. D. and R. L.), the Lebanese University (Ph.D. grants to R. S. and A. D.) and the Région Bretagne (Ph.D. ARED grant to R. L.). We are grateful to CRMPO and UAR ScanMAT, especially to Philippe Jéhan, Elsa Caytan, and Marielle Blot for MS, NMR and chiral HPLC chromatography analyses, respectively.

References

1 For leading reviews on stereoselective metal-catalyzed ROP of lactones and related derivatives, see: (a) O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, *Chem. Rev.*, 2004, **104**, 6147–6176; (b) P. Dubois, O. Coulembier and J.-M. Raquez, *Handbook of Ring-Opening Polymerization*, Wiley, Weinheim, 2009; (c) C. M. Thomas, *Chem. Soc. Rev.*, 2010, **39**, 165–173; (d) M. J. Stanford and A. P. Dove, *Chem. Soc. Rev.*, 2010, **39**, 486–494; (e) P. J. Dijkstra, H. Du and J. Feijen, *Polym. Chem.*, 2011, **2**, 520–527; (f) A. Buchard, C. M. Bakewell, J. Weiner and C. K. Williams, *Top. Organomet. Chem.*, 2012, **39**, 175–224; (g) S. M. Guillaume,

E. Kirillov, Y. Sarazin and J.-F. Carpentier, *Chem. – Eur. J.*, 2015, 21, 7988–8003; (h) J. C. Worch, H. Prydderch, S. Jimaja, P. Bexis, M. L. Becker and A. P. Dove, *Nat. Rev. Chem.*, 2019, 3, 514–535; (i) M. J.-L. Tschan, R. M. Gauvin and C. M. Thomas, *Chem. Soc. Rev.*, 2021, 50, 13587–13608; (j) L. Al-Shok, D. M. Haddleton and F. Adams, Progress in Catalytic Ring-Opening Polymerization of Biobased Lactones, in *Advances in Polymer Science*, 2022, Springer; (k) A. H. Westlie, E. C. Quinn, C. R. Parker and E. Y.-X. Chen, *Prog. Polym. Sci.*, 2022, 134, 101608.

- 2 For recent examples of achiral organocatalysts for highly isoselective ROP of *racemic* lactide, see: (a) B. Koca, D. Akgul and V. Aviyente, *Eur. Polym. J.*, 2019, **121**, 109291 and references cited therein; (b) Y. Liu, J. Zhang, X. Kou, S. Liu and Z. Li, *ACS Macro Lett.*, 2022, **11**, 1183–1189; (c) F. Ren, X. Li, J. Xian, X. Han, L. Cao, X. Pan and J. Wu, *J. Polym. Sci.*, 2022, **60**, 2847–2854.
- 3 For selected examples of metal-based catalysts bearing non-chiral ligands for isoselective ROP of rac-LA, see: (a) N. Nomura, R. Ishii, Y. Yamamoto and T. Kondo, Chem. Eur. J., 2007, 13, 4433–4451; (b) P. McKeown, M. G. Davidson, G. Kociok-Köhn and M. D. Jones, Chem. Commun., 2016, 52, 10431–10434; (c) D. Myers, A. J. P. White, C. M. Forsyth, M. Bown and C. K. Williams, Angew. Chem., Int. Ed., 2017, 56, 5277–5282; (d) Z. Mou, B. Liu, M. Wang, H. Xie, P. Li, L. Li, S. Lia and D. Cui, Chem. Commun., 2014, 50, 11411–11414; (e) Z. Zhuo, C. Zhang, Y. Luo, Y. Wang, Y. Yao, D. Yuan and D. Cui, Chem. Commun., 2018, 54, 11998–12001; (f) C. Kan, J. Hu, Y. Huang, H. Wang and H. Ma, Macromolecules, 2017, 50, 7911–7919.
- 4 (a) X. Tang and E. Y.-X. Chen, Nat. Commun., 2018, 9, 2345–2356; (b) E. Y.-X. Chen and X. Tang, US Pat. Appl, 2019, 0211144; (c) X. Tang, A. H. Westlie, E. M. Watson and E. Y.-X. Chen, Science, 2019, 366, 754–758; (d) Z. Zhang, C. Shi, M. Scoti, X. Tang and E. Y.-X. Chen, J. Am. Chem. Soc., 2022, 144, 20016–20024.
- 5 (a) For a review on stereoselective ROP of β-lactones, see: J.-F. Carpentier, *Macromol. Rapid Commun.*, 2010, 31, 1696–1705. β-Butyrolactone (BL, aka BPLMe) is the most common chiral β-lactone; few catalyst systems have shown isoselectivity towards rac-BL with P_m values (i.e., the probability of meso/isotactic enchainment) in the range 0.65–0.85; see: (b) Z. Zhuo, C. Zhang, Y. Luo, Y. Wang, Y. Yao, D. Yuan and D. Cui, *Chem. Commun.*, 2018, 54, 11998–12001; (c) N. Ajellal, G. Durieux, L. Delevoye,

- G. Tricot, C. Dujardin, C. M. Thomas and R. M. Gauvin, *Chem. Commun.*, 2010, 46, 1032–1034; (d) M. Zintl, F. Molnar, T. Urban, V. Bernhart, P. Preishuber-Pflügl and B. Rieger, *Angew. Chem., Int. Ed.*, 2008, 47, 3458–3460, (*Angew. Chem.*, 2008, 120, 3508–3510); (e) R. Reichardt, S. Vagin, R. Reithmeier, A. K. Ott and B. Rieger, *Macromolecules*, 2010, 43, 9311–9317; (f) S. Vagin, M. Winnacker, A. Kronast, P. T. Altenbuchner, P. Deglmann, C. Sinkel, R. Loos and B. Rieger, *ChemCatChem*, 2015, 7, 3963–3971.
- (a) A. Amgoune, C. M. Thomas, S. Ilinca, T. Roisnel and J.-F. Carpentier, *Angew. Chem., Int. Ed.*, 2006, 45, 2782–2784; *Angew. Chem.*, 2006, 118, 2848–2850. For recent accounts, see: (b) J.-F. Carpentier, *Organometallics*, 2015, 34, 4175–4189; (c) H. Li, R. M. Shakaroun, S. M. Guillaume and J.-F. Carpentier, *Chem. Eur. J.*, 2020, 26, 128–138.
- 7 (a) R. Ligny, M. M. Hänninen, S. M. Guillaume and J.-F. Carpentier, *Angew. Chem., Int. Ed.*, 2017, 56, 10388–10393, (*Angew. Chem.*, 2017, 129, 10524–10529);
 (b) R. Ligny, M. M. Hänninen, S. M. Guillaume and J.-F. Carpentier, *Chem. Commun.*, 2018, 54, 8024–8031.
- 8 For a recent example of isoselective ROP of *racemic* β-thiobutyrolactone by the same type of achiral alkoxyamino-bisphenolate-yttrium catalysts, see: H. Li, J. Ollivier, S. M. Guillaume and J.-F. Carpentier, *Angew. Chem., Int. Ed.*, 2022, **61**, e202202386.
- 9 Other types of NCIs have also been proposed to play a beneficial role in stereoselective ROP of *rac*-LA promoted by Zn-β-diketiminate and Al-bis(cathecolato-amino) catalysts; see: (a) E. L. Marshall, V. C. Gibson and H. S. Rzepa, *J. Am. Chem. Soc.*, 2005, 127, 6048–6051; (b) S. Gesslbauer, R. Savela, Y. Chen, A. J. P. White and C. Romain, *ACS Catal.*, 2019, 9, 7912–7920.
- 10 R. M. Shakaroun, H. Li, P. Jéhan, M. Blot, A. Alaaeddine, J.-F. Carpentier and S. M. Guillaume, *Polym. Chem.*, 2021, 12, 4022–4034.
- 11 Rac-BPL^{CH}₂OiPr and rac-BPL^{CH}₂OiBu are new monomers. For the synthesis and organocatalyzed ROP of rac-BP CH OTBDMS, see: R. M. Shakaroun, H. Li, P. Jéhan, A. Alaaeddine, J.-F. Carpentier and S. M. Guillaume, Polym. Chem., 2020, 11, 2640–2652.
- 12 (*a*) J. A. Schmidt, E. B. Lobkovsky and G. W. Coates, *J. Am. Chem. Soc.*, 2005, **127**, 11426–11435; (*b*) J. W. Kramer and G. W. Coates, *Tetrahedron*, 2008, **64**, 6973–6978.
- 13 M. Bouyahyi, N. Ajellal, E. Kirillov, C. M. Thomas and J.-F. Carpentier, *Chem. Eur. J.*, 2011, 17, 1872–1883.