Lite Version|Standard version

To gain access to this content please
Log in with your free Royal Society of Chemistry publishing personal account.
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Self-assemblies containing the nucleobase analogue 2,6-diacylaminopyridine (DAP) have been successfully prepared for the first time by aqueous seeded RAFT polymerization in high concentrations. For this purpose, a diblock copolymer containing poly(ethylene glycol) (PEG) and DAP polymethacrylate blocks was used as a macro-chain-transfer agent (PEG124-b-PDAP9-CTA) for the polymerization of 2-hydroxypropyl methacrylate (HPMA) in water. From the systematic variation of the degree of polymerization and solid concentration, a phase diagram has been generated that correlates both variables with the morphologies of this new system. Self-assemblies have been characterized by TEM and DLS, observing morphologies from low to high order (from spherical micelles to worms and to vesicles). Self-assembly morphologies are stable for almost a year, except in the case of worms that turn into spherical micelles after a few weeks. In addition, H-bonding supramolecular functionalization of the DAP repeating units during aqueous seeded RAFT polymerization has been examined by functionalization with a cross-linker with four thymine groups. Finally, the loading and the subsequent release of Nile Red have been proven in both supramolecular cross-linked and non-cross-linked self-assemblies.

Graphical abstract: Aqueous seeded RAFT polymerization for the preparation of self-assemblies containing nucleobase analogues

Page: ^ Top