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Direct, transition metal-free B(dan)-installation into organic frame-

works has been developed. Heteroaryl–H bonds were transform-

able into the respective heteroaryl–B(dan) bonds through deproto-

nation. The resulting heteroaryl–B(dan) compounds, which are

otherwise difficult to access, can undergo the direct Suzuki–

Miyaura coupling. The method was demonstrated to apply to a

silicon nucleophile, giving Lewis acidity-diminished stable silyl–B

(dan) and –B(aam) in one pot.

Installation of a naphthalene-1,8-diaminato (dan) substituent
on boron centers significantly diminishes the boron-Lewis
acidity,1 thus providing transmetalation-resistant properties to
the respective organoboron compounds [R–B(dan)] that are
conventionally synthesized by dehydration condensation of
organoboronic acids [R–B(OH)2] and 1,8-diaminonaphthalene
(danH2) (Scheme 1A).2 The characteristic feature has been uti-
lized for the boron-masking strategy in the iterative Suzuki–
Miyaura coupling (SMC),2 where the B(dan) moieties remain
intact during the cross-coupling event at Lewis acidic B(OH)2
or pinacol boronates [B(pin)]. On the other hand, we have dis-
closed that the B(dan) moieties can be activated toward trans-
metalation by treatment with t-BuOK, leading to the direct
SMC of aryl–3,4 and cyclopropyl–B(dan).5 In addition to the
inactive/active flexible properties in the SMC depending on
bases, dan-installation also endows organoboron compounds
with air- and water-resistant properties: protodeborylation
is substantially suppressed with 2-pyridyl–B(dan),3,6 and
PhMe2Si–B(dan)

7 becomes stable in air, while their B(OH)2/B
(pin) counterparts usually suffer from serious decomposition
under these conditions.8,9 In this regard, the development of a
direct method of synthesizing dan-substituted organoboron
compounds,10 especially heteroaryl ones that are often
unstable in their Lewis acidic –B(OH)2 forms,11 would be an

important subject, since it could open the way to synthetic
transformations with heteroaryl–B(dan). We have previously
reported on a reaction of Grignard reagents with H–B(dan)
that directly produces various R–B(dan) including 2-pyridyl–
and 2-thienyl–B(dan) under transition metal-free conditions
(Scheme 1B);6 however, this reaction requires organic bro-
mides (R–Br for preparing R–MgBr) and pre-prepared H–B
(dan), which would leave something to be desired.12 Hence,
our attention was focused on the use of borates [R–B(OR′)3

−],
one of the most common intermediates in the synthesis of
organoboronic acid derivatives, generated from readily accessi-
ble B(OR′)3 and carbon nucleophiles (R–M, M = Li, MgX) for
their direct conversion to R–B(dan). Here we disclose an
improved approach to prepare R–B(dan) by using only com-
mercially available reagents, wherein deprotonation of R–H
moieties is also usable for generating the requisite carbon
nucleophiles (Scheme 1C).

We first conducted a reaction (5 mmol scale) of 5-pyrazolyl
lithium, prepared readily by deprotonation of 1-methyl-1H-pyr-

Scheme 1 Transition metal-free synthesis of Ar–B(dan).
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azole (1a), with triethylborate [B(OEt)3]; subsequent treatment
of the resulting pyrazoylborate [5-pyrazolyl–B(OEt)3

−] with 1,8-
diaminonaphthalene and acetic acid, in a similar way to the
direct transformation of trialkyl borates [R–B(OR′)3

−] into
pinacol boronates [R–B(pin)],13 provided 5-pyrazolyl–B(dan)
(2a) in 88% yield (Scheme 2).14 Because the one-pot direct con-
version of a heteroaryl–H bond into a heteroaryl–B(dan) bond
can be carried out under non-aqueous conditions, 5-thiazolyl–
B(dan) (2b and 2c) could also be synthesized, avoiding the
intermediary formation of their protodeborylation-prone
B(OH)2 counterparts.

11b An acidic C–H moiety of furan (1d) or
thiophene (1e) was also convertible into the respective C–B
(dan) (2d: 75% and 2e: 70%), and 4,4-dimethyl-2-phenyl-2-oxa-
zoline (1f ) and 1,3-dimethoxybenzene (1g) could participate in
the reaction via directed ortho metalation. Owing to the dimin-
ished boron Lewis acidity, all the heteroaryl–B(dan) and other
products mentioned below exhibit sufficient stability under
ambient conditions, allowing for their isolation by column
chromatography. The use of 1,1′-dilithioferrocene generated by
dual deprotonation of ferrocene (1h) resulted in the formation
of 1,1′-B(dan)-substituted ferrocene (2h) in 59% yield, and the
procedure was also applicable to phenylacetylene (1i) or 1,3-
dithiane (1j), giving phenylethynyl–B(dan) (2i) or 1,3-dithian-2-
yl–B(dan) (2j) as air/water-stable compounds.15

Organic bromides (1k–1q) were naturally usable as starting
materials (Scheme 3), and thus 2-fluorophenyl–B(dan) (2k),
2-pyridyl–B(dan) (2l) and 2,2′-B(dan)-substituted 1,1′-binaphthyl
(2m) were produced through lithium–bromine exchange. In
addition, various aryl–B(dan) (2n–2p)16 and alkyl–B(dan) (2q and
2r17) could be synthesized with the respective Grignard
reagents.18 A carbon nucleophile used for B(dan)-installation
was also available by lithium–tin exchange of 2,5-bis(tributyl-

stannyl)thiophene (1s) to afford a 63% yield of 2s bearing B(dan)
and SnBu3 functionalities on the thiophene ring (Scheme 4).

It should be noted that the present method could also be
applied to capturing a silicon nucleophile: air-resistant
PhMe2Si–B(dan) (2t) became straightforwardly accessible in
40% yield by treating PhMe2SiLi with B(OEt)3 (Scheme 5),19,20

while the previous multistep method7 required the use of air/
water-sensitive reagents and intermediates [BCl3, (i-Pr2N)2BCl
and PhMe2Si–B(Ni-Pr2)2]. A new air-resistant silylborane
bearing an anthranilamide substituent on the boron center
[PhMe2Si–B(aam) (2u)] was generated by extending the direct
synthesis, although the yield was relatively low.21 According to
the previous procedure using PhMe2Si–B(Ni-Pr2)2, the yield
was improved to 65%.

To gain insight into the reaction pathway, we carried out
11B NMR experiments using n-BuLi as a carbon nucleophile
(Fig. 1). Treatment of B(OEt)3 (18.3 ppm, Fig. 1A) with n-BuLi
resulted in the generation of an upfield-shifted species
(3.0 ppm, Fig. 1B), being in a typical chemical shift range of a
tetracoordinate borate.22 The resulting borate [n-Bu–B(OEt)3

−]
remained unchanged upon mixing with 1,8-diaminonaphtha-

Scheme 2 Synthesis of R–B(dan) from R–H.

Scheme 3 Synthesis of R–B(dan) from R–Br.

Scheme 4 B(dan)-installation via lithium–tin exchange.
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lene (Fig. 1C), while further addition of acetic acid led to the
formation of n-Bu–B(dan) (2v) with complete disappearance of
the borate (Fig. 1D).23 These results imply that dan-installation
on the boron center does not occur at the tetracoordinate borate
stage; the intermediary formed neutral species [R–B(OEt)2] via
protonation of the borates would immediately undergo ligand
exchange to afford R–B(dan) (Scheme 6).

Finally, the synthetic utility of heteroaryl–B(dan) was
demonstrated by the direct SMC: treatment of 2a with 4-bro-
moanisole and Ba(OH)2 under Pd–dppf catalysis3 quantita-
tively provided the coupling product (3a), which verifies the
protodeborylation-resistant yet enough reactive property of the
C–B(dan) bond (Scheme 7). Furthermore, chemoselective

cross-coupling at the SnBu3 moiety of 2s gave a 95% yield of
3b, whose thienyl–B(dan) bond was then coupled with 4-(tri-
fluoromethyl)bromobenzene efficiently under the Ba(OH)2
conditions.

Conclusions

We have developed a one-pot direct method for installing the
B(dan) moiety without the intermediary formation of some-
times unstable organoboronic acids. The present transition
metal-free method is superior to our previous H–B(dan) one6

in that organolithium reagents directly generated by deproto-
nation are usable as carbon nucleophiles;12 diverse R–B(dan)
(R = heteroaryl, aryl, alkynyl, alkyl) endowed with air/water-
resistant characters have become accessible in good yields.
Moreover, the method was demonstrated to apply to a silicon
nucleophile to lead to the direct synthesis of PhMe2Si–B(dan)
and –B(aam). Further studies on the synthetic utilization of
the resulting R–B(dan) especially for catalytic carbon–carbon
bond-forming reactions are in progress.
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Scheme 7 Direct SMC of heteroaryl–B(dan).

Organic & Biomolecular Chemistry Communication

This journal is © The Royal Society of Chemistry 2023 Org. Biomol. Chem., 2023, 21, 5347–5350 | 5349

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 4
:3

1:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ob00613a


advice for the research. H.Y. directed the project. All authors
have approved the final version of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the Fukuoka Naohiko
Memorial Foundation and the Nagase Science and Technology
Foundation.

References

1 (a) H. Tanaka, M. Nakamoto and H. Yoshida, RSC Adv.,
2023, 13, 2451–2457; (b) S. Kamio and H. Yoshida, Adv.
Synth. Catal., 2021, 363, 2310–2324; (c) J. Li and
H. Yoshida, Heterocycles, 2021, 102, 1478–1516.

2 (a) H. Noguchi, K. Hojo and M. Suginome, J. Am. Chem.
Soc., 2007, 129, 758–759; (b) H. Noguchi, T. Shioda,
C.-M. Chou and M. Suginome, Org. Lett., 2008, 10, 377–380.

3 H. Yoshida, M. Seki, S. Kamio, H. Tanaka, Y. Izumi, J. Li,
I. Osaka, M. Abe, H. Andoh, T. Yajima, T. Tani and
T. Tsuchimoto, ACS Catal., 2020, 10, 346–351.

4 Y. Mutoh, K. Yamamoto and S. Saito, ACS Catal., 2020, 10,
352–357.

5 M. Koishi, K. Tomota, M. Nakamoto and H. Yoshida, Adv.
Synth. Catal., 2023, 365, 682–686.

6 J. Li, M. Seki, S. Kamio and H. Yoshida, Chem. Commun.,
2020, 56, 6388–6391.

7 H. Yoshida, Y. Izumi, Y. Hiraoka, K. Nakanishi,
M. Nakamoto, S. Hatano and M. Abe, Dalton Trans., 2022,
51, 6543–6546.

8 For protodeborylation of organoboronic acids/esters, see:
(a) P. A. Cox, A. G. Leach, A. D. Campbell and G. C. Lloyd-
Jones, J. Am. Chem. Soc., 2016, 138, 9145–9157;
(b) P. A. Cox, M. Reid, A. G. Leach, A. D. Campbell,
E. J. King and G. C. Lloyd-Jones, J. Am. Chem. Soc., 2017,
139, 13156–13165; (c) H. L. D. Hayes, R. Wei, M. Assante,
K. J. Geogheghan, N. Jin, S. Tomasi, G. Noonan,
A. G. Leach and G. C. Lloyd-Jones, J. Am. Chem. Soc., 2021,
143, 14814–14826.

9 For air sensitivity of PhMe2Si–B(pin), see: E. Yamamoto,
R. Shishido, T. Seki and H. Ito, Organometallics, 2017, 36,
3019–3022.

10 For representative reports on transition metal-catalyzed
B(dan)-installing reactions, see: (a) N. Iwadate and
M. Suginome, J. Organomet. Chem., 2009, 694, 1713–1717;
(b) H. Yoshida, Y. Takemoto and K. Takaki, Chem.
Commun., 2014, 50, 8299–8830; (c) L. Xu and P. Li, Chem.

Commun., 2015, 51, 5656–5659; (d) H. Yoshida,
Y. Takemoto, S. Kamio, I. Osaka and K. Takaki, Org. Chem.
Front., 2017, 4, 1215–1219.

11 Heteroarylboronic acids having a C–B(OH)2 bond next to a
heteroatom are liable to be protodeborylated. For 5-pyrazo-
lyl, see: (a) A. V. Ivachtchenko, D. V. Kravchenko,
V. I. Zheludeva and D. G. Pershin, J. Heterocycl. Chem.,
2004, 41, 931–939. For 5-thiazolyl, see: (b) P. Stanetty,
M. Schnürch and M. D. Mihovilovic, J. Org. Chem., 2006,
71, 3754–3761. For 2-furyl, see: (c) D. M. Knapp, E. P. Gillis
and M. D. Burke, J. Am. Chem. Soc., 2009, 131, 6961–6963.
For 2-thienyl, see: (d) K. Billingsley and S. L. Buchwald,
J. Am. Chem. Soc., 2007, 129, 3358–3366. For 2-pyridyl, see:
(e) X. A. F. Cook, A. de Gombert, J. McKnight,
L. R. E. Pantaine and M. C. Willis, Angew. Chem., Int. Ed.,
2021, 60, 11068–11091.

12 The reaction of organolithium reagents with H–B(dan) was
unsuccessful.

13 (a) D. P. Phillion, R. Neubauer and S. S. Andrew, J. Org.
Chem., 1986, 51, 1610–1612; (b) C. Coudret, Synth.
Commun., 1996, 26, 3543–3547.

14 Depending on the substrates, various reaction conditions
(molar ratio, temperature, and time) were employed. See
the ESI† for details.

15 The starting R–H were recovered when the yields were
moderate.

16 Ph–B(dan) (2p) could also be synthesized from bromoben-
zene in 69% yield via lithium–bromine exchange.

17 A tert-butyl Grignard reagent was used as the starting
material.

18 Isopropenyl–B(dan) was prepared according to a similar
procedure by using isopropenyl–MgBr, B(OMe)3, 1,8-diami-
nonaphthalene, and aqueous NH4Cl. See: J. C. Lo, D. Kim,
C.-M. Pan, J. T. Edwards, Y. Yabe, J. Gui, T. Qin,
S. Gutiérrez, J. Giacoboni, M. W. Smith, P. L. Holland and
P. S. Baran, J. Am. Chem. Soc., 2017, 139, 2484–2503.

19 Acetic acid was added first to the silylborate intermediate
in this case; the reaction conducted in the usual manner
resulted in a slightly decreased yield (38%).

20 Using a silyl Grignard reagent (PhMe2SiMgBr) instead of
PhMe2SiLi resulted in an almost similar yield (42%). For
the generation of silyl Grignard reagents, see: W. Xue,
R. Shishido and M. Oestreich, Angew. Chem., Int. Ed., 2018,
57, 12141–12145.

21 The use of acetic acid instead of TMSCl gave 2u in only
trace amounts.

22 For 11B NMR chemical shifts of n-butyl(trialkoxy)borates,
see: (a) H. C. Brown, M. Srebnik and T. E. Cole,
Organometallics, 1986, 5, 2300–2303; (b) E. Zygadło-
Monikowska, Z. Florjańczyk, K. Służewska, J. Ostrowska,
N. Langwald and A. Tomaszewska, J. Power Sources, 2010,
195, 6055–6061.

23 See the ESI† for the assignment of other 11B NMR signals.

Communication Organic & Biomolecular Chemistry

5350 | Org. Biomol. Chem., 2023, 21, 5347–5350 This journal is © The Royal Society of Chemistry 2023

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ay
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/2
0/

20
26

 4
:3

1:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ob00613a

	Button 1: 


