Organic & Biomolecular Chemistry

View Article Online

PAPER

Check for updates

Cite this: Org. Biomol. Chem., 2023, **21**, 2545

Received 22nd December 2022, Accepted 24th February 2023 DOI: 10.1039/d2ob02299k

rsc.li/obc

Introduction

Unnatural modifications of carbohydrates, such as synthetic mono-deoxy-derivatives and mono-*O*-alkylated congeners, are excellent tools to elucidate the binding of glycans with proteins and chemically map their binding epitope.^{1–4} In the same way, the introduction of fluorine atoms on carbohydrates, yielding deoxy-fluoro derivatives, has also been exploited in chemical mapping strategies. In fact, C–F and C–OH bonds are quite similar in terms of length and polarization, but they differ in their hydrogen bond ing abilities. As the fluorine atom prevents hydrogen bond donation, while maintaining weak hydrogen bond acceptance properties, the OH \rightarrow F substitution is a valid technique to probe hydrogen bond patterns involved in carbohydrate–protein interactions.^{5,6}

Synthesis of fluoro- and seleno-containing D-lactose and D-galactose analogues†

Cecilia Romanò, (10 ‡ Dennis Bengtsson, Angela Simona Infantino and Stefan Oscarson (10 *

Synthetic deoxy-fluoro-carbohydrate derivatives and seleno-sugars are useful tools in protein-carbohydrate interaction studies using nuclear magnetic resonance spectroscopy because of the presence of the 19 F and 77 Se reporter nuclei. Seven saccharides containing both these atoms have been synthesized, three monosaccharides, methyl 6-deoxy-6-fluoro-1-seleno- β -D-galactopyranoside (1) and methyl 2-deoxy-2fluoro-1-seleno- α/β -D-galactopyranoside (2α and 2β), and four disaccharides, methyl 4-O-(β -D-galactopyranosyl)-2-deoxy-2-fluoro-1-seleno- β -D-glucopyranoside (**3**), methyl 4-Se-(β -D-galactopyranosyl)-2deoxy-2-fluoro-4-seleno- β -D-glucopyranoside (4), and methyl 4-Se-(2-deoxy-2-fluoro- α/β -D-galactopyranosyl)-4-seleno- β -D-glucopyranoside (5 α and 5 β), the three latter compounds with an interglycosidic selenium atom. Selenoglycosides 1 and 3 were obtained from the corresponding bromo sugar by treatment with dimethyl selenide and a reducing agent, while compounds $2\alpha/2\beta$, 4, and $5\alpha/5\beta$ were synthesized by the coupling of a D-galactosyl selenolate, obtained in situ from the corresponding isoselenouronium salt, with either methyl iodide or a 4-O-trifluoromethanesulfonyl p-galactosyl moiety. While benzyl ether protecting groups were found to be incompatible with the selenide linkage during deprotection, a change to acetyl esters afforded 4 in a 17% overall yield and over 9 steps from peracetylated D-galactosyl bromide. The synthesis of 5 was performed similarly, but the 2-fluoro substituent led to reduced stereoselectivity in the formation of the isoselenouronium salt ($\alpha/\beta \sim 1$: 2.3). However, the β -anomer of the uronium salt could be obtained almost pure (~98%) by precipitation from the reaction mixture. The following displacement reaction occurred without anomerisation, affording, after deacetylation, pure 5β .

> Thus, fluorinated carbohydrate derivatives have found application in the elucidation of the activity of enzymes involved in carbohydrate metabolism,^{7,8} in the inhibition of glycosyltransferases involved in disease,9,10 and in the detection of proteincarbohydrate interactions by ¹⁹F NMR.¹¹⁻²¹ The ¹⁹F nucleus is 100% abundant, naturally absent in biomolecules, and has a very similar sensitivity to the ¹H nucleus, with the plus of a broad ppm range (200 ppm) that lowers the chance of observing overlapping signals. This, in turn, leads to an overall simplification of the NMR spectrum, especially beneficial in studies with complex carbohydrate substrates^{12,16} and/or cocktails of monosaccharide ligands for the detection of the binding preferences and modes of lectins.¹⁷ Adding to the list of chemical modifications for the elucidation of carbohydratelectin interactions is the introduction of a selenium atom, which has also very favourable physical properties for structural analysis. Selenium derivatives of carbohydrate ligands, most often methyl selenoglycosides, have been used as substrates for glycosidase inhibition (similarly to S-linked carbohydrates²²),²³ as ligands for plant and mammalian lectins,^{24–26} in phasing crystal structures of carbohydrate-binding macromolecules, by virtue of the anomalous dispersion of selenium

Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland. E-mail: stefan.oscarson@ucd.ie

[†]Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d2ob02299k

[‡]Present address: Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark.

Fig. 1 Target F/Se saccharides 1–5.

in response to X-ray irradiation,²⁷⁻²⁹ and, in more recent years, have been employed in NMR studies with ⁷⁷Se as the reporting nucleus.³⁰⁻³⁴ In fact, the ⁷⁷Se isotope has a $\frac{1}{2}$ spin, 7.6% natural abundance, and it is particularly sensitive to changes in its local environment, with a large chemical shift range around 3000 ppm. Synthetically, several strategies for the introduction of fluorine or selenium atoms in carbohydrates have been optimized over the years. Notably, preparations of deoxyfluoro carbohydrates can be roughly divided in nucleophilic (e.g. TASF, TBAF, DAST) and electrophilic approaches (e.g. SelectFluorTM).^{35,36} Generally, nucleophilic approaches are preferred for the synthesis of 3-, 4-, and 6-deoxy-fluoro compounds, while 2-deoxy-2-fluoro derivatives are obtained through electrophilic addition to the double bond of glycals. Selenium-containing derivatives are most commonly synthesised as glycosyl selenides via either Koenigs-Knorr type reactions^{37,38} or *via* the formation of isoselenouronium salts.³⁹ Se-linked disaccharides, where the selenium atom is introduced at the interglycosidic linkage, have been synthesized either through the formation of suitable selenolates (usually generated in situ)^{40,41} and selenouronium salts³⁹ or by intermolecular aglycon transfer between a glycosyl trichloroacetimidate and a mixed selenoacetal with TMSOTf activation,42 to cite some of the most popular methodologies.

In the search for novel and diverse synthetic tools for probing protein–carbohydrate interactions, we have become interested in the simultaneous incorporation of both fluorine and selenium atoms in D-galactose and D-lactose scaffolds affording bi-functional carbohydrate mimetics to aid the structural analysis of galactose-binding lectins. The disaccharide β -D-Gal-(1 \rightarrow 4)-D-Glc (Lac) and the closely related β -D-Gal-(1 \rightarrow 4)-D-GlcNAc (LacNAc) are core motifs in mammalian *N*- and *O*-glycans, glycosphingolipids (GSLs), and human milk oligosaccharides, where they are found extended by other branching or capping saccharide moieties, and are recognized by a number of mammalian and plant lectins involved in several signalling pathways.43-46 The designed Se/F-containing synthetic saccharides, represented in Fig. 1, are methyl 6-deoxy-6fluoro-1-seleno-β-D-galactopyranoside (1), methyl 2-deoxy-2fluoro-1-seleno- α/β -D-galactopyranoside ($2\alpha/2\beta$), methyl (β -Dgalactopyranosyl)- $(1\rightarrow 4)$ -2-deoxy-2-fluoro-1-seleno- β -D-glucopyranoside (3), methyl (1-seleno- β -D-galactopyranosyl)-(1 \rightarrow 4)-2deoxy-2-fluoro-β-D-glucopyranoside (4), and methyl (2-deoxy-2fluoro-1-seleno- α/β -D-galactopyranosyl)-(1 \rightarrow 4)- β -D-glucopyranoside $(5\alpha/5\beta)$, the three latter with an interglycosidic selenium atom. This set of compounds maintains the natural anomeric β -configuration found in N- and O-glycans. Additionally, the selenium atom at the β -(1 \rightarrow 4) interglycosidic linkage should not substantially affect the recognition process by lectins. In fact, the differences in the van der Waals radius (O 1.52 Å, Se 1.90 Å) and in the angle of the inter-glycosidic bond (C-O-C 112°, C-Se-C 96°) should be minimal.29,32,47 Moreover, the fluorine atom, sitting at the C-2 of the D-glucopyranose ring or the C-2' of the D-galactopyranose ring should not hinder the binding to galacto-specific lectins, e.g. galectins, but should be close enough to be able to experience variations in its local environment upon protein binding.48 In return, both fluorine and selenium atoms can act as reporters in ¹⁹F and ⁷⁷Se NMR studies, and also help in further structural analysis, e.g. crystallographic investigations.

Results and discussion

The synthesis of methyl selenoglycosides **1** and **3** utilizes the same method as we have used before, *i.e.*, treatment of a glycosyl bromide with methyl diselenide under reducing conditions to form the methyl selenolate *in situ*.⁴⁹ After the formation of the known 6-deoxy-6-fluoro- α -bromide **7**,⁵⁰ a 40% yield of the β -methyl selenoglycoside **8** was obtained, which was deprotected under Zemplén conditions to give **1** in 83% yield (Scheme 1). Lactal **9**⁵¹ was treated with SelectfluorTM in nitro-

Scheme 1 Reagents and conditions: (i) HBr (33% in AcOH), CH₂Cl₂, RT, 2 h, 94%; (ii) (CH₃)₂Se₂, NaBH₄, EtOH/CH₃CN, RT, 22 h, 40%; (iii) NaOMe/ MeOH, RT, 17 h, 83%.

methane/water to give a mixture of α/β gluco-/manno-configurations from which, after benzoylation of the anomeric positions, compound **10** could be isolated in a 56% yield (Scheme 2). Treatment with HBr 33% in AcOH afforded the α -bromide (\rightarrow **11**, 90%), which was converted to the β -methyl selenide and deprotected under standard conditions to afford target compound 3 in a 24% yield over two steps.

Differently from the synthesis of **1** and **3**, the preparation of lactose pseudo-disaccharides **4** and $5\alpha/5\beta$ included the coupling between D-galactopyranosyl isoselenouronium salts, as selenyl transfer reagents, and suitably protected methyl 4-*O*-trifluoromethanesulfonate D-galactopyranosides. For the synthesis of compound **4**, acetobromogalactose **12** was treated with selenourea in acetone under reflux, as described by Kumar *et al.* for D-glucopyranosyl bromide,³⁹ to form the corresponding D-galactosylselenyl transfer reagent **13** in 73% yield (Scheme 3).

The presence of a characteristic ¹³C NMR peak at 165.0 ppm for the isoselenouronium carbon and the concurrent shift at 79.7 ppm of the C-1 signal, confirmed the formation of the desired selenouronium moiety. Treatment of galactosyl bromide **12** with activated Zn powder in acetic acid/ water gave the corresponding D-galactal in a 69% yield *via* a reduction–elimination process.⁵² The newly formed D-galactal was then reacted with SelectFluorTM in nitromethane/methanol to give derivative **14** ⁵³ as a mixture of anomers ($\alpha/\beta = 1:2$) in 84% yield. In particular, the reaction allows for the exclusive equatorial fluorination as a result of the directing properties of the acetate at C-4.⁵³ Although synthesised as a mixture of α/β anomers, the presence of ¹⁹F⁻¹H and ¹⁹F⁻¹³C couplings in

both ¹H and ¹³C NMR, the low-field shift of the adjacent protons, and the ¹⁹F NMR signals (-207.06, ddd, J = 52.7, 13.3, 2.5 Hz, F-2 β and -208.89, ddd, J = 50.0, 10.8, 3.3 Hz, F-2 α), confirmed the formation of the galacto 2-deoxy-2-fluoro derivative 14. At this stage the anomers could not be separated and the subsequent reactions were carried out with the α/β mixture. D-Galactopyranoside 14 was readily deacetylated under Zemplén conditions, then reacted with benzaldehyde dimethyl acetal and catalytic amounts of p-toluenesulfonic acid to afford the corresponding 4,6-O-benzylidene acetal protected compound 15, which was finally benzylated under standard conditions to afford a separable mixture of the desired β -anomer 16 and undesired 16 α , in 56% and 18% yield, respectively, over three steps. The 4,6-O-benzylidene acetal on 16 was then reductively opened with NaCNBH₃ and HCl/ $Et_2O_{54}^{54}$ affording the desired 6-O-benzyl product ($\rightarrow 17, 91\%$). Finally, compound 17 was reacted with trifluoromethanesulfonic anhydride in pyridine at low temperature to give derivative 18 in 87% yield. p-Galactosyl isoselenouronium salt 13 and compound 18 were reacted under basic conditions to give the pseudo-lactoside 19 in 90% yield. The formation of the seleno pseudo-disaccharide derivative was confirmed by NMR; the ¹³C signal at 77.8 ppm for C-1' and, more interestingly, the upfield shift at 41.8 ppm for C-4, both confirmed the presence of the selenium atom at the interglycosidic linkage. In addition, the H-4 signal (¹H NMR 3.27 ppm) showed characteristic satellite peaks corresponding to ${}^{2}J_{Se,H}$ = 20.4 Hz. Finally, the large coupling constants observed for the signal at 3.27 ppm in ¹H NMR (apparent triplet, $J_{3,4} \sim J_{4,5} \sim 11.1$ Hz, H-4) confirmed the inversion of configuration D-Gal \rightarrow D-Glc.

Scheme 2 Reagents and conditions: (i) SelectFluorTM, MeNO₂/H₂O, RT, 19 h (reflux 1 h); (ii) BzCl, Py, RT, 16 h, 56% (over 2 steps); (iii) HBr (33% in AcOH), RT, 22 h, 90%; (iv) (a) (CH₃)₂Se₂, NaBH₄, EtOH/CH₃CN, RT, 17 h, (b) NaOMe/MeOH, RT, 20 h, 24% over two steps.

Scheme 3 Reagents and conditions: (i) selenourea, acetone, reflux, 1 h, 73%; (ii) Zn, AcOH/H₂O, RT, 17 h, 69%; (iii) SelectFluorTM, MeNO₂/MeOH, RT, 4 h (then 1 h at 90 °C), 84% ($\alpha/\beta = 1:2$); (iv) (a) NaOMe, MeOH, RT, 3 h, (b) PhCH(OMe)₂, *p*-TsOH, DMF, 50 °C, 4 h; (v) BnBr, NaH, DMF, 0 °C \rightarrow RT, 1 h, 56% (over three steps, 74% overall yield; 56% for 16 and 18% for 16 α); (vi) NaCNBH₃, HCl (1 M in Et₂O), RT, 1 h, 91%; (vii) Tf₂O, pyridine, 0 °C \rightarrow RT, 2 h, 87%; (viii) Et₃N, CH₃CN, RT, 1 h, 90%; (ix) NaOMe, MeOH, RT, 2 h, 90%.

Subsequently, deacetylation under Zemplén conditions (\rightarrow 20, 90%) was followed by benzyl ethers removal attempts as illustrated in Table 1.

Standard hydrogenolysis of 20 with Pd/C (10 wt%) under H₂ atmosphere (20 bar) gave no conversion after 20 hours (entry 1). Instead, a 1:1 mixture of Pd/C (10 wt%) and Pd(OH)₂/C (20 wt%) was tried under the same hydrogen atmosphere affording degradation of the starting material (entry 2). The obtained results are in line with previous reports⁵⁵ where the selenium atom is described to act as catalyst poison, similarly to sulphur.⁵⁶ At this point, alternative methodologies were screened to investigate their compatibility with the β -(1 \rightarrow 4) Selinkage. The biphasic oxidative cleavage with NaBrO₃/ Na₂S₂O₄⁵⁷ was deemed incompatible with the oxidation-sensitive selenium atom, and thus was not tested, Birch reduction conditions⁵⁸ were envisioned as a good methodology for the removal of the two benzyl ethers. Unexpectedly, when compound 20 was reacted with Na in liquid ammonia at -78 °C, and subsequently acetylated under standard conditions, diselenide 21⁵⁹ was identified as the main reaction product (entry 3). Supposedly, the reaction conditions promoted the reductive cleavage of the C-Se bond forming a selenolate species prone to oxidation to the corresponding diselenide. Finally, also ferric(III) chloride promoted de-benzylation⁶⁰ failed to give the desired product (entry 4).

The presented difficulties in removing the benzyl ethers in a clean and efficient way forced a change of strategy, with the design of a differently protected D-galactose building block to couple with transfer reagent 13. As Zemplén conditions are highly compatible with the presence of selenium and fluorine functionalities, it was decided to substitute the benzyl ether protecting groups with acetyl esters. Thus, compound 15 was acetylated instead of benzylated, to give the desired β -anomer $(\rightarrow 22, 59\%)$ and α -derivative $(\rightarrow 22\alpha, 26\%)$ (Scheme 4). Subsequent cleavage of the 4,6-O-benzylidene acetal (\rightarrow 23, 78%), followed by selective acetylation of the primary C-6 hydroxyl with acetyl chloride and pyridine at low temperature, afforded 24 in 81% yield. Finally, trifluoromethanesulfonyl introduction gave building block 25 in 95% yield. Derivative 25 and isoselenouronium salt 13 were then coupled under basic conditions to give pseudo-disaccharide 26 in 91% yield. Gratifyingly, the substitution of the benzyl ethers for acetyl esters did not lower the reactivity of 25, giving the pseudo-disaccharide 26 in the same yield as compound 19. Again, NMR data confirmed the formation of the desired

 Table 1
 Benzyl ether removal attempts on compound 20

Entry	Conditions	Product/outcome		
1	Pd/C (10 wt%), H ₂ (20 bar)	No reaction		
2	1 : 1 Pd/C (10 wt%) : Pd(OH) ₂ /C (20 wt%), H ₂ (20 bar)	Degradation		
3	Na, NH ₃ (l), –78 °C then Ac ₂ O, pyridine	ACO OAC ACO ACO Se-Se O OAC ACO OAC		
4	$\text{FeCl}_3, \text{CH}_2\text{Cl}_2, -30 \ ^{\circ}\text{C}$	Degradation		

product: ¹³C NMR signal at 77.3 ppm for the C-1' and the upfield shift at 41.2 ppm for C-4 indicated the presence of the selenium atom at the interglycosidic linkage, the coupling pattern of the H-4 signal (¹H NMR 2.98 ppm, *apparent* triplet, $J_{3,4} \sim J_{4,5} \sim 11.2$ Hz) confirmed the inversion of configuration D-Gal \rightarrow D-Glc, and this signal also showed the characteristic satellite peaks corresponding to ${}^{2}J_{\text{Se,H}} = 25.1$ Hz. Finally, Zemplén global deacetylation of pseudo-disaccharide **26** gave target **4** in 86% yield.

For the synthesis of target compound 5 the same approach was applied, with the 2-deoxy-2-fluoro selenouronium compound 29 formed from the 2-deoxy-2-fluoro galactosyl bromide 28,⁶¹ obtained from known compound 27¹⁸ (Scheme 5). However, here the 2-fluoro substituent affected the stereoselectivity and rate of the reaction and while selenourea 13 was obtained as the pure β -anomer after 1 hour, compound 29 was obtained as an α/β mixture in a 3:7 ratio in 87% yield after 3 hours. Several attempts to improve the β -selectivity were made but with no success, therefore it was decided to continue with the anomeric mixture of the selenourea salt and try to separate the anomers after the selenide formation. Model experiments were carried out with methyl iodide as the electrophile, instead of a glycosyl triflate, affording the 2-deoxy-2fluoro methyl selenogalactoside 32 in 66% yield as an α/β mixture with about the same ratio as in 29, which could be separated to give the pure anomers 32α (15%) and 32β (24%). Deprotection under Zemplén conditions gave target compounds 2α and 2β , both in an 87% yield. For the formation of the disaccharide 5, compound 30 was synthesized and converted into the known 4-O-triflate derivative 31.62 The coupling between compound 29 and 31, under basic conditions to form the selenolate from the selenourea salt, was less effective than the formation of 19 and 26 above (Schemes 3 and 4), affording

Scheme 5 Reagents and conditions: (i) HBr (33% in AcOH), RT; 77% (ii) selenourea, acetone, reflux, 1 h, 87%, $\alpha/\beta = 3:7$; (iii) Tf₂O, pyridine, 0 °C \rightarrow RT, 2 h, 85%; (iv) Et₃N, MeI, CH₃CN, RT, 1 h, 66%, 32 α : 15%, 32 β : 24%; (v) Et₃N, CH₃CN, RT, 2 h, 61%, $\alpha/\beta = 0.3:1$; (vi) NaOMe, MeOH, RT, 2 h, 2 α : 87%, 2 β : 87%, 5 α : quantitative, 5 β : 96%.

Table 2	Observed	${}^{3}J_{Se,F}$	coupling	constants
---------	----------	------------------	----------	-----------

	2α	2β	3β	5a	5β	29α	29β	32α	32β	33α	33β
${}^{3}J_{\mathrm{Se,F}}(\mathrm{Hz})$	38	_	—	34	—	63	_	42		30	_

a 61% yield of 33 as an α/β mixture, again with the same α/β ratio as in 29, indicating that there is no anomerisation taking place during the displacement reactions and that the reaction rate of the anomers is about the same. Separation of the anomers turned out to be quite difficult with major loss of material. Finally, employing a long thin silica gel column and slow elution, the anomers could be purified to give 33α (7%) and 33β (15%). Although low yielding, the easy access to the precursors made it possible to obtain good amounts (10-100 mg) of both anomers. However, we then found that if, in the preparation of the selenourea derivative, the product was not precipitated with ethyl ether, but the reaction mixture was allowed to stand and cool, a precipitate was formed, which was much enriched in the (desired) β -anomer, giving a 40–50% yield of almost pure 29β . When this material was used in the formation of the pseudo-saccharide, the yield of 33β was improved to 56%. Deacetylation of 33α and 33β then afforded target compounds 5α and 5β in quantitative yields ($\rightarrow 5\alpha$, quantitative, $\rightarrow 5\beta$, 96%). Compounds 2, 3, 5, 32, and 33 are all containing a novel vicinal fluoro/seleno motif with possible ${}^{3}I_{\rm FSe}$ coupling constants, which are summarized in Table 2. Interestingly, only the α -cis-compounds show any coupling.

Experimental

General methods

Unless noted, chemical reagents and solvents were used without further purification from commercial sources.

Anhydrous solvents as CH₂Cl₂, Et₂O, and THF were obtained from a PureSolv-ENTM solvent purification system (Innovation Technology Inc). Concentration in vacuo was performed using a Buchi rotary evaporator. The ${}^{1}\text{H}/{}^{13}\text{C}/{}^{19}\text{F}$ NMR spectra (δ in ppm, relative to TMS in CDCl₃) were recorded with Varian spectrometers (Varian, Palo Alto, CA, USA) (400/101 MHz or 500/126 MHz) at 25 °C. Assignments were aided by ¹H-¹H and ¹H-¹³C correlation experiments. HRMS spectra were recorded on a micromass LCT instrument from Waters and LaserToF LT3 Plus MALDI-TOF (DHAP Matrix). LRMS spectra were recorded on a Waters micromass Quattro Micro LC-MS/MS instrument using electrospray ionisation (ESI) in either positive or negative mode. Optical rotations were recorded on a PerkinElmer polarimeter (model 343) at the sodium D-line (589 nm) at 20 °C using a 1 dm cell and are not corrected. Silica gel chromatography was carried out using Davisil LC60A (Grace tech., Columbia, MD, USA) SiO₂ (40–63 µm) silica gel. All reactions were monitored by thin-layer chromatography (TLC). TLC was performed on Merck DC-Alufolien plates precoated with silica gel 60 F254. They were visualised with UVlight (254 nm) fluorescence quenching, and/or by charring with an 8% H₂SO₄ dip and/or ninhydrin dip. Deprotected sugars were lyophilised using a freeze-dryer Alpha 1-2 Ldplus (Christ Ltd), with a pressure of 0.035 mbar and ice condenser temperature -55 °C.

Selected procedures

Methyl 2,3,4-tri-O-acetyl-6-deoxy-6-fluoro-1-seleno-β-D-galactopyranoside (8). A mixture of dimethyl diselenide (201 mg,

1.07 mmol) and sodium borohydride (81 mg, 2.14 mmol) in anhydrous EtOH (2 mL) was left stirring, under nitrogen, at room temperature until the yellow colour or the residual sodium borohydride had disappeared. The mixture was cooled to 0 °C and a solution of 2,3,4-tri-O-acetyl-6-deoxy-6-fluoro-Dgalactopyranosyl bromide 7 (400 mg, 1.07 mmol) in anhydrous EtOH/CH₃CN (9 mL, 2:1, v/v) was added. The mixture was allowed to reach room temperature and left stirring for 22 hours. Afterwards it was neutralized with acetic acid (1 mL), stirred for an additional 10 minutes, and then concentrated in vacuo. The residue was taken up in EtOAc (20 mL), sequentially washed with water (2 \times 10 mL), satd. aq. NaHCO₃ solution (2 \times 10 mL), brine (1 × 10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude was purified by flash chromatography (toluene/EtOAc, $10:1 \rightarrow 7:1$, v/v) to give 8 (160 mg, 0.41 mmol, 39%) as a colourless amorphous solid. Rf 0.48, toluene/EtOAc, 3:1; $[\alpha_d^{20}] = -128$ (c 0.5; CHCl₃). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 5.51 \text{ (dd}, J = 3.3, 0.8 \text{ Hz}, 1\text{H}, \text{H-4}), 5.31 \text{ (at,}$ J = 10.0 Hz, 1H, H-2), 5.06 (dd, J = 10.0, 3.4 Hz, 1H, H-3), 4.68 (dd, J = 30.6, 10.1 Hz, 1H, H-1), 4.59–4.29 (m, 2H; H-6a, H-6b), 3.99 (ddd, J = 11.9, 6.4, 1.0 Hz, 1H, H-5), 2.16, 2.14, 2.08, 2.00 (4s, 12H, 3 COCH₃, 1 SeCH₃); 13 C NMR (126 MHz, CDCl₃) δ 170.2, 170.2, 169.8 (3 COCH₃), 80.9 (d, J = 172.1 Hz, C-6), 77.5 (C-1), 76.4 (d, J = 23.1 Hz, C-5), 71.7 (C-3), 67.6 (C-2), 67.5 (d, J = 5.8 Hz, C-4), 21.0, 20.8, 20.8 (3 COCH₃), 2.7 (SeCH₃); ¹⁹F NMR (376 MHz, $CDCl_3$) δ -230.78 (dd, J = 46.4, 11.9 Hz, F-6); HRMS (ESI⁺) m/z calcd for C₁₃H₁₉FO₇Se: 409.0178 [M + Na]⁺; found: 409.0197.

Methyl 6-deoxy-6-fluoro-1-seleno-β-D-galactopyranoside (1). A freshly prepared methanolic solution of NaOMe 1 M (200 µL) was added at room temperature to a solution of 8 (30 mg, 0.08 mmol) in anhydrous MeOH (2 mL). The mixture was left stirring for 15 hours, then it was neutralized by Dowex 50WX80 cation exchange resin, filtered, and evaporated in vacuo to give 1 (17 mg, 0.065 mmol, 83%) as a colourless amorphous solid. $R_{\rm f}$ 0.65, EtOAc/MeOH/H₂O, 7:2:1; $[\alpha_{\rm d}^{20}] = -2.3$ (c 0.3; H₂O). ¹H NMR (400 MHz, CD₃OD) δ 4.54 (dd, 2H, J = 47.3, 5.8 Hz, H-6a, H-6b), 4.54 (d, J = 9.7 Hz, 1H, H-1), 3.89 (dd, J = 3.3, 0.8 Hz, 1H, H-4), 3.84-3.75 (m, 1H; H-5), 3.65 (at, J = 9.7 Hz, 1H, H-2), 3.47 (dd, J = 9.2, 3.4 Hz, 1H, H-3), 2.09 (s, 3H; SeCH₃); ¹³C NMR (101 MHz, CD₃OD) δ 83.8 (d, J = 167.6 Hz, C-6), 81.9 (C-1), 79.7 (d, J = 21.2 Hz, C-5), 75.7 (C-3), 71.7 (C-2), 70.3 (d, J = 6.6 Hz, C-4), 1.7 (SeCH₃). ¹⁹F NMR (376 MHz, CD₃OD) δ -231.58 (ddd, J = 47.3, 14.0 Hz); HRMS (ESI⁺): m/zcalcd for $C_7H_{13}FO_5Se: 282.9861 [M + Na]^+$; found: 282.9869.

Methyl β-D-galactopyranosyl- $(1\rightarrow 4)$ -2-deoxy-2-fluoro-1-selenoα-D-glucopyranoside (3). A mixture of dimethyl diselenide (91 µL, 0.96 mmol) and sodium borohydride (36.31 mg, 0.96 mmol) in anhydrous EtOH (2 mL) was left stirring at room temperature until the yellow colour disappeared. The mixture was cooled to 0 °C and a solution of **11** (400 mg, 0.39 mmol) in anhydrous EtOH/CH₃CN (8 mL, 2:1, v/v) was added. The mixture was allowed to reach room temperature and left stirring for 22 hours, then it was neutralized by adding acetic acid (1 mL), left stirring for additional 10 minutes, and concentrated *in vacuo*. The residue was taken

up in EtOAc (30 mL), sequentially washed with water (2 \times 20 mL), satd. aq. NaHCO₃ solution (2 \times 20 mL), brine (1 \times 20 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was dissolved in anhydrous MeOH (3 mL) and a freshly prepared methanolic solution of NaOMe 1 M (100 µL) was added. The mixture was left stirring at room temperature 17 hours, then it was neutralized with Dowex 50WX80 cationic resin, filtered, and concentrated in vacuo. The crude was purified by flash chromatography (EtOAc/ MeOH/H₂O, 7:2:1, v/v) to give 3 (40 mg, 0.095 mmol, 24%) as a white amorphous solid. Rf 0.58 EtOAc/MeOH/H2O, 7:2:1; $[\alpha_d^{20}] = +7.25 \ (c \ 0.4; H_2O).$ ¹H NMR (400 MHz, D₂O) δ 4.97 (d, J = 9.1 Hz, 1H, H-1), 4.50-4.25 (m, 2H, H-1', H-2), 4.01-3.90 (m, 3H), 3.86-3.72 (m, 5H), 3.71-3.62 (m, 2H), 3.60-3.52 (m, 1H, H-2'), 2.17 (s, 3H; SeCH₃); 13 C NMR (101 MHz, D₂O) δ 102.7 (C-1'), 90.5 (d, J = 183.4 Hz, C-2), 79.8, 77.4 (d, J = 8.1 Hz, C-4), 75.7 (d, J = 25.7 Hz, C-1), 75.3, 73.9 (d, J = 18.4 Hz, C-3), 72.4, 70.8 (C-2'), 68.5, 60.9, 59.9, 1.8 (SeCH₃); ¹⁹F NMR (376 MHz, D_2O) δ -188.19 (dd, J = 49.4, 15.4 Hz); HRMS (ESI⁺) m/z calcd for $C_{13}H_{23}FO_9Se: 445.0389 [M + Na]^+$; found: 445.0384.

2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosylisoselenouronium bromide (13). 2,3,4,6-Tetra-O-acetyl-α-D-galactopyranosyl bromide 12⁶³ (700 mg, 1.70 mmol) was dissolved in acetone (1.7 mL), then selenourea (209 mg, 1.70 mmol) was added and the mixture was heated to reflux for 1 hour. The formed white precipitate was filtered out, washed with acetone, and dried to give 13 (665 mg, 1.24 mmol, 73%) as a white powder. $[\alpha_d^{20}] =$ +11.5 (c 1.0, H₂O) ¹H NMR (500 MHz, D₂O) δ 5.63 (ad, J = 3.2 Hz, 1H, H-4), 5.58–5.54 (m, 2H, H-1, H-2), 5.35 (dd, J = 8.2, 3.2 Hz, 1H, H-3), 4.42 (at, J = 6.0 Hz, 1H, H-5), 4.35–4.26 (m, 2H, H-6a, H-6b), 2.26 (s, 3H, OCOCH₃), 2.18 (s, 3H, OCOCH₃), 2.13 (s, 3H, OCOCH₃), 2.08–2.05 (m, 3H, OCOCH₃); ¹³C NMR (126 MHz, D₂O) δ 173.4, 172.9, 172.8, 172.4 (4 OCOCH₃), 165.0 (SeC=N), 79.7 (C-1), 76.2 (C-5), 71.4 (C-3), 68.0 (C-4), 67.7 (C-2), 62.1 (C-6), 20.1, 20.0, 19.9 (4 OCOCH₃); HRMS (ESI⁺): m/z calcd for $C_{15}H_{23}BrN_2O_9Se: 455.0569 [M - Br]^+$; found: 455.0552.

Methyl 4-Se-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-3,6di-O-benzyl-2-deoxy-2-fluoro-4-seleno-β-D-glucopyranoside (19). Isoselenouronium salt 13 (115 mg, 0.21 mmol) and triflate derivative 18 (175 mg, 0.34 mmol) were dissolved in CH₃CN (4.3 mL) and Et₃N (51 µL, 0.36 mmol) was added. After 1 hour, the solvent was evaporated in vacuo and crude was purified by flash column chromatography (toluene/EtOAc, $9: 1 \rightarrow 8: 2, v/v$) to give 19 (150 mg, 0.19 mmol, 90%) as a white foam. $R_{\rm f}$ = 0.60, toluene/EtOAc 7:3; $[\alpha_d^{20}] = -19.2$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H, H_{Ar}), 7.39-7.27 (m, 8H, H_{Ar}), 5.31 (dd, J = 3.5, 1.1 Hz, 1H, H-4'), 5.21 (at, J = 10.1 Hz, 1H, H-2'), 4.92–4.77 (m, 4H, H-3', CH₂Ph, H-1'), 4.66 (d, J = 11.9 Hz, 1H, CHHPh), 4.53 (d, J = 11.9 Hz, 1H, CHHPh), 4.47-4.28 (m, 2H, H-1, H-2), 4.08-3.87 (m, 4H, H-6a, H-6b, H-6' a, H-6'b), 3.71-3.65 (m, 1H, H-5), 3.65-3.59 (m, 1H, H-3), 3.57 (s, 3H, OCH₃), 3.45 (atd, J = 6.5, 6.1, 1.2 Hz, 1H, H-5'), 3.27 (at, J = 11.1 Hz, 1H, H-4), 2.14 (s, 3H, OCOCH₃), 2.00 (s, 3H, OCOCH₃), 1.98-1.96 (m, 6H, 2 OCOCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.34, 170.33, 170.1, 169.6 (4 OCOCH₃), 138.2 (C_{Ar}),

137.9 (C_{Ar}), 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.8 (10 C_{Ar}), 101.4 (d, *J* = 23.0 Hz, C-1), 94.2 (d, *J* = 188.1 Hz, C-2), 79.0 (d, *J* = 17.9 Hz, C-3), 77.8 (under CDCl₃ peak, C-1'), 76.4 (C-5), 75.5 (C-5'), 74.2 (CH₂Ph), 73.6 (CH₂Ph), 71.60 (C-3'), 70.1 (C-6), 68.5 (C-2'), 67.4 (C-4'), 61.8 (C-6'), 57.0 (OCH₃), 41.9 (d, *J* = 6.8 Hz, C-4), 20.9, 20.8, 20.74, 20.72 (4 OCO<u>C</u>H₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –192.30 (add, *J* = 52.7, 14.5 Hz, F-2); HRMS (ESI⁺): *m*/*z* calcd for C₃₅H₄₃FO₁₃Se: 793.1751 [M + Na]⁺; found: 793.1728.

Methyl 4-Se-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-3,6di-O-acetyl-2-deoxy-2-fluoro-4-seleno-β-D-glucopyranoside (26). Isoselenouronium salt 13 (52 mg, 97 µmol) and derivative 25 (100 mg, 0.24 mmol) were dissolved in CH₃CN (2 mL) and Et₃N (30 µL, 0.24 mmol) was subsequently added. After 1 hour, the solvent was evaporated in vacuo and crude was purified by flash column chromatography (toluene/acetone, 9:1, v/v) to give 26 (59 mg, 88 μ mol, 91%) as a white foam. $R_{\rm f} = 0.39$, toluene/acetone 9:1; $[\alpha_d^{20}] = -3.6$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.45 (dd, J = 3.4, 1.1 Hz, 1H, H-4'), 5.29 (ddd, J = 13.3, 11.5, 8.7 Hz, 1H, H-3), 5.18 (at, J = 9.9 Hz, 1H, H-2'), 5.10-4.99 (m, 2H, H-1', H-3'), 4.59 (dd, J = 12.0, 2.1 Hz, 1H, H-6a), 4.51 (dd, J = 12.0, 4.9 Hz, 1H, H-6b), 4.44 (dd, J = 7.7, 2.6 Hz, 1H, H-1), 4.33-4.02 (m, 3H, H-2, H-6'a, H-6'b), 3.99-3.88 (m, 2H, H-5, H-5'), 3.56 (s, 3H, OCH₃), 2.98 (at, J = 11.2 Hz, 1H, H-4), 2.17 (s, 3H, OCOCH₃), 2.13 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃), 2.07 (s, 3H, OCOCH₃), 2.03 (s, 3H, OCOCH₃), 1.97 (s, 3H, OCOCH₃); ¹³C NMR (101 MHz, $CDCl_3$) δ 170.6, 170.30, 170.27, 169.94, 169.89, 169.86 (6 $OCOCH_3$, 101.4 (d, J = 22.3 Hz, C-1), 90.9 (d, J = 192.2 Hz, C-2), 77.3 (C-1'), 75.8 (C-5'), 73.8 (C-5), 71.6 (C-3'), 70.6 (d, J = 19.4 Hz, C-3), 67.9 (C-2'), 67.4 (C-4'), 64.5 (C-6), 62.4 (C-6'), 57.2 (OCH₃), 41.2 (d, J = 4.9 Hz, C-4), 21.0, 20.9, 20.8, 20.74, 20.66 (6 OCOCH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –196.30 (ddd, J = 51.0, 13.4, 2.6 Hz, F-2); HRMS (ESI⁺): *m/z* calcd for $C_{25}H_{35}FO_{15}Se: 697.1023 [M + Na]^+; found: 697.1003.$

Methyl 4-Se-(β-D-galactopyranosyl)-2-deoxy-2-fluoro-4-seleno- β -D-glucopyranoside (4). Compound 26 (30 mg, 44 μ mol) was dissolved in MeOH (900 µL) and stirred at room temperature with solid NaOMe at pH = 10. The reaction was neutralized, after 4 hours, by the addition of Dowex 50WX8 H⁺ resin. After filtration and solvent evaporation in vacuo, the crude residue was purified by flash column chromatography (CH₂Cl₂/MeOH, 9:1, v/v) to afford 4 (16 mg, 38 μ mol, 86%) as a white powder. $R_{\rm f} = 0.22$, CH₂Cl₂/MeOH 9:1; $[\alpha_{\rm d}^{20}] = -31.8$ (c 1.0, MeOH); ¹H NMR (400 MHz, CD₃OD) δ 4.78 (d, J = 9.8 Hz, 1H, H-1'), 4.44 (dd, J = 7.7, 2.3 Hz, 1H, H-1), 4.10 (dd, J = 12.2, 2.0 Hz, 1H, H-6a), 3.98 (ddd, J = 51.5, 8.6, 7.7 Hz, 1H, H-2), 3.97 (dd, J = 12.2, 4.8 Hz, 1H, H-6b), 3.87 (dd, J = 3.4, 1.1 Hz, 1H, H-4'), 3.83-3.69 (m, 3H, H-3, H-6'a, H-2'), 3.69-3.61 (m, 2H, H-6'b, H-5), 3.56 (ddd, J = 7.4, 4.4, 1.1 Hz, 1H, H-5'), 3.53 (s, 3H, OCH₃), 3.47 (dd, J = 9.2, 3.4 Hz, 1H, H-3'), 2.98 (at, J = 11.0 Hz, 1H, H-4); ¹³C NMR (101 MHz, CD₃OD) δ 101.0 (d, J = 22.8 Hz, C-1), 92.9 (d, J = 187.4 Hz, C-2), 80.7 (C-5'), 80.4 (C-1'), 76.7 (C-5), 74.4 (C-3'), 72.3 (d, J = 18.4 Hz, C-3), 70.4 (C-2), 69.3 (C-4'), 62.3 (C-6), 61.4 (C-6'), 55.6 (OCH₃), 41.9 (d, J = 5.7 Hz, C-4); ¹⁹F NMR (376 MHz, CD₃OD) δ –197.77 (ddd, J = 51.5,

14.7, 2.3 Hz, F-2); HRMS (ESI⁺): m/z calcd for C₁₃H₂₃FO₉Se: 445.0389 [M + Na]⁺; found: 445.0397.

3,4,6-Tri-O-acetyl-2-deoxy-2-fluoro- α/β -D-galactopyranosyliso-selenuronium bromide (29 α/β)

Procedure for α : β = 3 : 7. Acetone (920 µL) was added to a vial containing 28 (340 mg, 916 µmol) and selenourea (113 mg, 916 µmol). The reaction mixture was heated to 65 °C for 3 hours before adding Et₂O (5 mL). Collection of the white precipitate formed gave 29 (385 mg, 779 µmol, 87%) as an amorphous solid ($\alpha/\beta = 3:7$). $R_f = 0.71$, MeCN/H₂O 85:15; ¹H NMR (500 MHz, D_2O) δ 6.99 (dd, J = 5.6, 1.8 Hz, 1H, H-1 α), δ 5.71 (dd, J = 10.0, 3.4 Hz, 1H, H-1β), 5.66 (td, J = 3.2, 1.2 Hz, 1H, H-4 α), 5.64 (td, J = 3.2, 1.0 Hz, 1H, H-4 β), 5.49–5.32 (m, 2H, H-2 α , H-3 α), 5.41 (ddd, J = 13.5, 9.2, 3.4 Hz, 1H, H-3 β), 5.12 (ddd, J = 49.1, 9.8, 9.2 Hz, 1H, H-2 β), 4.82–4.80 (m, 1H, H-5 α), 4.43 (ddd, J = 6.5, 5.4, 1.1 Hz, 1H, H-5 β), 4.36–4.25 (m, 4H, H-6aα, H-6bα, H-6aβ, H-6bβ), 2.25 (s, 3H, OCOCH₃α), 2.24 (s, 3H, OCOCH₃β), 2.14 (s, 6H, 2× OCOCH₃β), 2.13 (s, 3H, OCOCH₃ α), 2.12 (s, 3H, OCOCH₃ α); ¹³C NMR (126 MHz, D₂O) δ 173.4 (OCOCH₃β), 173.3 (OCOCH₃α), 172.9 (OCOCH₃α), 172.8 (OCOCH₃β), 172.6 (OCOCH₃β), 172.5 (OCOCH₃α), 164.20 $(SeC=N\alpha)$, 164.24 $(SeC=N\beta)$, 86.7 $(d, J = 186.4 \text{ Hz}, C-2\beta)$, 85.3 $(d, J = 187.3 Hz, C-2\alpha)$, 83.0 $(d, J = 24.6 Hz, C-1\alpha)$, 78.5 (d, J =26.9 Hz, C-1 β), 76.1 (C-5 β), 71.7 (d, J = 19.1 Hz, C-3 β), 70.7 $(C-5\alpha)$, 69.9 $(d, J = 19.0 \text{ Hz}, C-3\alpha)$, 68.5 $(d, J = 8.7 \text{ Hz}, C-4\beta)$, 68.0 (d, J = 8.6 Hz, C-4 α), 62.0 (C-6 α), 20.1 (OCOCH₃ β), 20.0 $(OCOCH_3\alpha)$, 20.03 $(OCOCH_3\alpha)$, 20.00 $(OCOCH_3\beta)$, 19.9 (OCOCH₃ β), 19.8 (OCOCH₃ α); ¹⁹F NMR (470 MHz, D₂O) δ -194.73 (dd, J = 48.1, 14.3 Hz, F-2 α), -196.45 (dd, J = 48.5, 12.1 Hz, F-2 β). HRMS (ESI⁺): m/z calcd for C₁₃H₂₀BrFN₂O₇Se: 415.0415 [M – Br]⁺; found: 415.0416.

3,4,6-Tri-O-acetyl-2-deoxy-2-fluoro- β -D-galactopyranosylisose-lenuronium bromide (29 β)

Procedure for α : $\beta = 1$: 99. Acetone (1 mL) was added to a vial containing **28** (367 mg, 989 μmol) and selenourea (122 mg, 989 μmol). The reaction mixture was heated to 65 °C for 3 hours, and was left for 90 minutes at room temperature, before collection of the white precipitate formed to give **29β** (234 mg, 474 μmol, 48%, 96% purity) as an amorphous solid.

Procedure for α : β = 2 : 98. Acetone (1.22 mL) was added to a vial containing **28** (367 mg, 989 μmol) and selenourea (122 mg, 989 μmol). The reaction mixture was heated to 65 °C for 3 hours, and was left for 3 days at room temperature, before filtration to give **29β** (218 mg, 440 μmol, 44%, 98% purity) as a white crystalline solid. [a_d^{20}] = +12.5 (*c* 1.0; H₂O); m.p. (°C): 168–168.5.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-seleno-β-D-galactopyranoside (32β) and methyl 3,4,6-tri-O-acetyl-2-deoxy-2fluoro-1-seleno-α-D-galactopyranoside (32α). Triethylamine (164 µL, 1.17 mmol) was added to a solution of 29 (387 mg, 783 µmol) and methyl iodide (146 µL, 2.35 mmol) in acetonitrile (3.7 mL) and the mixture was stirred at room temperature for 90 min before removal of solvents under reduced pressure. Purification by flash column chromatography (cyclohexane/EtOAc, $8: 2 \rightarrow 1: 1$, v/v) gave 32 (198 mg, 515 µmol, 66%,) as an anomeric mix. Purification by flash column chromatography (cyclohexane/Et₂O, 6:4, v/v) gave 32α (45 mg, 117 μmol, 15%) and 32β (73 mg, 190 μmol 24%) as transparent oils. 32 α : $R_{\rm f}$ = 0.18, cyclohexane/Et₂O 6:4; $\left[\alpha_{\rm d}^{20}\right]$ = +222 (c 1.0, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 5.89 (dd, J = 5.8, 2.2 Hz, 1H, H-1), 5.48 (td, J = 3.1, 1.2 Hz, 1H, H-4), 5.25 (ddd, J = 12.2, 10.0, 3.5 Hz, 1H, H-3), 4.95 (ddd, J = 51.2, 9.9, 5.7 Hz, 1H, H-2), 4.54 (td, J = 6.4, 1.3 Hz, 1H, H-5), 4.12 (app. dd, J = 6.6, 1.7 Hz, 2H, H-6a, H-6b), 2.14 (s, 3H, OCOCH₃), 2.05 (s, 3H, OCOCH₃), 2.04 (s, 3H, OCOCH₃), 2.02 (s, 3H, SeCH₃); ¹³C NMR (126 MHz, CDCl₃) δ 170.5, 170.1, 170.0 (3 OCOCH₃), 85.9 (d, J = 187.8 Hz, C-2), 79.2 (d, J = 25.1 Hz, C-1), 70.0 (d, J = 18.8 Hz, C-3), 68.6 (C-5), 68.4 (d, J = 8.3 Hz, C-4), 61.7 (C-6), 20.82, 20.75, 20.7 (3 OCOCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ –196.01 (ddt, *J* = 51.0, 12.1, 2.5 Hz, F-2); HRMS (ESI⁺): m/z calcd for C₁₃H₁₉FO₇Se: 409.0173 $[M + Na]^+$; found: 409.0171. 32 β : $R_f = 0.14$, cyclohexane/Et₂O 6:4; $[\alpha_d^{20}] = +17.1$ (c 2.0, CH₂Cl₂); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 5.53-5.40 \text{ (m, 1H, H-4)}, 5.09 \text{ (ddd, } J = 13.0,$ 9.3, 3.5 Hz, 1H, H-3), 4.76 (dd, J = 9.8, 2.8 Hz, 1H, H-1), 4.60 (dt, J = 49.6, 9.6 Hz, 1H, H-2), 4.12 (dd, J = 11.4, 6.8 Hz, 1H, H-6a), 4.07 (dd, J = 11.3, 6.5 Hz, 1H, H-6b), 3.93 (td, J = 6.8, 1.2 Hz, 1H, H-5), 2.15 (s, 3H, SeCH₃), 2.11 (s, 3H, OCOCH₃), 2.03 (s, 3H, OCOCH₃), 2.02 (s, 3H, OCOCH₃); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 170.1, 170.0 (3 OCOCH₃), 87.3 (d, J = 186.1 Hz, C-2), 76.3 (d, J = 26.0 Hz, C-1), 75.6 (C-5), 71.9 (d, J = 19.8 Hz, C-3), 68.1 (d, J = 8.4 Hz, C-4), 61.4 (C-6), 20.74, 20.69, 20.6 (3 OCOCH₃), 2.74 (SeCH₃); ¹⁹F NMR (470 MHz, CDCl₃) δ –196.28 (ddt, J = 49.6, 13.2, 2.9 Hz, F-2); HRMS (ESI⁺): m/z calcd for $C_{13}H_{19}FO_7Se: 409.0173 [M + Na]^+; found: 409.0171.$

Methyl 2-deoxy-2-fluoro-1-seleno- β -D-galactopyranoside (2 β). NaOMe (1 M in MeOH, 44 μ L) was added to a solution of 32 β (56 mg, 146 µmol) in MeOH (1.5 mL). After 26 hours Amberlite IR120 H⁺ resin was added. The solution was filtered before removal of solvents under reduced pressure to give 2β (33 mg, 127 μ mol, 87%) as an amorphous solid. $R_{\rm f}$ = 0.69, MeCN/H₂O 95:05; $[\alpha_d^{20}] = +28$ (c 1.0; H₂O); ¹H NMR (400 MHz, D₂O) δ 4.90 (dd, J = 10.0, 2.1 Hz, 1H, H-1), 4.56 (dt, J = 49.8, 9.5 Hz, 1H, H-2), 4.09 (t, J = 3.5 Hz, 1H, H-4), 3.96 (ddd, J = 14.6, 9.1, 3.5 Hz, 1H, H-3), 3.85-3.68 (m, 3H, H-5, H-6a, H-6b), 2.19 (s, 3H, SeCH₃); ¹³C NMR (101 MHz, D₂O) δ 90.2 (d, *J* = 179.2 Hz, C-2), 80.2 (C-5), 76.4 (d, J = 26.0 Hz, C-1), 72.0 (d, J = 18.3 Hz, C-3), 69.4 (d, J = 9.2 Hz, C-4), 60.8 (C-6), 1.9 (SeCH₃); ¹⁹F NMR (376 MHz, D_2O) δ -196.07 (ddt, J = 49.8, 14.7, 2.7 Hz, F-2); HRMS (ESI⁺): m/z calcd for C₇H₁₃FO₄Se: 282.9856 [M + Na]⁺; found: 282.9859.

Methyl 2-deoxy-2-fluoro-1-seleno-α-D-galactopyranoside (2α). NaOMe (1 M in MeOH, 30 µL) was added to a solution of 32α (39 mg, 101 µmol) in MeOH (1 mL). After 26 hours Amberlite IR120 H⁺ resin was added. The solution was filtered before removal of solvents under reduced pressure to give 2α (23 mg, 88 µmol, 87%) as an amorphous solid. $R_f = 0.71$, MeCN/H₂O 95:05; $[\alpha_d^{20}] = +269$ (c 1.0; H₂O); ¹H NMR (400 MHz, D₂O) δ 5.96 (dd, J = 5.7, 2.1 Hz, 1H, H-1), 4.88 (ddd, J = 51.5, 9.7, 5.8 Hz, 1H, H-2), 4.25 (ddd, J = 6.6, 5.1, 1.1 Hz, 1H, H-5), 4.07 (td, J = 3.5, 1.1 Hz, 1H, H-4), 4.01 (ddd, J = 13.5, 9.8, 3.5 Hz, 1H, H-3), 3.81–3.77 (m, 2H, H-6a, H-6b), 2.07 (s, 3H, SeCH₃); ¹³C NMR (101 MHz, D₂O) δ 89.2 (d, J = 180.9 Hz, C-2), 79.6 (d, J = 5.7, 2.1 Hz, 1H, H-2), 4.25 (dd, J = 5.7, 2.1 Hz, 1H, H-6b), Hz, D-20 (d, J = 5.7, 2.1 Hz, H, H-6a, H-6b), 2.07 (s, 3H, SeCH₃); ¹³C 24.6 Hz, C-1), 73.1 (C-5), 69.6 (d, J = 16.8 Hz, C-3), 69.4 (d, J = 9.2 Hz, C-4), 60.8 (C-6), 2.3 (Se–CH₃); ¹⁹F NMR (376 MHz, D₂O) δ –195.48 (ddt, J = 51.1, 13.3, 2.7 Hz, F-2); HRMS (ESI⁺): m/z calcd for C₇H₁₃FO₄Se: 282.9856 [M + Na]⁺; found: 282.9856.

 $\label{eq:constraint} \begin{array}{ll} \mbox{4-Se-}(3,4,6-tri-O\-acetyl\-2\-deoxy\-2\-fluoro\-\beta\-D\-galacto-pyranoside\ (33\beta) \\ \mbox{and methyl\ 4-Se-}(3,4,6-tri\-O\-acetyl\-2\-deoxy\-2\-fluoro\-\alpha\-D\-galacto-pyranoside\ (33\beta) \\ \mbox{pyranosyl\-2\-},3,6-tri\-O\-acetyl\-4\-seleno\-\beta\-D\-glucopyranoside\ (33\beta) \\ \mbox{pyranosyl\-2\-},3,6-tri\-O\-acetyl\-4\-seleno\-2$

(33 α). Triflic anhydride (298 µL, 1.8 mmol) was added over 12 minutes to a stirred solution of **30**⁶⁴ (284 mg, 886 µmol) in pyridine (4.4 mL) at 0 °C. The reaction mixture was left to reach room temperature. After 2 hours CH₂Cl₂ (50 mL) was added, and the mixture was washed with satd. aq. NaHCO3/ice (50 mL). The organic phase was dried before removal of solvents under reduced pressure to give crude 31 62 (361 mg, 90% crude weight, 92% pure by NMR). Triethylamine (90 µL, 666 µmol) was added to a stirred solution of 31 (216 mg, 476 μmol) and 29α/β (165 mg, 333 μmol) in anhydrous CH₃CN (5.6 mL) at room temperature, and the mixture was stirred for 90 minutes before removal of solvents under reduced pressure. Purification by flash column chromatography (cyclohexane/ EtOAc, 1:1, v/v) gave 33 (137 mg, 203 μ mol, 61%, $\alpha/\beta = 0.28:1$) as a transparent oil. Purification by flash column chromatography (cyclohexane/Et₂O, $6: 4 \rightarrow 4: 6$, v/v) gave 33 α (15 mg, 22 μ mol, 7%) as a transparent oil, and 33 β (33 mg, 49 μ mol, 15%) as a transparent amorphous solid. 33 α : $R_{\rm f}$ = 0.43, cyclohexane/EtOAc 1:1; $[\alpha_d^{20}] = +70.4$ (c 0.1, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 6.01 (dd, *J* = 5.5, 1.6 Hz, 1H, H-1'), 5.45 (td, J = 3.3, 1.3 Hz, 1H, H-4'), 5.21 (dd, J = 11.3, 9.4 Hz, 1H, H-3), 5.04-4.84 (m, 2H, H-3', H-2'), 4.84 (dd, J = 9.4, 8.0 Hz, 1H, H-2), 4.69 (dd, J = 11.9, 2.2 Hz, 1H, H-6b), 4.41 (td, J = 6.3, 1.3 Hz, 1H, H-5'), 4.40 (d, J = 7.9 Hz, 1H, H-1), 4.32 (dd, J = 12.0, 5.9 Hz, 1H, H-6a), 4.14 (dd, J = 11.4, 6.5 Hz, 1H, H-6b'), 4.09 (dd, J = 11.4, 6.6 Hz, 1H, H-6a'), 3.76 (ddd, J = 11.2, 5.8, 2.2 Hz, 1H, H-5), 3.48 (s, 3H, OCH₃), 3.10 (t, J = 11.3 Hz, 1H, H-4), 2.13 (s, 3H, OCOCH₃), 2.09 (s, 3H, OCOCH₃), 2.06 (s, 3H, OCOCH₃), 2.05 (s, 3H, OCOCH₃), 2.03 (s, 3H, OCOCH₃), 2.02 (s, 3H, OCOCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.5, 170.0, 169.93, 169.89, 169.8 (6 OCOCH₃), 101.5 (C-1), 84.9 (d, J 191.2 Hz, C-2'), 83.3 (d, J = 24.7 Hz, C-1'), 74.4 (C-3), 73.4 (C-5), 72.9 (C-2), 69.7 (C-5'), 69.6 (C-3'), 67.9 (d, J = 6.9 Hz, C-4'), 64.7 (C-6), 61.1 (C-6'), 57.1 (OCH₃), 42.5 (C-4), 21.0, 20.9, 20.8, 20.70, 20.68, 20.66 (6 OCOCH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -192.76--193.15 (m, F-2'); HRMS (ESI⁺): m/z calcd for $C_{25}H_{35}FO_{15}Se: 697.1020 [M + Na]^+; \text{ found: } 697.1018. 33\beta: R_f =$ 0.42, cyclohexane/EtOAc 1:1; $\left[\alpha_{d}^{20}\right] = -16.4$ (c 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 5.47 (ddd, J = 3.7, 2.7, 1.1 Hz, 1H, H-4'), 5.17 (dd, J = 11.5, 9.3 Hz, 1H, H-3), 5.08 (ddd, J = 13.0, 9.4, 3.5 Hz, 1H, H-3'), 4.93 (dd, J = 9.7, 2.8 Hz, 1H, H-1'), 4.90 (dd, J = 9.3, 8.0 Hz, 1H, H-2), 4.71 (dd, J = 12.1, 2.1 Hz, 1H, H-6b), 4.59 (dt, J = 49.4, 9.6 Hz, 1H, H-2'), 4.39 (d, J = 7.9 Hz, 1H, H-1), 4.35 (dd, J = 12.1, 6.0 Hz, 1H, H-6a), 4.11 (m, 1H, H-6a'), 4.09 (dd, J = 12.1, 6.0 Hz, 1H, H-6b'), 3.97 (td, J = 6.4, 1.2 Hz, 1H, H-5'), 3.83 (ddd, J = 11.2, 6.0, 2.1 Hz, 1H, H-5), 3.49 (s, 3H, OCH₃), 3.06 (t, J = 11.3 Hz, 1H, H-4), 2.17 (s, 3H, OCOCH₃), 2.08 (s, 3H, OCOCH₃), 2.07 (s, 3H, OCOCH₃), 2.06

Organic & Biomolecular Chemistry

(s, 3H, OCOCH₃), 2.05 (s, 3H, OCOCH₃), 2.04 (s, 3H, OCOCH₃); ¹³C-NMR (101 MHz, CDCl₃) δ 170.7, 170.4, 170.3, 170.1, 169.9, 169.8 (6 OCOCH₃), 101.5 (C-1), 87.0 (d, *J* 187.2 Hz, C-2'), 76.1 (d, *J* 26.2 Hz, C-1'), 76.0 (C-5'), 74.1 (C-5), 72.9 (C-2), 71.7 (d, *J* 19.7 Hz, C-3'), 71.7 (C-3), 68.0 (d, *J* 8.2 Hz, C-4'), 64.8 (C-6), 61.7 (C-6'), 57.0 (OCH₃, 40.5 (C-4), 21.2, 21.0, 20.9, 20.8, 20.73, 20.69 (6 OCOCH₃); ¹⁹F-NMR (376 MHz, CDCl₃) δ –195.79 (ddt, *J* = 49.4, 13.1, 2.7 Hz, F-2'); HRMS (ESI⁺): *m*/*z* calcd for C₂₅H₃₅FO₁₅Se: 697.1020 [M + Na]⁺; found: 697.1017.

Methyl 4-Se-(3,4,6-tri-*O*-acetyl-2-deoxy-2-fluoro- β -D-galactopyranosyl)-2,3,6-tri-*O*-acetyl-4-seleno- β -D-glucopyranoside (33 β). Triethylamine (83 µL, 592 µmol) was added to a stirred solution of 31 (255 mg, 561 µmol), and 29 β (171 mg, 346 µmol) in CH₃CN (7.1 mL), and was left for 1 hour before removal of solvents under reduced pressure. Purification by flash column chromatography (cyclohexane/Et₂O, 2:8, v/v) gave 33 β (132 mg, 20 µmol, 56%) as a white amorphous solid.

Methyl 4-Se-(2-deoxy-2-fluoro-β-D-galactopyranosyl)-4-seleno- β -D-glucopyranoside (5 β). NaOMe (1 M in MeOH, 28 μ L) was added to a solution of 33β (31 mg, 46 µmol) in MeOH (930 μ L). After 23 hours Amberlite IR120 H⁺ resin was added. The solution was filtered before removal of solvents under reduced pressure to give 5 β (19 mg, 44 μ mol 96%) as an amorphous solid. $R_{\rm f} = 0.51$, MeCN/H₂O 85:15; $[\alpha_{\rm d}^{20}] = -22.2$ (c 1.0; H₂O); ¹H NMR (400 MHz, D₂O) δ 5.11 (dd, J = 10.0, 2.2 Hz, 1H, H-1'), 4.55 (dt, J = 50.0, 9.5 Hz, 1H, H-2'), 4.38 (d, J = 8.1 Hz, 1H, H-1), 4.20 (dd, J = 12.5, 2.1 Hz, 1H, H-6b), 4.07 (t, J = 3.3 Hz, 1H, H-4'), 4.00-3.91 (m, 2H, H-6a, H-3'), 3.83-3.78 (m, 1H, H-5), 3.79-3.70 (m, 3H, H-5', H-6a', H-6b'), 3.65 (dd, J = 10.9, 8.9 Hz, 1H, H-3), 3.58 (s, 3H, OCH₃), 3.31 (t, J = 8.4 Hz, 1H, H-2), 3.02 (t, J = 11.1 Hz, 1H, H-4); ¹³C NMR (101 MHz, D₂O) δ 102.9 (C-1), 90.7 (d, J = 180.6 Hz, C-2'), 80.3 (C-5'), 76.4 (C-5), 76.0 (d, J = 25.9 Hz, C-1'), 74.4 (C-2), 73.2 (C-3), 72.1 (d, J = 18.3 Hz, C-3'), 69.3 (d, J = 9.2 Hz, C-4'), 62.1 (C-6), 61.0 (C-6'), 57.0 (OCH₃), 43.4 (C-4); ¹⁹F NMR (376 MHz, D₂O) δ –195.71 (ddt, J = 49.9, 14.9, 2.8 Hz, F-2'). HRMS (ESI⁺): m/z calcd for $C_{13}H_{23}FO_9Se: 445.0384 [M + Na]^+$; found: 445.0383.

Methyl 4-Se-(2-deoxy-2-fluoro-α-p-galactopyranosyl)-4-seleno- β -D-glucopyranoside (5 α). NaOMe (1 M in MeOH, 11 μ L) was added to a solution of 33a (12 mg, 18 µmol) in MeOH (360 μ L). After 24 hours Amberlite IR120 H⁺ resin was added. The solution was filtered before removal of solvents under reduced pressure to give 5α (8 mg, 18 µmol, quantitative) as an amorphous solid. $R_{\rm f}$ = 0.54, MeCN/H₂O 85 : 15; $[\alpha_{\rm d}^{20}]$ = +224 (c 1.0; H₂O); ¹H NMR (500 MHz, D₂O) δ 6.27 (dd, J = 5.9, 1.8 Hz, 1H, H-1'), 4.86 (ddd, J = 51.7, 10.2, 6.0 Hz, 1H, H-2'), 4.38 (d, J = 8.0 Hz, 1H, H-1), 4.25 (ddd, J = 6.7, 5.1, 1.2 Hz, 1H, H-5'), 4.18 (dd, J = 12.2, 2.2 Hz, 1H, H-6b), 4.08 (td, J = 3.4, 1.1 Hz, 1H, H-4'), 3.96 (ddd, J = 12.6, 10, 3.5 Hz, 1H, H-3'), 3.92 (dd, J = 12.3, 6.0 Hz, 1H, H-6a), 3.84-3.69 (m, 4H, H-3, H-5, H-6a', H-6b'), 3.58 (s, 3H, OCH₃), 3.26 (dd, J = 9.1, 8.0 Hz, 1H, H-2), 2.91 (t, J = 11.0 Hz, 1H, H-4); ¹³C NMR (126 MHz, D₂O) δ 102.9 (C-1), 88.5 (d, J 183.2 Hz, C-2'), 80.4 (d, J 24.7 Hz, C-1'), 75.8 (C-3), 75.4 (C-5), 74.4 (C-2), 73.7 (C-5'), 69.5 (d, J 17.1 Hz, C-3'), 69.3 (d, J 9.3 Hz, C-4'), 62.4 (C-6), 60.7 (C-6'), 57.0 (OCH₃), 42.6 (C-4); ¹⁹F NMR (376 MHz, D₂O) δ –193.87 (app. dd, J = 50.8,

12.3 Hz, F-2'). HRMS (ESI⁺): m/z calcd for C₁₃H₂₃FO₉Se: 445.0384 [M + Na]⁺; found: 445.0386.

Conclusions

In summary, a set of 19 F and 77 Se substituted saccharides (1–5) has been synthesized. While selenoglycosides 1 and 3 were prepared by reacting the corresponding glycosyl bromides with methyl diselenide under reducing conditions, compounds 2, 4, and 5 were synthesized via the formation of the corresponding isoselenouronium salts as selenyl transfer reagents. The proposed approach for the synthesis of pseudo-lactosides 4 and 5 allowed for the efficient introduction of a selenium atom at the interglycosidic linkage and a fluorine at C-2, either on the D-glucose or the D-galactose moiety. In the case of the preparation of pseudo-lactoside 5 β and selenogalactoside 2 α / β , the 2'-F substituent complicated the synthesis, yielding an α/β mixture in the formation of the selenourea salt 29. However, the almost pure β -form could be obtained by fractional precipitation directly from the reaction mixture and the following displacement reactions were found to be stereospecific and with no anomerisation occurring. To the best of our knowledge, the synthesised compounds represent the first example of a set of small carbohydrates functionalised with both selenium and fluorine, constituting valuable tools for structural elucidations of protein-carbohydrate interactions exploiting the complementary reporting abilities of the two unnatural substitutions.

Author contributions

Conceptualization: S. O.; synthesis and characterization: C. R., D. B., A. S. I.; writing original draft: C. R.; manuscript review & editing: S. O., C. R., D. B.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge financial support from European Commission's GLYCOPHARM ITN project (contract no. 317297) and Science Foundation Ireland (grants no. 13/IA/ 1959 and 16/RC/3889).

References

- 1 G. F. Audette, L. T. J. Delbaere and J. Xiang, *Curr. Protein Pept. Sci.*, 2003, 4, 11–20.
- 2 D. Solís, J. Jiménez-Barbero, M. Martín-Lomas and T. Díaz-Mauriño, *Eur. J. Biochem.*, 1994, 223, 107–114.

- 3 C. Sandstroem, B. Hakkarainen, E. Matei, A. Glinchert, M. Lahmann, S. Oscarson, L. Kenne, A. M. Gronenborn, C. Sandström, B. Hakkarainen, E. Matei, A. Glinchert, M. Lahmann, S. Oscarson, L. Kenne and A. M. Gronenborn, *Biochemistry*, 2008, 47, 3625–3635.
- 4 R. C. Saliba and N. L. Pohl, *Curr. Opin. Chem. Biol.*, 2016, **34**, 127–134.
- 5 I. P. Street, C. R. Armstrong and S. G. Withers, *Biochemistry*, 1986, **25**, 6021–6027.
- 6 I. J. Goldstein, C. M. Reichert and A. Misaki, *Ann. N. Y. Acad. Sci.*, 1974, **234**, 283–296.
- 7 J. Xia, J. Xue, R. D. Locke, E. V. Chandrasekaran, T. Srikrishnan and K. L. Matta, *J. Org. Chem.*, 2006, 71, 3696–3706.
- 8 D. J. Vocadlo and S. G. Withers, *Carbohydr. Res.*, 2005, **340**, 379–388.
- 9 L. Wang, Y. Liu, L. Wu and X. L. Sun, *Biochim. Biophys.* Acta, Proteins Proteomics, 2016, **1864**, 143–153.
- 10 J. D. Belcher, C. Chen, J. Nguyen, F. Abdulla, P. Nguyen, M. Nguyen, N. M. Okeley, D. R. Benjamin, P. D. Senter and G. M. Vercellotti, *PLoS One*, 2015, **10**, e0117772.
- 11 T. Diercks, J. P. P. Ribeiro, F. J. Cañada, S. André, J. Jiménez-Barbero and H.-J. Gabius, *Chem. – Eur. J.*, 2009, 15, 5666–5668.
- 12 E. Matei, S. André, A. Glinschert, A. S. Infantino, S. Oscarson, H.-J. Gabius and A. M. Gronenborn, *Chem. – Eur. J.*, 2013, **19**, 5364–5374.
- M. Kurfiřt, M. Dračínský, L. Červenková Šťastná, P. Cuřínová, V. Hamala, M. Hovorková, P. Bojarová and J. Karban, *Chem. – Eur. J.*, 2021, 27, 13040–13051.
- 14 J. Ribeiro, T. Diercks, J. Jiménez-Barbero, S. André, H.-J. Gabius and F. J. Cañada, *Biomolecules*, 2015, 5, 3177–3192.
- 15 L. Unione, M. Alcalá, B. Echeverria, S. Serna, A. Ardá, A. Franconetti, F. J. Cañada, T. Diercks, N. Reichardt and J. Jiménez-Barbero, *Chem. – Eur. J.*, 2017, 23, 3957–3965.
- 16 T. Diercks, A. S. Infantino, L. Unione, J. Jiménez-Barbero, S. Oscarson and H. J. Gabius, *Chem. – Eur. J.*, 2018, 24, 15761–15765.
- 17 J. Daniel Martínez, P. Valverde, S. Delgado, C. Romanò, B. Linclau, N. C. N. C. Reichardt, S. Oscarson, A. Ardá, J. Jiménez-Barbero and F. Javier Cañada, *Molecules*, 2019, 24, E2337.
- V. Denavit, D. Lainé, C. Bouzriba, E. Shanina, É. Gillon, S. Fortin, C. Rademacher, A. Imberty and D. Giguère, *Chem. - Eur. J.*, 2019, 25, 4478-4490.
- J. D. Martínez, A. I. Manzano, E. Calviño, A. De Diego, B. Rodriguez De Francisco, C. Romanò, S. Oscarson, O. Millet, H. J. Gabius, J. Jiménez-Barbero and F. J. Cañada, *J. Org. Chem.*, 2020, 85, 16072–16081.
- 20 J. A. Garnett, Y. Liu, E. Leon, S. A. Allman, N. Friedrich, S. Saouros, S. Curry, D. Soldati-Favre, B. G. Davis, T. Feizi and S. Matthews, *Protein Sci.*, 2009, 18, 1935–1947.
- 21 S. A. Allman, H. H. Jensen, B. Vijayakrishnan, J. A. Garnett,
 E. Leon, Y. Liu, D. C. Anthony, N. R. Sibson, T. Feizi,
 S. Matthews and B. G. Davis, *ChemBioChem*, 2009, 10, 2522–2529.

- 22 J. S. Andrews, B. D. Johnston and B. M. Pinto, *Carbohydr. Res.*, 1998, **310**, 27–33.
- 23 S. Mehta, J. Andrews, B. D. Johnston, B. Svensson and
 B. M. Pinto, *J. Am. Chem. Soc.*, 2001, 117, 9783–9790.
- 24 S. André, K. E. Kövér, H. J. Gabius and L. Szilágyi, *Bioorg. Med. Chem. Lett.*, 2015, 25, 931–935.
- 25 H. Kaltner, T. Szabó, F. Krisztina, S. André, S. Balla, J. C. Manning, L. Szilágyi and H.-J. Gabius, *Bioorg. Med. Chem.*, 2017, 25, 3158–3170.
- 26 M. Raics, Á. K. Balogh, C. Kishor, I. Timári, F. J. Medrano, A. Romero, R. M. Go, H. Blanchard, L. Szilágyi, K. E. Kövér and K. Fehér, *Int. J. Mol. Sci.*, 2022, 23, 2494.
- 27 L. Buts, R. Loris, E. De Genst, S. Oscarson, M. Lahmann, J. Messens, E. Brosens, L. Wyns, H. De Greve and J. Bouckaert, *Acta Crystallogr., Sect. D: Biol. Crystallogr.*, 2003, **D59**, 1012–1015.
- 28 N. Kostlanova, E. P. Mitchell, H. Lortat-Jacob, S. Oscarson, M. Lahmann, N. Gilboa-Garber, G. Chambat, M. Wimmerova and A. Imberty, *J. Biol. Chem.*, 2005, 280, 27839–27849.
- 29 T. Suzuki, H. Makyio, H. Ando, N. Komura, M. Menjo, Y. Yamada, A. Imamura, H. Ishida, S. Wakatsuki, R. Kato and M. Kiso, *Bioorg. Med. Chem.*, 2014, 22, 2090–2101.
- 30 C. Hamark, J. Landström and G. Widmalm, *Chem. Eur. J.*, 2014, **20**, 13905–13908.
- 31 I. Pérez-Victoria, O. Boutureira, T. D. W. Claridge and B. G. Davis, *Chem. Commun.*, 2015, 51, 12208–12211.
- 32 M. Raics, I. Timári, T. Diercks, L. Szilágyi, H. J. Gabius and K. E. Kövér, *ChemBioChem*, 2019, 20, 1688–1692.
- 33 T. Suzuki, C. Hayashi, N. Komura, R. Tamai, J. Uzawa, J. Ogawa, H. N. Tanaka, A. Imamura, H. Ishida, M. Kiso, Y. Yamaguchi and H. Ando, *Org. Lett.*, 2019, 21, 6393–6396.
- 34 T. Diercks, F. J. Medrano, F. G. FitzGerald, D. Beckwith, M. J. Pedersen, M. Reihill, A. K. Ludwig, A. Romero, S. Oscarson, M. Cudic and H. J. Gabius, *Chem. – Eur. J.*, 2021, 27, 316–325.
- 35 P. J. Card, J. Org. Chem., 1983, 48, 393-395.
- 36 K. Dax, M. Albert, J. Ortner and B. J. Paul, *Carbohydr. Res.*, 2000, **327**, 47–86.
- 37 Z. Witczak and S. Czernecki, in *Advances in carbohydrate chemistry and biochemistry*, Academic Press, 1998, vol. 53, pp. 143–195.
- 38 M. Salvadó, B. Amgarten, S. Castillón, G. J. L. Bernardes and O. Boutureira, Org. Lett., 2015, 17, 2836–2839.
- 39 A. A. Kumar, T. Z. Illyés, K. E. Kövér and L. Szilágyi, Carbohydr. Res., 2012, 360, 8–18.
- 40 Y. Kawai, H. Ando, H. Ozeki, M. Koketsu and H. Ishihara, *Org. Lett.*, 2005, 7, 4653–4656.
- 41 T. Manna and A. K. Misra, Org. Biomol. Chem., 2019, 17, 8902–8912.
- 42 T. Suzuki, N. Komura, A. Imamura, H. Ando, H. Ishida and M. Kiso, *Tetrahedron Lett.*, 2014, 55, 1920–1923.
- 43 A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart and M. E. Etzler, *Essentials of glycobiology*, Cold Spring Harbor Laboratory Press, 2nd edn, 2009.

- 44 S. H. Barondes, D. N. W. Cooper, M. A. Gitt and H. Leffler, *J. Biol. Chem.*, 1994, **269**, 20807–20810.
- 45 L. Astorgues-Xerri, M. E. Riveiro, A. Tijeras-Raballand, M. Serova, C. Neuzillet, S. Albert, E. Raymond and S. Faivre, *Cancer Treat. Rev.*, 2014, 40, 307–319.
- 46 A. B. Samal, H. J. Gabius and A. V. Timoshenko, *Anticancer Res.*, 1995, **15**, 361–367.
- 47 F. Strino, J. H. Lii, C. A. K. Koppisetty, P. G. Nyholm and H. J. Gabius, *J. Comput.-Aided Mol. Des.*, 2010, **24**, 1009–1021.
- 48 H. Ippel, M. C. Miller, S. Vértesy, Y. Zhang, F. J. Cañada, D. Suylen, K. Umemoto, C. Romanò, T. Hackeng, G. Tai, H. Leffler, J. J. Kopitz, S. André, D. Kubler, J. Jiménez-Barbero, S. Oscarson, H.-J. Gabius and K. H. Mayo, *Glycobiology*, 2016, 6, 1–16.
- 49 P. Traar, F. Belaj and K. A. Francesconi, Aust. J. Chem., 2004, 57, 1051–1053.
- 50 S. Wagner, C. Mersch and A. Hoffmann-Röder, *Chem. Eur. J.*, 2010, **16**, 7319–7330.
- 51 D. Lafont, P. Boullanger, F. Carvalho and P. Vottero, Carbohydr. Res., 1997, 297, 117–126.
- 52 R. Miethchen, P. M. Collins and R. J. Ferrier, Monosaccharides: Their Chemistry and Their Roles in Natural Products, John Wiley & Sons, Ltd., 1995.

- 53 M. Albert, D. Karl and J. Ortner, *Tetrahedron*, 1998, 54, 4839–4848.
- 54 P. J. Garegg, H. Hultberg and S. Wallin, *Carbohydr. Res.*, 1982, **108**, 97–101.
- 55 S. Czernecki and D. Randriamandimby, *J. Carbohydr. Chem.*, 1996, **15**, 183–190.
- 56 C. H. Bartholomew, Appl. Catal., A, 2001, 212, 17-60.
- 57 M. Niemietz, L. Perkams, J. Hoffman, S. Eller, C. Unverzagt, Y. Ito, M. Niemietz, M. Pischl and C. Raps, *Chem. Commun.*, 2011, 47, 10485–10487.
- 58 A. J. Birch, J. Chem. Soc., 1944, 430-436.
- 59 M. Nanami, H. Ando, Y. Kawai, M. Koketsu and H. Ishihara, *Tetrahedron Lett.*, 2007, **48**, 1113–1116.
- 60 J. I. Padrón and J. T. Vázquez, *Tetrahedron: Asymmetry*, 1995, 6, 857–858.
- 61 J. St-Gelais, C. Leclerc and D. Giguère, *Carbohydr. Res.*, 2022, **511**, 1–9.
- 62 M. J. Kiefel, B. Beisner, S. Bennett, I. D. Holmes and M. Von Itzstein, *J. Med. Chem.*, 1996, **39**, 1314–1320.
- 63 H. J. Berthold, S. Franke, J. Thiem and T. Schotten, *J. Org. Chem.*, 2010, 75, 3859–3862.
- 64 P. Kováč, E. A. Sokoloski and C. P. J. Glaudemans, Carbohydr. Res., 1984, 128, 101–109.