## Nanoscale



**View Article Online** 

## CORRECTION

Check for updates

Cite this: Nanoscale, 2023, 15, 19389

## Correction: Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway

Loredana Mereuta,<sup>a</sup> Alina Asandei,<sup>b</sup> Ioan Andricioaei,<sup>c</sup> Jonggwan Park,<sup>d</sup> Yoonkyung Park\*<sup>e</sup> and Tudor Luchian\*<sup>a</sup>

DOI: 10.1039/d3nr90226a

rsc.li/nanoscale

Correction for 'Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway' by Loredana Mereuta *et al., Nanoscale,* 2023, **15**, 14754–14763, https://doi.org/10.1039/D3NR03344A.

In the caption of Fig. 2, the last sentence: "The recording electrolyte contained 1 M KCl buffered with HEPES at various pH values as indicated, with the *cis*-added 22\_ssDNA fragment at a bulk concentration of 4  $\mu$ M." is incorrect.

The corrected sentence is as follows: "The recording electrolyte contained 1 M KCl buffered with 10 mM HEPES at pH = 7 and respectively 5 mM MES at pH = 5 and pH = 4.5, with the *cis*-added 22\_ssDNA fragment at a bulk concentration of 4  $\mu$ M."

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

<sup>&</sup>lt;sup>a</sup>Department of Physics, Alexandru I. Cuza University, 700506 Iasi, Romania. E-mail: luchian@uaic.ro

<sup>&</sup>lt;sup>b</sup>Interdisciplinary Research Institute, Sciences Department, Alexandru I. Cuza University, 700506 Iasi, Romania

<sup>&</sup>lt;sup>c</sup>Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA

<sup>&</sup>lt;sup>d</sup>Department of Bioinformatics, Kongju National University, Kongju, 32588, Republic of Korea

<sup>&</sup>lt;sup>e</sup>Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, 61452, Republic of Korea. E-mail: y\_k\_park@chosun.ac.kr