

Cite this: *Nanoscale*, 2023, **15**, 15975

Selective and controlled H₂ generation upon additive-free HCOOH dehydrogenation over a Pd/NCS nanocatalyst†

Qing Zhang,^a Yanlan Wang,^{ID} ^b Xiaotao Jin^a and Xiang Liu^{ID, *a}

Although sodium formate is widely used as a conventional additive to enhance selective H₂ evolution from HCOOH dehydrogenation, this leads to a waste of resources and an increase in the cost of H₂ production. For this reason, N-doped carbon nanospheres with abundant graphitic C/N have been designed to enrich the electron cloud density of the Pd atom for improving its catalytic activity in H₂ generation upon additive-free HCOOH dehydrogenation. Herein, we have synthesized N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) as high-efficiency nano-catalysts, *via* fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H₂ generation upon additive-free HCOOH dehydrogenation. Pd/NCS-800 (1640 h⁻¹) provided a 12 times larger TOF than commercial Pd/C (134 h⁻¹) in H₂ generation upon additive-free HCOOH dehydrogenation. It seemed that graphitic N/C of NCS-800 enriched the electron cloud density of the Pd atom, which was favorable for the cleavage of C–H bonds in HCOOH dehydrogenation. In addition, the selective H₂ evolution from additive-free HCOOH dehydrogenation over Pd/NCS-800 is successfully controlled by adjusting the pH.

Received 31st July 2023,
 Accepted 6th September 2023
 DOI: 10.1039/d3nr03797e
rsc.li/nanoscale

^aEngineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China

E-mail: xiang.liu@ctgu.edu.cn

^bDepartment of chemistry and chemical engineering, Liaocheng University, 252059 Liaocheng, China

† Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d3nr03797e>

Xiang Liu

Xiang Liu received his Ph.D. degree at Université de Rennes 1 in 2017. He is now an associate professor and independent researcher at China Three Gorges University. His research interests are organic synthesis, photocatalysis and functionalization, and engineering of transition-metal nanoparticles or nanoclusters for applications in H₂ evolution and water treatment. He has published more than 120 SCI papers in journals

such as *Adv. Mater.*, *Nat. Commun.*, *Appl. Catal. B. Environ.*, *iScience*, *ACS Catal.*, *J. Mater. Chem. A*, *Chem. Sci.*, *Chem. Eng. J.* and so on.

Introduction

Humanity's high dependence on traditional fossil fuels has caused the growth of greenhouse gas emission (e.g. CO₂ and CH₄),^{1–3} which leads to ocean acidification, climatic anomaly, global warming and other environmental deterioration.^{4–7} To overcome this issue, it is of high significance to develop renewable energy sources, switching from fossil fuels, for a green future.^{8–10} Hydrogen (H₂) is identified as the most promising renewable energy carrier because of its superior energy density and environmentally-friendly economy.^{11–15} However, physical storage of H₂ gas suffers from low capacity, high costs and explosibility.^{16–20} In this regard, a good deal of hydrogen storage materials, for instance methanol,^{21–24} borohydrides,^{25,26} silicohydrides,²⁷ ammonia borane,²⁸ hydrazine hydrate²⁹ and formic acid,^{30–32} are being intensively developed for H₂ generation.

Since 1978,³³ formic acid (HCOOH), which could be readily obtained from biomass, has been deemed as the most promising liquid hydrogen carrier due to its excellent hydrogen storage capacity (4.4 wt% and 53 g L⁻¹), low toxicity, outstanding stability and safe transportation/storage.^{34–40} As a consequence, plenty of heterogeneous and homogeneous catalysts have been explored for selective H₂ evolution from formic acid dehydrogenation (HCOOH → H₂↑ + CO₂↑) and preventing CO release from formic acid dehydration (HCOOH → H₂O + CO↑).^{41–47} Among them, PdAg bimetal nanomaterials exhibited

superior catalytic activities in H_2 generation from formic acid dehydrogenation because the alloying of Ag could enrich the electron cloud density of the Pd atom in PdAg, which was in favor of C-H bond cleavage in HCOOH dehydrogenation.⁴⁸ Although sodium formate is widely used as an additive to improve selective H_2 evolution upon HCOOH dehydrogenation,⁴⁹ this leads to a waste of resources and an increase in the cost of H_2 production.

For this reason, we have designed and synthesized N-doped carbon nanospheres with abundant graphitic C/N for enriching the electron cloud density of the Pd atom in additive-free HCOOH dehydrogenation. Herein, we have synthesized N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) as high-efficiency nano-catalysts, *via* fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H_2 generation upon additive-free HCOOH dehydrogenation. Then the kinetic behavior and catalytic activity of Pd/NCSs, mechanistic insight using a tandem reaction, CO_2 capture ability, and “on-off” control for selective and controlled H_2 generation upon additive-free HCOOH dehydrogenation were investigated.

Results and discussion

As described in Scheme 1, NCS-700, NCS-800 and NCS-900 were synthesized by the calcination of melamine, α -D-glucose hydrochar and $NaHCO_3$, with a mass ratio of 1.0 : 1.0 : 1.0, at 700 °C, 800 °C and 900 °C under a N_2 atmosphere for 1 h, respectively.⁵⁰ Then Pd/NCS-700, Pd/NCS-800 and Pd/NCS-900 were synthesized by using K_2PdCl_4 and NCSs, followed by $NaBH_4$ reduction, respectively. For studying the structure and morphology of NCS and Pd/NCSs, their SEM images were obtained and are shown in Fig. 1. As illustrated in Fig. S1,[†] the SEM image shows that the NCS precursor has a uniform spherical structure with a mean size of 0.27 μm (Fig. S2[†]). After high temperature carbonization, the uniform spherical structure was retained in Pd/NCS-700 (0.23 μm , Fig. 1a, b & S3[†]), Pd/NCS-800 (0.22 μm , Fig. 1c, d & S4[†]) and Pd/NCS-900 (0.22 μm , Fig. 1e, f & S5[†]), and the size of the NCSs reduced as the calcination temperature increased. Then, XRD, FTIR, Raman spectrum and BET analyses were employed to measure the microstructure of Pd/NCS-700, Pd/NCS-800 and Pd/NCS-900. As shown in Fig. 2a, a broad diffraction peak of graphitic C (002) at $\theta = 24^\circ$ appeared in all of the Pd/NCSs (JCPDS 75-1621).⁵¹ Pd (111) and Pd (200) were also found in Pd/NCSs (JCPDS 87-0638),⁵² showing that the PdNPs were immobilized on the surface of NCSs. In the FTIR spectra of

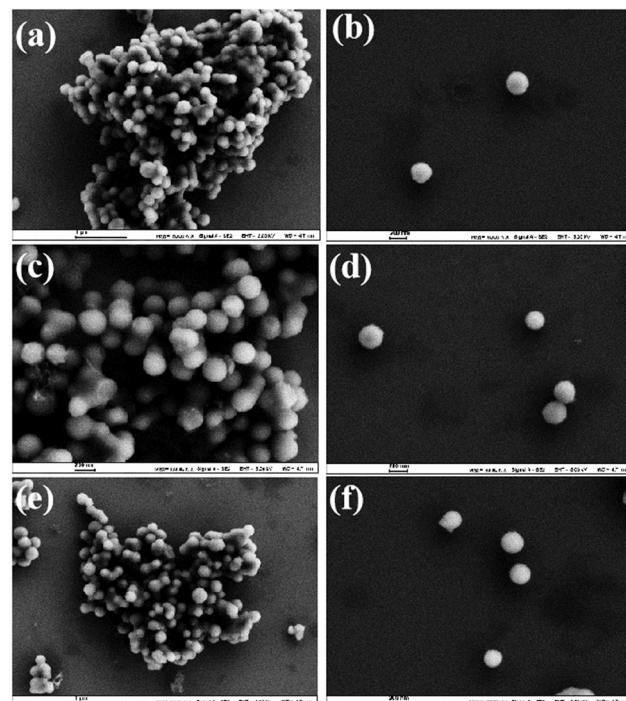


Fig. 1 SEM images of (a and b) Pd/NCS-700, (c and d) Pd/NCS-800 and (e and f) Pd/NCS-900.

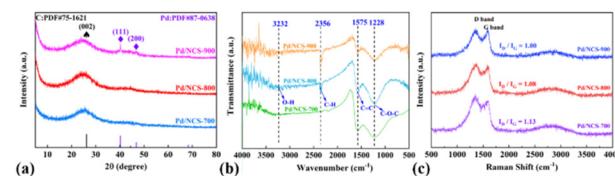


Fig. 2 (a) XRD, (b) FT-IR, and (c) Raman spectra of Pd/NCS-700, Pd/NCS-800 and Pd/NCS-900.

Pd/NCSs (Fig. 2b), the absorption peaks at 3232, 2356, 1575 and 1228 cm^{-1} corresponded to the -OH, C-H, C=C and C-O-C groups, respectively,⁵³ which were favorable for PdNP stabilization. As presented in Raman spectra (Fig. 2c), the three peaks at 1338, 1613 and 2756 cm^{-1} were assigned to the D-band, G-band and 2D-band, respectively.⁵⁴ The values of I_D/I_G in Pd/NCS-700, Pd/NCS-800 and Pd/NCS-900 were 1.00, 1.08 and 1.13, respectively, suggesting that the content of disordered carbon increased as the calcination temperature increased. Moreover, the texture properties of Pd/NCSs were studied by BET analysis. As shown in Fig. S6[†] and Table 1,

Scheme 1 The synthesis of Pd/NCS-800 nanocomposites.

Table 1 BET analysis of Pd/NCS-700, Pd/NCS-800 and Pd/NCS-900

Catalysts	Surface area ($m^2 g^{-1}$)	Pore volume ($m^3 g^{-1}$)	Pore size (nm)
Pd/NCS-700	458.43	0.27	2.34
Pd/NCS-800	572.74	0.33	2.33
Pd/NCS-900	635.09	0.37	2.33

Pd/NCS-900 exhibited a larger surface area and pore volume ($635.09\text{ m}^2\text{ g}^{-1}$ & $0.37\text{ m}^3\text{ g}^{-1}$) than Pd/NCS-700 and Pd/NCS-800.

First, the catalytic performances of Pd/NCSs in H_2 generation upon additive-free HCOOH dehydrogenation were compared as shown in Fig. S7.† H_2 production was carried out with HCOOH (1 mmol) and 2 mol% of Pd/NCSs in 5 mL of H_2O at 60°C . It is clear that Pd/NCS-800 exhibited a superior catalytic performance, with a TOF of 1640 h^{-1} , compared to Pd/NCS-700 (1456 h^{-1}) and Pd/NCS-900 (921 h^{-1}) in additive-free HCOOH dehydrogenation. Hence, Pd/NCS-800 was chosen as the optimal catalyst because of its kinetic behavior, recyclability, CO_2 capture ability, tandem reaction, and “on-off” switch of H_2 generation upon additive-free HCOOH dehydrogenation.

For probing why Pd/NCS-800 was so super-efficient in H_2 generation upon additive-free HCOOH dehydrogenation, TEM and HRTEM were employed to confirm the morphology of Pd/NCS-800. From Fig. 3a–e, it is clear that Pd/NCS-800 possessed a homogeneous nanospherical structure, and PdNPs (3.19 nm, Fig. S8†) were successfully stabilized onto the surface of N-doped carbon nanospheres. As shown in Fig. 3f, Pd (111), whose corresponding lattice space is 0.22 nm, was recorded in Pd/NCS-800, verifying the presence of PdNPs on NCSs. Then, the precise localization of Pd, N, O and C elements in Pd/NCS-800 was further investigated by EDX elemental mapping. As described in Fig. 4, the Pd/NCS-800 nanocomposite was made up of palladium, nitrogen, oxygen and carbon elements, verifying that N atoms were successfully doped into carbon nanospheres.

In addition, XPS was employed to investigate the elemental composition and chemical valence of Pd/NCS-800. As displayed in Fig. 5a, the Pd 3d_{5/2} spectrum is deconvoluted into two peaks of Pd⁰ (336.26 eV) and Pd^{II} (337.94 eV), demonstrating that Pd nanoparticles were partly oxidized by air into Pd^{II}.⁵⁵ In Fig. 5b, the N 1s spectrum is fitted into four peaks of nitric oxide (405.1 eV, 19.9%), graphitic-N (401.4 eV, 18.5%), pyrrolic-N (399.9 eV, 26.2%) and pyridinic-N (398.2 eV, 35.4%). As displayed in Fig. 5c, the C 1s spectrum is fitted into five

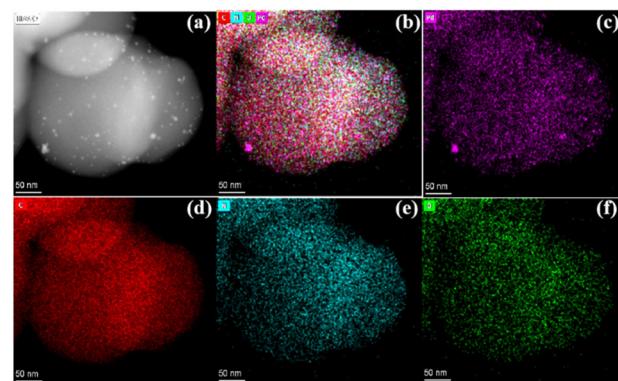


Fig. 4 (a) STEM and (b) combined C, N, O and Pd, (c) Pd, (d) C, (e) N and (f) O EDX mapping of Pd/NCS-800.

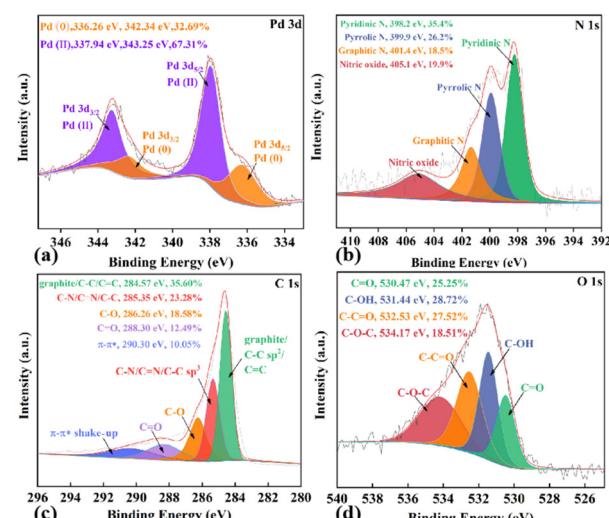


Fig. 5 (a) Pd 3d, (b) N 1s, (c) C 1s and (d) O 1s XPS of Pd/NCS-800.

typical peaks at 290.3, 288.3, 286.3, 285.4 and 284.6 eV, which are assigned to $\pi-\pi^*$ (10.05%), C=O (12.49%), C–O (18.58%), C–N (23.28%) and C–C/C=C (35.60%), respectively. As illustrated in Fig. 5d, the O 1s spectrum is fitted into four typical peaks of C–O–C (534.17 eV), C–C=O (532.53 eV), C–OH (531.44 eV) and C=O (530.47 eV), respectively. These results exhibited the presence of N and O-containing functional groups at the Pd/NCS-800 surface. ICP-AES verified that Pd nanoparticles were stabilized onto the surface of NCSs (5.38 wt% Pd, which was slightly smaller than the theoretical value of 6.62 wt%).

The kinetics of H_2 generation upon additive-free HCOOH dehydrogenation (including different Pd/NCS-800 catalyst dosages, various initial HCOOH concentrations and reaction temperatures) was further studied for the potential industrial application. As described in Fig. 6a, the H_2 generation upon additive-free HCOOH dehydrogenation was conducted with various dosages of the Pd/NCS-800 catalyst from 1.5 to 3.0 mol%. The H_2 generation rate elevated as the Pd/NCS-800

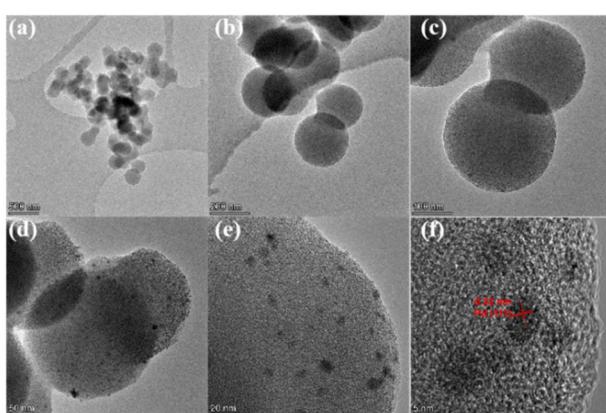


Fig. 3 (a)–(e) TEM and (f) HRTEM images of Pd/NCS-800.

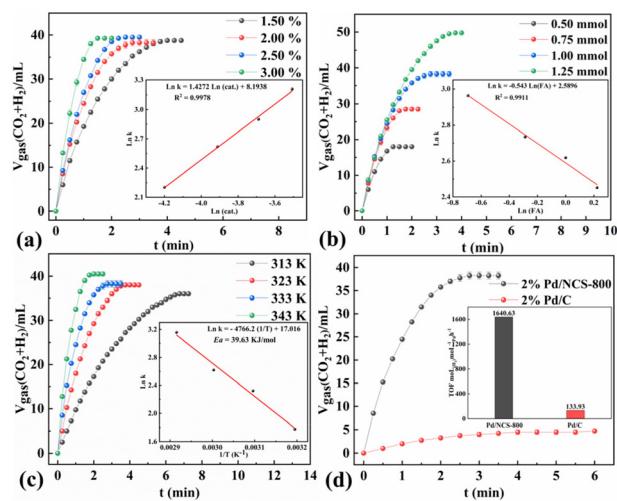


Fig. 6 The volumes of generated CO_2 and H_2 gases vs. time for H_2 generation upon additive-free HCOOH dehydrogenation (a) with various amounts of the catalyst, (b) with different amounts of HCOOH and (c) at different reaction temperatures; (d) comparison of additive-free HCOOH dehydrogenation catalyzed by Pd/NCS-800 and Pd/C.

catalyst dosage increased, with a slope of 1.4, illustrating that there was a linear positive relationship between them. As presented in Fig. 6b, the H_2 production rate was independent of the initial HCOOH concentration, indicating that additive-free HCOOH dehydrogenation was a zero-order reaction with the initial HCOOH concentration. Then H_2 generation upon additive-free HCOOH dehydrogenation over Pd/NCS-800 was measured at various reaction temperatures from 313 to 343 K (Fig. 6c). The E_a of H_2 generation upon additive-free HCOOH dehydrogenation over Pd/NCS-800 was obtained to be 39.63 kJ mol⁻¹. The comparison of Pd/NCS-800 and commercial Pd/C in H_2 generation upon additive-free HCOOH dehydrogenation was recorded and is shown in Fig. 6d. The result shows that Pd/NCS-800 (1640 h⁻¹) provided a 12 times larger TOF than commercial Pd/C (134 h⁻¹) in H_2 generation upon additive-free HCOOH dehydrogenation. In addition, the Pd/NCS-800 catalyst also showed excellent catalytic performance in H_2 generation from NH_3BH_3 ($\text{NH}_3\text{BH}_3 + 4\text{H}_2\text{O} \rightarrow \text{NH}_4\text{B}(\text{OH})_4 + 3\text{H}_2\uparrow$, TOF = 11 116.1 h⁻¹, Fig. 7a), tetrahydroxydiboron ($\text{B}_2(\text{OH})_4 + 2\text{H}_2\text{O} \rightarrow 2\text{B}(\text{OH})_3 + \text{H}_2\uparrow$, TOF = 10 111.6 h⁻¹, Fig. 7b), dimethylaminoborane ($\text{Me}_2\text{NHBH}_3 + 4\text{H}_2\text{O} \rightarrow \text{Me}_2\text{NH}_2\text{B}(\text{OH})_4 + 3\text{H}_2\uparrow$, TOF = 2902 h⁻¹, Fig. 7c) and tetramethyldisiloxane ($[\text{Me}_2\text{SiH}]_2\text{O} + 2\text{H}_2\text{O} \rightarrow [\text{Me}_2\text{Si}(\text{OH})]_2\text{O} + 2\text{H}_2\uparrow$, TOF = 1955 h⁻¹, Fig. 7d), confirming that the Pd/NCS-800 catalyst is a versatile and applicable catalyst.

The stability of the Pd/NCS-800 catalyst in H_2 generation upon additive-free HCOOH dehydrogenation was investigated for further industrial application.⁵⁶ When H_2 generation was completed, the Pd/NCS-800 nanocatalyst was isolated and recycled by filtration. Next, another fresh HCOOH solution was injected into the medium for next recycling. As described in Fig. S9,[†] it is clear that the Pd/NCS-800 catalyst still maintained excellent catalytic activity at least for 5 cycles in H_2

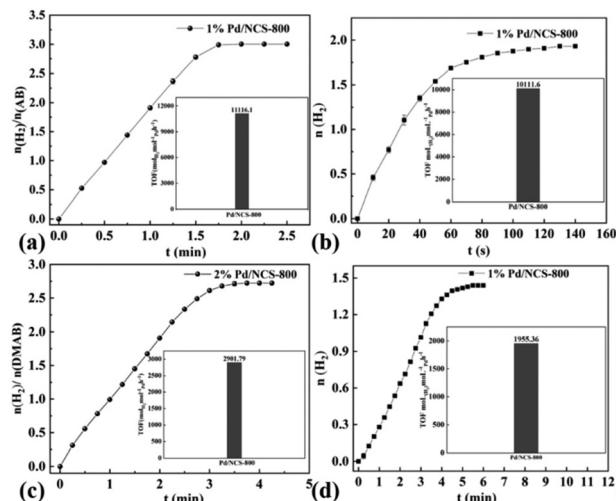
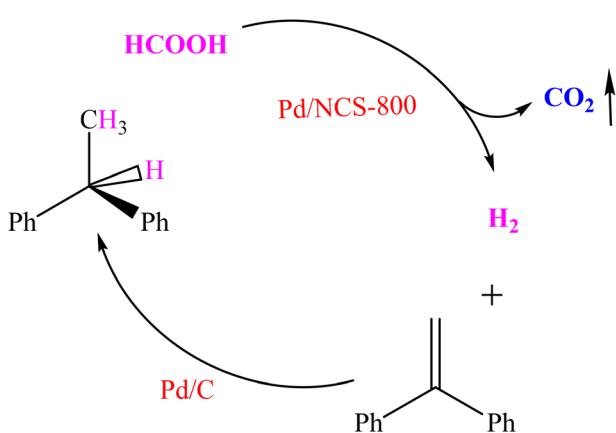



Fig. 7 Pd/NCS-800 catalyzed H_2 generation from (a) ammonia borane, (b) $\text{B}_2(\text{OH})_4$, (c) dimethylaminoborane and (d) tetramethyldisiloxane at 30 °C.

generation upon additive-free HCOOH dehydrogenation without any activity loss. Then, the 5 times reused Pd/NCS-800 catalyst was further analyzed by XRD, and Fig. S10[†] shows that its crystal structure remained almost the same as that of the fresh one, demonstrating that Pd/NCS-800 is a heterogeneous and recyclable nanocatalyst for H_2 generation upon additive-free HCOOH dehydrogenation.

H_2 generation upon additive-free HCOOH dehydrogenation is applied not only for safe and economical production, storage and transportation of hydrogen, but also for a tandem reaction.⁵⁷ 1,1-Diphenylethylene hydrogenation with the *in situ* released H_2 from additive-free HCOOH dehydrogenation was carried out in a two-chamber reactor (Scheme 2). The left tube was applied for H_2 generation upon additive-free HCOOH dehydrogenation, and the right one was applied for 1,1-diphenylethylene hydrogenation with the H_2 from the left tube *via* a glass tube (Fig. S11[†]). The yield of the target product (1,1-

Scheme 2 The tandem reaction.

diphenylethane) was 99% (Fig. S12†), illustrating selective H_2 generation upon additive-free HCOOH dehydrogenation.

For verifying the selective H_2 generation upon additive-free HCOOH dehydrogenation, a gas mixture was passed through a NaOH solution for CO_2 absorption. As shown in Fig. 8a, the volume of the gas mixture was reduced by half with the sodium hydroxide trap, suggesting that the released gases were H_2 and CO_2 , with a volumetric ratio of 1.0 : 1.0. Then the released gases were also confirmed by GC to be H_2 and CO_2 , with a molar ratio of 1.0 : 1.0 (Fig. 8b). The CO_2 capture test and GC analysis verified that the selective H_2 generation upon additive-free formic acid dehydrogenation over the Pd/NCS-800 catalyst was successfully designed for fuel cells. Based on the CO_2 capture test, GC analysis and relevant literature,^{58,59} a possible mechanism involved in HCOOH dehydrogenation is discussed in Fig. S13.† First, a HCOOH molecule was decomposed into Pd–H and HCOO–Pd on the surface of Pd/NCS-800. Then, CO_2^* and Pd–H were formed from HCOO–Pd *via* β -hydride elimination. Finally, H_2 was obtained by the reductive elimination of two Pd–H molecules.

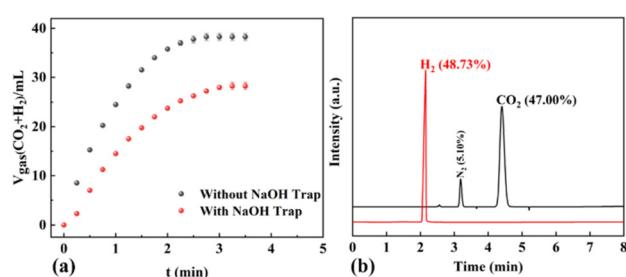


Fig. 8 (a) HCOOH dehydrogenation over Pd/NCS-800 with and without a sodium hydroxide trap; (b) GC spectra of the gases released from additive-free HCOOH dehydrogenation at 60 °C.

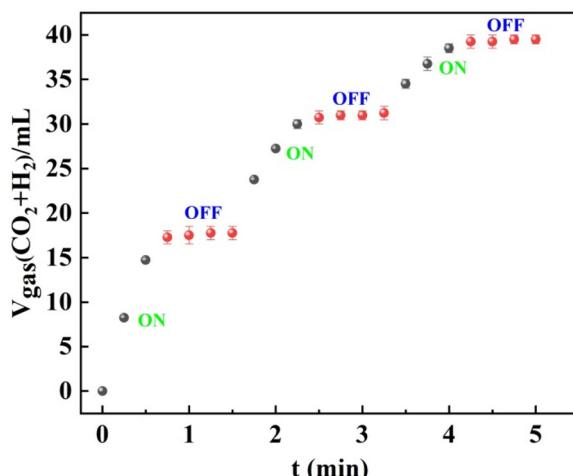


Fig. 9 "On-off" switch of H_2 generation upon additive-free formic acid dehydrogenation. Reaction conditions: 1 mmol of formic acid and 2 mol% of Pd/NCS-800 in water (5 mL) at 60 °C.

The exploitation of the "on-off" switch for demand-based H_2 production is highly desirable.^{60–62} As demonstrated in Fig. 9, selective H_2 generation upon additive-free HCOOH dehydrogenation over Pd/NCS-800 was successfully controlled by adjusting the pH. Specifically, H_2 generation upon additive-free HCOOH dehydrogenation stopped after the addition of NaOH solution because formic acid converted into formate. Then, H_2 generation upon additive-free formic acid dehydrogenation restarted after the addition of H_2SO_4 solution due to the regeneration of formic acid. However, a slight decrease in the H_2 generation rate was recorded after each "on-off" switch, which may be caused by the dilution effect.

The catalytic performances of Pd/NCS-800 and other reported catalysts for H_2 generation upon additive-free HCOOH dehydrogenation were compared and are shown in Table S1.†^{63–72} The result shows that Pd/NCS-800 exhibited an excellent TOF of 1641 h^{-1} , illustrating that Pd/NCS-800 is an excellent catalyst for selective and controlled H_2 generation upon additive-free HCOOH dehydrogenation.

Conclusions

In summary, a battery of N-doped carbon nanosphere-stabilized Pd nanoparticles (Pd/NCSs) have been synthesized as high-efficiency nano-catalysts, *via* fixation of Pd nanoparticles onto N-doped carbon nanospheres (NCSs), for selective and controlled H_2 generation upon additive-free HCOOH dehydrogenation. The characterization studies confirmed that Pd/NCS-800 has a homogeneous nanospherical structure, and PdNPs are stabilized onto the surface of N-doped carbon nanospheres. Pd/NCS-800 showed superior catalytic performance, with a TOF of 1640 h^{-1} , compared to Pd/NCS-700 (1456 h^{-1}) and Pd/NCS-900 (921 h^{-1}) in H_2 generation upon additive-free HCOOH dehydrogenation. The CO_2 capture test, GC analysis and tandem reaction verified that selective H_2 generation upon additive-free formic acid dehydrogenation over the Pd/NCS-800 catalyst was developed for fuel cells. Pd/NCS-800 (1640 h^{-1}) provided a 12 times larger TOF than commercial Pd/C (134 h^{-1}) in H_2 generation upon additive-free HCOOH dehydrogenation. It seemed that graphitic N/C of NCS-800 enriched the electron cloud density of the Pd atom, which was favorable for the cleavage of C–H bonds in HCOOH dehydrogenation. In addition, the selective H_2 production from additive-free HCOOH dehydrogenation over Pd/NCS-800 is successfully controlled by adjusting the pH. The strategy derived from glucose in this work might generate new ideas for the development of N-doped carbon nanospheres for selective and controlled H_2 generation.

Author contributions

Q. Zhang: investigation and formal analysis. Y. Wang and X. Jin: formal analysis. X. Liu: project administration, supervi-

sion, resources, conceptualization, and writing – original draft, review & editing.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

Financial support from the NSFC (No. 21805166) is gratefully acknowledged and thanks eceshi (<http://www.eceshi.com>) for the ICP test and Yuan Zhou from Shijianjia Lab (<http://www.shijianjia.com>) for GC test.

References

- 1 S. Kar, M. Rauch, G. Leitus, Y. Ben-David and D. Milstein, *Nat. Catal.*, 2021, **4**, 193–201.
- 2 X. Liu, W. Hou, Y. Huang, H. Zhao, Z. Song and Y. Huang, *Chem. Eng. J.*, 2022, **433**, 133822.
- 3 S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A. M. Asiri, Q. Wu and X. Sun, *J. Mater. Chem. A*, 2020, **8**, 19729–19745.
- 4 C. Peng, T. Li, Y. Zou, C. Xiang, F. Xu, J. Zhang and L. Sun, *Int. J. Hydrogen Energy*, 2021, **46**, 666–675.
- 5 H. Song, M. Wu, Z. Tang, J. S. Tse, B. Yang and S. Lu, *Angew. Chem., Int. Ed.*, 2021, **60**, 7234–7244.
- 6 Y. Peng, Y. Zhang, A. Guo, M. Mao, Y. Wang, Y. Long and G. Fan, *Chem. Eng. J.*, 2022, **433**, 133648.
- 7 H. Liu, Q. Lei, R. Miao, M. Sun, C. Qin, L. Zhang, G. Ye, Y. Yao, B. Huang and Z. Ma, *Adv. Funct. Mater.*, 2022, **32**, 2207408.
- 8 N. Kang, X. Wei, R. Shen, B. Li, E. G. Cal, S. Moya, L. Salmon, C. Wang, E. Coy, M. Berlande, J.-L. Pozzo and D. Astruc, *Appl. Catal., B*, 2023, **320**, 121957.
- 9 M. S. İzgi, O. Baytar, Ö. Şahin and H. C. Kazıcı, *Int. J. Hydrogen Energy*, 2020, **45**, 34857–34866.
- 10 H. N. Abdelhamid, *Int. J. Hydrogen Energy*, 2021, **46**, 726–765.
- 11 (a) X. Zou and Y. Zhang, *Chem. Soc. Rev.*, 2015, **44**, 5148–5180; (b) L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M. Asiri and X. Sun, *Small Struct.*, 2021, **2**, 2000048; (c) J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A. A. Alshehri, Q. Kong, C. Tang and X. Sun, *J. Mater. Chem. A*, 2023, **11**, 1116–1122; (d) Q. Liu, S. Sun, L. Zhang, Y. Luo, Q. Yang, K. Dong, X. Fang, D. Zheng, A. A. Alshehri and X. Sun, *Nano Res.*, 2022, **15**, 8922–8927.
- 12 T. Hisatomi, J. Kubota and K. Domen, *Chem. Soc. Rev.*, 2014, **43**, 7520–7535.
- 13 (a) C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2015, **137**, 4347–4357; (b) L. Ouyang, X. He, Y. Sun, L. Zhang, D. Zhao, S. Sun, Y. Luo, D. Zheng, A. M. Asiri, Q. Liu, J. Zhao and X. Sun, *Inorg. Chem. Front.*, 2022, **9**, 6602–6607.
- 14 J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri and X. Sun, *Adv. Mater.*, 2016, **28**, 215–230.
- 15 J. Ran, J. Zhang, J. Yu, M. Jaroniec and S. Z. Qiao, *Chem. Soc. Rev.*, 2014, **43**, 7787–7812.
- 16 Y. Liu, F. Fu, L. Salmon, B. Espuche, S. Moya, M. Berlande, J.-L. Pozzo, J.-R. Hamon and D. Astruc, *ACS Appl. Mater. Interfaces*, 2023, **15**, 23343–23352.
- 17 N. Gao, D. Han, T. Yang, Q. Meng, X. Wang, C. Liu, J. Ge and W. Xing, *Appl. Catal., B*, 2023, **336**, 122913.
- 18 X. Sun, Y. Ding, G. Feng, Q. Yao, J. Zhu, J. Xia and Z.-H. Lu, *J. Colloid Interface Sci.*, 2023, **645**, 676–684.
- 19 Z. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu and X. Wang, *Fuel*, 2023, **346**, 128333.
- 20 J. Wang, Y. Yu, H. Yu, W. Wang, L.-L. Shen, G.-R. Zhang and D. Mei, *ACS Catal.*, 2023, **13**, 5135–5146.
- 21 A. Kumar, P. Daw and D. Milstein, *Chem. Rev.*, 2022, **122**, 385–441.
- 22 J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang, X.-Z. Fu and J.-L. Luo, *Appl. Catal., B*, 2021, **281**, 119510.
- 23 L. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. Han, Y.-w. Li, X.-d. Wen, W. Zhou and D. Ma, *J. Am. Chem. Soc.*, 2021, **143**, 309–317.
- 24 Z. Li, X. Tang, Y. Jiang, Y. Wang, M. Zuo, W. Chen, X. Zeng, Y. Sun and L. Lin, *Chem. Commun.*, 2015, **51**, 16320–16323.
- 25 C. Wang and D. Astruc, *Chem. Soc. Rev.*, 2021, **50**, 3437–3484.
- 26 C. Wang, Q. Wang, F. Fu and D. Astruc, *Acc. Chem. Res.*, 2020, **53**, 2483–2493.
- 27 X. Liu, X. Jin, J. Yan, S. Fan, Y. Wang and D. Astruc, *Appl. Catal., B*, 2023, **324**, 122261.
- 28 S. Guan, Y. Liu, H. Zhang, R. Shen, H. Wen, N. Kang, J. Zhou, B. Liu, Y. Fan, J. Jiang and B. Li, *Adv. Sci.*, 2023, 2300726.
- 29 J. Cao, W. Huang, Y. Wang, Q. Zhang and X. Liu, *J. Mol. Liq.*, 2023, **369**, 120917.
- 30 Z. Li and Q. Xu, *Acc. Chem. Res.*, 2017, **50**, 1449–1458.
- 31 Z. L. Wang, J. M. Yan, Y. Ping, H. L. Wang, W. T. Zheng and Q. Jiang, *Angew. Chem., Int. Ed.*, 2013, **52**, 4406–4409.
- 32 Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu and G. Zhang, *Nat. Commun.*, 2020, **11**, 1853.
- 33 R. Williams, R. S. Crandall and A. Bloom, *Appl. Phys. Lett.*, 2008, **33**, 381–383.
- 34 Z. Chen, C. A. M. Stein, R. Qu, N. Rockstroh, S. Bartling, J. Weiß, C. Kubis, K. Junge, H. Junge and M. Beller, *ACS Catal.*, 2023, **13**, 4835–4841.
- 35 M. Karatok, H. T. Ngan, X. Jia, C. R. O'Connor, J. A. Boscoboinik, D. J. Stacchiola, P. Sautet and R. J. Madix, *J. Am. Chem. Soc.*, 2023, **145**, 5114–5124.
- 36 W.-F. Peng, X. Sun, Y. Ding, P. Liu, Q. Yao and Z.-H. Lu, *ACS Sustainable Chem. Eng.*, 2023, **11**, 1898–1908.
- 37 L. Yaacoub, I. Dutta, B. Werghi, B. W. J. Chen, J. Zhang, E. A. Hamad, E. P. Ling Ang, E. Pump, A. B. Sedjerari, K.-W. Huang and J.-M. Basset, *ACS Catal.*, 2022, **12**, 14408–14417.

38 Y. Ding, W. Peng, L. Zhang, J. Xia, G. Feng and Z.-H. Lu, *J. Colloid Interface Sci.*, 2023, **630**, 879–887.

39 M. Deng, A. Yang, J. Ma, C. Yang, T. Cao, S. Yang, M. Yao, F. Liu, X. Wang and J. Cao, *ACS Appl. Mater. Interfaces*, 2022, **14**, 18550–18560.

40 Q. Zhang, Q. Mao, Y. Zhou, L. Zou, D. Zhu, Y. Huang, H. Gao, X. Luo, Y. Mao and Z. Liang, *ACS Sustainable Chem. Eng.*, 2022, **10**, 4599–4609.

41 D.-X. Liu, Y.-T. Zhou, Y.-F. Zhu, Z.-Y. Chen, J.-M. Yan and Q. Jiang, *Appl. Catal., B*, 2022, **309**, 121228.

42 D. H. Carrales-Alvarado, C. López-Olmos, A. B. Dongil, A. Kubacka, A. Guerrero-Ruiz and I. Rodríguez-Ramos, *Appl. Catal., B*, 2021, **298**, 120604.

43 S. Prabu and K.-Y. Chiang, *J. Colloid Interface Sci.*, 2021, **604**, 584–595.

44 C. Martin, A. Quintanilla, G. Vega and J. A. Casas, *Appl. Catal., B*, 2022, **317**, 121802.

45 S. Zhong, X. Yang, L. Chen, N. Tsumori, N. Taguchi and Q. Xu, *ACS Appl. Mater. Interfaces*, 2021, **13**, 46749–46755.

46 C. Wan, L. Zhou, S. Xu, B. Jin, X. Ge, X. Qian, L. Xu, F. Chen, X. Zhan, Y. Yang and D.-g. Cheng, *Chem. Eng. J.*, 2022, **429**, 132388.

47 W. Peng, S. Liu, X. Li, G. Feng, J. Xia and Z.-H. Lu, *Chin. Chem. Lett.*, 2022, **33**, 1403–1406.

48 F. Xu and X. Liu, *ACS Catal.*, 2021, **11**, 13913–13920.

49 F. Xu, J. Yan, Y. Wang and X. Liu, *iScience*, 2023, **26**, 106504.

50 Z. Pi, K. Hou, F. Yao, L. He, S. Chen, Y. Fu, X. Li and Q. Yang, *Carbon*, 2022, **196**, 736–748.

51 Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou, J. Tian, N. Lin and Y. Qian, *Angew. Chem., Int. Ed.*, 2019, **58**, 18108–18115.

52 S. Hyok Ri, F. Bi, A. Guan and X. Zhang, *J. Colloid Interface Sci.*, 2021, **586**, 836–846.

53 W. Huang, F. Xu, D.-S. Li, D. Astruc and X. Liu, *Carbon Energy*, 2023, **5**, e269.

54 D. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, C. Heiliger, B. Smarsly and P. J. Klar, *Carbon*, 2020, **161**, 359–372.

55 C. H. Wu, C. Liu, D. Su, H. L. Xin, H.-T. Fang, B. Eren, S. Zhang, C. B. Murray and M. B. Salmeron, *Nat. Catal.*, 2019, **2**, 78–85.

56 Y. Yan, B. Y. Xia, B. Zhao and X. Wang, *J. Mater. Chem. A*, 2016, **4**, 17587–17603.

57 F. Fu, C. Wang, Q. Wang, A. M. Martinez-Villacorta, A. Escobar, H. Chong, X. Wang, S. Moya, L. Salmon, E. Fouquet, J. Ruiz and D. Astruc, *J. Am. Chem. Soc.*, 2018, **140**, 10034–10042.

58 J. S. Yoo, Z.-J. Zhao, J. K. Nørskov and F. Studt, *ACS Catal.*, 2015, **5**, 6579–6586.

59 F.-Z. Song, Q.-L. Zhu, X. Yang, W.-W. Zhan, P. Pachfule, N. Tsumori and Q. Xu, *Adv. Energy Mater.*, 2018, **8**, 1701416.

60 S. Santra, D. Das, N. S. Das and K. K. Nanda, *Chem. Sci.*, 2017, **8**, 2994–3001.

61 C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz and D. Astruc, *J. Am. Chem. Soc.*, 2017, **139**, 11610–11615.

62 S. Santra, D. Das, N. S. Das and K. K. Nanda, *ACS Appl. Energy Mater.*, 2019, **2**, 260–268.

63 A. Bulut, M. Yurderi, Y. Karatas, M. Zahmakiran, H. Kivrak, M. Gulcan and M. Kaya, *Appl. Catal., B*, 2015, **164**, 324–333.

64 Z. Wang, S. Liang, X. Meng, S. Mao, X. Lian and Y. Wang, *Appl. Catal., B*, 2021, **291**, 120140.

65 I. Barlocco, S. Capelli, E. Zanella, X. Chen, J. J. Delgado, A. Roldan, N. Dimitratos and A. Villa, *J. Energy Chem.*, 2021, **52**, 301–309.

66 Y. Gao, E. Hu, G. Yin and Z. Huang, *Fuel*, 2021, **302**, 121142.

67 Y. Karatas, A. Bulut, M. Yurderi, I. E. Ertas, O. Alal, M. Gulcan, M. Celebi, H. Kivrak, M. Kaya and M. Zahmakiran, *Appl. Catal., B*, 2016, **180**, 586–595.

68 Z.-L. Wang, J.-M. Yan, Y.-F. Zhang, Y. Ping, H.-L. Wang and Q. Jiang, *Nanoscale*, 2014, **6**, 3073–3077.

69 X. Zhao, P. Dai, D. Xu, X. Tao, X. Liu and Q. Ge, *J. Energy Chem.*, 2021, **59**, 455–464.

70 Z.-L. Wang, H.-L. Wang, J.-M. Yan, Y. Ping, O. Song-Il, S.-J. Li and Q. Jiang, *Chem. Commun.*, 2014, **50**, 2732–2734.

71 A. Zhang, J. Xia, Q. Yao and Z.-H. Lu, *Appl. Catal., B*, 2022, **309**, 121278.

72 S. Zhang, Y. Qian and W.-S. Ahn, *Chin. J. Catal.*, 2019, **40**, 1704–1712.