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A structure–activity approach towards the toxicity
assessment of multicomponent metal oxide
nanomaterials†

G. P. Gakis, I. G. Aviziotis and C. A. Charitidis *

The increase of human and environmental exposure to engineered nanomaterials (ENMs) due to the

emergence of nanotechnology has raised concerns over their safety. The challenging nature of in vivo

and in vitro toxicity assessment methods for ENMs, has led to emerging in silico techniques for ENM tox-

icity assessment, such as structure–activity relationship (SAR) models. Although such approaches have

been extensively developed for the case of single-component nanomaterials, the case of multicomponent

nanomaterials (MCNMs) has not been thoroughly addressed. In this paper, we present a SAR approach for the

case metal and metal oxide MCNMs. The developed SAR framework is built using a dataset of 796 individual

toxicity measurements for 340 different MCNMs, towards human cells, mammalian cells, and bacteria. The

novelty of the approach lies in the multicomponent nature of the nanomaterials, as well as the size, diversity

and heterogeneous nature of the dataset used. Furthermore, the approach used to calculate descriptors for

surface loaded MCNMs, and the mechanistic insight provided by the model results can assist the understand-

ing of MCNM toxicity. The developed models are able to correctly predict the toxic class of the MCNMs in the

heterogeneous dataset, towards a wide range of human cells, mammalian cells and bacteria. Using the above-

mentioned approach, the principal toxicity pathways and mechanisms are identified, allowing a more holistic

understanding of metal oxide MCNM toxicity.

1. Introduction

Engineered nanomaterials (ENMs) have emerged as a key part
of today’s technology,1 in various forms such as nanofilms,2–4

nanoparticles (NPs)5 and nanotubes.6,7 The applications of
ENMs ranging from electronics8 to medicine,9 energy10 and
catalysis11 has increased the intentional12,13 and non-inten-
tional exposure to such materials in workplaces,14 house-
holds,15 atmospheric air,16 or via commercial products.17

The topic of human and ecosystem safety upon exposure to
ENMs has also been raised during the last decade.18 The most
common way to assess the safety of an ENM is through experi-
mental methods. In vitro toxicity methods, are faster, less
costly and do not include animal testing.19 In contrast, in vivo
methods are more reliable for hazard and risk assessment,20

but are characterized by higher cost and time requirements,
let alone the ethical concerns regarding animal testing.

During the last decade, in silico methods21 have been
employed for the study of ENM biodistribution22,23 and
toxicity.21,24,25 In particular, focus has shifted to the develop-
ment of structure–activity relationship (SAR) models for ENM
toxicity assessment.26 These models are based on finding
relations between physicochemical or structural properties of
nanoparticles (NPs), known as descriptors, and toxicity data,
thus developing predictive models for NP toxicity.27 These
models can be either quantitative (QSAR),28 or classification
models.24,25 Such approaches constitute a promising tool to
provide a rapid and cost-effective toxicity assessment of
various NPs, and to reduce animal testing.

Several SAR models that have been developed during the
last decade, focused on metal oxide NPs.29–31 Reviews on such
SAR approaches have been provided by Buglak et al.,26 and Li
et al.32 However, the limited number of data points,28,33–35 as
well as the complexity of the set of descriptors used for larger
and more heterogeneous datasets,36–40 have rendered the extrac-
tion of mechanistic information from SAR models challenging.
However, as the OECD principles for SAR model validation indi-
cate, the mechanistic insight from such approaches should not
be undermined.41 In this context, frameworks have been pre-
sented to approach the metal oxide NP toxicity in a more
mechanistic way.42,43 Such frameworks have been used to explain
experimental results regarding the toxicity of different sets of
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metal oxide NPs.24,31,34,44,45 Recently, we presented a classifi-
cation SAR approach for the case of metal and metal oxide NP
toxicity, using a large dataset of toxicity measurements towards a
wide range of cell lines and organisms, such as human and
mammalian cell lines, eukaryotes, bacteria, crustaceans, fish and
plants.46 This approach was able to provide a more holistic
understanding of the key NP features that induce toxicity, provid-
ing valuable information regarding the toxicity pathways and the
metal oxide NP mode of action.

Although the scientific literature on the development of
SAR models for pure metal and metal oxide NPs is extensive,
less works have addressed the case of multicomponent nano-
materials (MCNMs). In particular, Mikolajczyk et al., studied
the effect of Au and Pt loaded on the surface of TiO2 NPs, both
experimentally and with a QSAR modelling approach.47 The
same research group has studied the effect of other metals
loaded on the surface of TiO2-based MCNMs via QSAR
modelling48,49 providing web tools50 and modelling networks51

to treat such MCNMs. Beside the case of TiO2-based NPs,
however, nano-SAR models focusing on other metal oxide
MCNMs are very sparse, with only the case of doped ZnO par-
ticles being studied.52 Although the toxicity of doped and
loaded metal oxides, as well as multi-metal oxides and bi-
metallic NPs has been studied experimentally,53,54 the focus
has not been shifted to SAR models.

In this paper, we present a classification SAR approach for
the case of metal–oxide MCNMs. The list of MCNMs includes
metal-doped metal oxides, composite metal oxides, bimetallic
particles, as well as metal oxides with metal or metal oxide
NPs loaded on their surface. The dataset used for the model
development consists of 796 toxicity measurements in the
form of half maximal concentrations towards various cell lines
and bacteria. This dataset is, to the best of the author’s knowl-
edge, the largest dataset of individual MCNM toxicity measure-
ments used for SAR model development. The aim of the
present study is to unravel key MCNM characteristics that
induce toxicity by using a heterogeneous and large dataset, in
order to extract mechanistic information and provide a more
global understanding of MCNM toxicity. The novelty of the
present work lies in the multicomponent nature of the nano-
materials and the size of the dataset used for the model train-
ing and validation, the approach used to compute MCNM
descriptors, and the mechanistic insight obtained regarding
MCNM toxicity. The diversity and heterogeneous nature of the
present MCNM toxicity dataset can also contribute to a more
global and mechanistic understanding of MCNM toxicity, as
SAR models for MCNMs are still limited in scientific literature.

2. Methods
2.1. Toxicity endpoints

In this work, a SAR approach is developed regarding the tox-
icity of MCNMs. Specifically, this manuscript covers the case
of metal-doped metal oxide NPs, bimetallic NPs, composite
metal oxide NPs and metal oxide NPs loaded with metals on

their surface. The developed dataset consists of MCNM toxicity
measurements towards human (and human cancer) and mam-
malian cell lines. Toxicity data for such cell lines have been
previously used for the development of QSAR models to
predict the cytotoxicity of metal oxide NPs.26,31,32,34,46,55,56

Furthermore, toxicity measurements towards bacteria are also
included. The toxicity endpoints are expressed as half maximal
concentrations. These include half maximal effective (EC50),
inhibitory (IC50), and lethal (LC50) concentration toxicity end-
points, collected from various published research works.
Although most SAR models are built using a specific endpoint,
the inclusion of these different half maximal concentrations
(henceforth labelled as C50) within the same dataset has been
previously addressed.36,39 The half maximal concentrations
were derived by a dose–response study reported in the corres-
ponding published paper. The toxicity classification scheme is
described in the following section.

2.2 Toxicity classification scheme

A measurement in the dataset is characterized as toxic if the
logarithm of the molar concentration endpoint (mol L−1) was
lower than −2.5 (log(C50) ≤ −2.5), based on previous studies.24

In some cases where a limited range of experimental concen-
trations is explored, the half maximal concentrations are just
being reported to be higher than the maximum tested concen-
trations (C50 > Cmax,tested). In this paper, these measurements
are characterized as in our previous study.46 Briefly, if the
maximum concentration tested yields an effect of 50% or less
and log(Cmax) > −2.5, then C50 was set to the maximum tested
concentration, and the measurement is classified as non-toxic.
Otherwise, if log(Cmax) ≤ −2.5, then the following scheme is
applied: If Cmax is more than 50% of the threshold concen-
tration (Cthres), the measurement is classified as non-toxic. If,
however, Cmax is less than 50% of the threshold value, the
measurement is omitted from the dataset. The value of 50%
was arbitrarily chosen, so that a significant amount of MCNM
has been exposed so that the measurement is classified as
non-toxic, and to reduce the number of data omitted from the
dataset.

A similar approach was adopted for studies where Cmax

yielded an effect higher than 50%. If the concentration tested
was lower than the threshold value (log(Csingle) ≤ −2.5), then
the C50 value is set to the concentration tested and classified
as toxic. If the concentration tested was higher than the
threshold value (log(Cmax) > −2.5), the measurement is
omitted, i.e. removed from the dataset. The classification
scheme is summarized in Table 1.

Although the toxicity data in the dataset is heterogeneous
in terms of the cell morphology which is exposed to the
MCNMs, the same criteria are used for the classification of
each measurement. As the aim of the present model is not to
predict a quantitative value for a toxicity endpoint, but rather
to qualitatively determine a toxic class for MCNMs and in this
way to identify key MCNM characteristics with a dominant role
on the toxicity mechanisms, the choice of similar criteria can
be justified. Similar criteria have been used in relevant scienti-
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fic literature,24,37,40,46 for such heterogeneous datasets to build
classification models. The criteria used in the present analysis
is based on the work of Simeone and Costa, which also uses
the same toxicity criteria for the grouping of NPs based on
their toxicity towards heterogeneous cells.24

2.3 Datasets

Following the above classification scheme, a dataset of 796
individual measurements is collected, regarding MCNM tox-
icity endpoints towards human/human cancer (onwards
referred to as human) and mammalian cell lines, as well as
bacteria. To the best of the author’s knowledge, this is the
largest dataset of individual toxicity measurements regarding
MCNMs. The data were acquired from 104 different research
papers and consist of half maximal concentration endpoints
towards 78 different cell lines and bacteria, measured using
different toxicity assays. In total, the dataset consists of 340
different MCNMs. The complete dataset is presented in the ESI
(SM file 1).† The total set of data is split into subsets of data,
based on the individual cell line or organism that was exposed to
the MCNM. Furthermore, data subsets are created regarding the
cell or organism group of the cell lines or organism, namely
Human (and human cancer) cells, Mammalian cells and
Bacteria. The criteria for the creation of a data subset are the
dataset size (minimum of 30 measurements) and the balance
between toxic and non-toxic measurements (minimum of 30% of
both data classes). With these criteria, datasets for seven individ-

ual cells or organisms and three cell and organism groups are
created. The final datasets are presented in Table 2.

2.4 Descriptors

2.4.1 Individual component descriptors. The first step
towards the MCNM descriptor formulation is the calculation
of descriptors for each individual component of the corres-
ponding MCNM. The components of MCNMs consist of either
metals or metal oxides and their descriptors are computed as
in our previous work.46 Briefly, the initial descriptors used for
each component were the metal cation charge (z) and ionic
radius (r), obtained from.57 The hydration enthalpy (HE) of the
metal ion was calculated with Latimer’s equation:44

HE ¼ � 631:184 � z2
ðr þ 50Þ ð1Þ

The metal ion (χme) and oxide (χoxide) electronegativity is cal-
culated as in,58,43,31 The band gap (Eg) was computed with an
exponential equation as in the works,43,44 using the pre-exponen-
tial terms presented in the literature.59 For metal oxide com-
ponents, the conduction band energy (Ec) was computed as in
ork of Burello and Worth,43 with the point of zero zeta potential
obtained from a previously reported work.60 For metal com-
ponents, this descriptor took the value of the Fermi level energy,
estimated by the Mulliken electronegativity.61 The redox potential
of couples active in biological media43 has been previously
reported to be between −4.12 and −4.84 eV (ref. 31, 43, 44, 62
and 63) with an average of −4.48 eV. The absolute difference
between Ec and the redox potential in is represented by:

Dbio ¼ absðEc � ð�4:48Þ eVÞ ð2Þ
Finally, a set of 31 elemental descriptors are obtained using

the program elemental descriptor 1.0.64

2.4.2 MCNM descriptors. The descriptors of MCNMs were
computed based on the descriptors of their corresponding
components, using an additive mixture approach, which was
suggested by Mikolajczyk et al.,47 The additive mixture
approach implies that the different components of the MCNM
have a similar mode of action. In the present case, the com-
ponents of the different MCNMs over the whole range of the

Table 1 Summary of the classification scheme for the experimental
measurements in the dataset

Reported
concentration Condition Classification

C50 value reported log(C50) ≤ −2.5 Toxic
log(C50) > −2.5 Non-toxic

Cmax yields effect >
50%

log(Cmax) ≤ −2.5 Toxic
log(Cmax) > −2.5 Omitted

Cmax yields effect <
50%

log(Cmax) > −2.5 Non-toxic
log(Cmax) ≤ −2.5, Cmax ≥
0.5·Cthreshold

Non-toxic

log(Cmax) ≤ −2.5, Cmax <
0.5·Cthreshold

Omitted

Table 2 Details for the different datasets in the present work

Cell type/cell type No. of measurements No of NPs % of toxic measurements % of non-toxic measurements

Individual cell lines and organisms
A549 83 74 44.6 55.4
HeLa 55 37 50.9 49.1
HepG2 60 49 55 45
MCF 7 44 37 65.9 34.1
3T3 43 39 51.2 48.8
E. coli 79 46 57 43
S. aureus 53 31 56.6 43.4
Cell line and organism groups
Human cells 486 225 49.6 50.4
Mammalian cells 122 108 41.8 58.2
Bacteria 188 61 60.6 39.4
Complete dataset 796 340 51 49
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dataset are either metals or metal oxides, which have been
reported to have similar modes of action.32,46 The additive
mixture also implies that the component effect on the MCNM
descriptor value is the sum of the descriptor of its com-
ponents, with the effect of each component being scaled by its
molar fraction in the MCNM:

DMCNM;j ¼
Xn
i¼1

xi � Di;j ð3Þ

where DMCNM,j is the jth descriptor in the MCNM descriptor
matrix, xi is the molar fraction of component i in the MCNM, n is
the number of components, and Di,j is the jth descriptor of the
descriptor matrix of component i. This approach for the compu-
tation of MCNM descriptors has been previously addressed and
used in earlier published works in scientific literature for multi-
component materials,48–50,65 as well as for mixtures.66–69

However, a different approach was employed for the case of
MCNMs where components are loaded on the particle surface.
In such cases, the composition of the surface is not the same
as their bulk composition, as the MCNM consists of a core
component and surface components are loaded on the core
particle surface. As the interaction between the NPs and the
biological media is primarily via their surface, a way to esti-
mate the surface composition of the MCNMs is required. In
this work, this is conducted as follows: As a first step, the par-
ticle volume is estimated:

Vpart ¼ 4πR3

3
ð4Þ

where R is the particle radius.
The nominal densities (25 °C) of each component (which

can be found in online handbooks and/or databases) and
mass/molar fractions are then used to estimate the total mass
and molecular amount (qi, in moles) for each of the particle
components in a single particle. The surface components are
all assumed to be situated on the particle surface (qs,i = qi).
The amount of the core component on the particle surface
(qs,core) is computed based on the core component’s unit cell:

qs; core ¼
nat � SApart

SAunit cell

� �

Nav
ð5Þ

where nat is the number of atoms or molecules in the unit cell,
Nav is Avogadro’s constant, SApart (=4πR2) is the surface area of
the particle, and Sunit cell is the surface area of the unit cell,
based on the corresponding unit cell parameters. The surface
composition is hence computed as a molar fraction of each
component:

xs;i ¼ qs;iPn
i
qs;i

ð6Þ

Using the above approach, an estimation of the surface
composition of MCNMs with components loaded on the core
component surface is obtained. This composition is then used

in eqn (3) to obtain the MCNM descriptors. Although this
surface composition-oriented estimation is a rough approxi-
mation, it is more adequate to represent the composition of
the surface of such MCNMs, which is the area of interaction of
the MCNM with the biological media.

2.4.3 Descriptor selection. Upon MCNM descriptors com-
putation and collection, feature selection methods were
employed to discard redundant descriptors. This was done to
reduce the complexity of the model and increase the interpret-
ability of the results. The approach implemented for the descrip-
tor selection step is based on our previous work.46 First, intercor-
related descriptors were identified using Pearson’s correlation
coefficient,70 so that only one of intercorrelated descriptors is
used. Then, ReliefF71 and chi-square72 are used for the ranking
of the different descriptors based on their relevance to the end-
points. Following this analysis, the 4 most relevant descriptors
were kept. The different combinations of the most relevant
descriptors were tested, in order to identify the optimal models
for the MCNM toxicity classification.

2.5 Model implementation, training and validation

As previously stated in section 2.3, seven datasets were created
regarding toxicity measurements of MCNMs towards individ-
ual cell lines and organisms, while three different datasets
were created for measurements towards cells and organisms of
the same group, namely human cells, mammalian cells and
bacteria. Finally, the whole set of measurements was also
incorporated in the total dataset. The modelling and validation
schemes for the above-mentioned datasets are presented
below.

For less populated datasets (n < 100), a five-fold cross vali-
dation was used. For populated datasets (n ≥ 100), a hold-out
validation is used with 80% of the data as a training set and
20% as a validation set. In the hold-out validation scheme,
five-fold cross validation was used to train the model on the
training set and the developed model was then used to predict
the toxic class for the validation set. The random data splitting
and the model training were realized in MATLAB®, using the
classification learner toolkit, by implementing Support Vector
Machines (SVM), k-Nearest-Neighbors (kNN) and Random
Forests (RF). The optimal models were selected for each
dataare identified with the use of different statistical metrics
based on the resulting confusion matrix. The metrics used are
presented below:

Accuracy (ACC):

ACC ¼ TPþ TN
P þ N

ð7Þ

Precision (Prec):

Prec ¼ TP
TPþ FP

ð8Þ

Sensitivity, or recall (Sens):

Sens ¼ TP
P

ð9Þ
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Specificity, or selectivity (Sel):

Sel ¼ TN
N

ð10Þ

In eqn (3)–(6), P and N are the total number of toxic and
non-toxic predictions, respectively. TP and TN are the number
of correctly classified toxic and non-toxic measurements,
respectively. FP and FN are the number of falsely predicted
toxic and non-toxic measurements, respectively. The area
under curve (AUC) of the receiver operating characteristic
(ROC) curve was also employed as a metric. The models were
deemed acceptable when the accuracy exceeds 80%.

2.6 Applicability domain

OECD standards state that the applicability domain of a devel-
oped SAR model should be clearly reported,41 to determine the
descriptor space within which the developed model is appli-
cable. The methods used for the applicability domain defi-
nition are the bounding box PCA, convex hull and Euclidean
distance from centroid methods.73,74 The Applicability
Domain toolbox developed for MATLAB by the Milano
Chemometrics and QSAR Research Group73,74 was used for the
analysis.

3. Results and discussion
3.1 Descriptor selection

The first step of the present framework is the descriptor selec-
tion step. The Pearson coefficient was used for the intercorrela-
tion analysis between the different descriptors The resulting
Pearson intercorrelation coefficient is presented in Fig. 1. The
threshold value was set to 0.95.75 Subsequently, descriptors

were analyzed to see if their values are continuous over the
dataset. Non-continuous descriptors (showing no value for
several observations in the dataset) were removed. Finally,
descriptors with similar physical meaning are omitted. The
above analysis resulted in the removal of 35 descriptors in
total.

The remaining descriptors from the previous step were
ranked using the feature descriptor methods described in
section 2.4.3 and the four most relevant descriptors are kept.
The resulting weights and scores of the four most relevant
descriptors, following the above analysis, are shown in Fig. 2.

Results of Fig. 2 show that the HE, the sum of the ioniza-
tion potential of the metals in the MCNM (MSIP), the van der
Waals radius of the metal in the MCNM (VWR_M) and Dbio
are the most relevant descriptors derived using the chi-square
method. On the other hand, Dbio, HE, VWR_M and the
electronegativity of the metal ion (Xion) are the most relevant
descriptors derived using the ReliefF method. These results
show that three of the descriptors, namely HE, Dbio and
VWR_M are deemed as relevant by both methods. Hence,
these descriptors are kept for the SAR model building.

3.2 Individual cell lines and bacteria

Based on the results of the feature selection step, several
models are built using different combinations of the three
descriptors identified as more relevant (HE, Dbio, VWR_M).
The results for the descriptor combinations, for the representa-
tive case of the most populous dataset of individual cell lines
(A549 cells), is presented in Table 3.

Table 3 shows that none of the models trained using a
single descriptor shows accuracy values over 80%. This shows
that no descriptor is predictive enough towards the toxic class

Fig. 1 Pearson correlation coefficient for the initial descriptor set.
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of the different measurements in the MCNM dataset. However,
the accuracy is increased when a second descriptor is
included. In particular, the model built using the descriptor
set of Dbio and HE produced the highest accuracy of 81.9%.
The addition of VWR_M in the descriptor set did not increase
the accuracy of the model, showing the lesser effect of this
descriptor (Table 3). Following the above analysis of the model
results, the descriptor set of Dbio and HE is kept as the
optimal descriptor set.

The above procedure is repeated for the rest of the individ-
ual cell and bacteria datasets, and the optimal classification
models are built for each set of data. The resulting classifi-
cation models for the individual cell lines and bacteria are pre-

sented in Table 4, along with their respective statistical
metrics.

As shown in Table 4, the optimal combination of descrip-
tors was found to be HE and Dbio, for all the individual cell
and bacteria models. Although the measurements in the data
are heterogeneous, in terms of the experimental conditions
used for the toxicity measurements, the developed models
were able to predict the toxic class of the MCNMs using the
same descriptor set. Furthermore, the developed models
exhibited high accuracy (>94%) using 5-fold cross validation,
for all datasets except from the MCF-7 cell line (84.1%) and
the A549 cell line (81.9%). The low accuracy towards the MCF-7
dataset could in part be assigned to its smaller size and more
unbalanced nature between toxic and non-toxic measure-
ments. The lowest accuracy is obtained for the A549 dataset. In
this model dataset, the vast majority of the misclassifications
refer to a specific experimental study. Nevertheless, the 81.9%
accuracy is considered as acceptable. The models also exhibit
values above 80% for sensitivity, selectivity and precision for
all datasets, except from the A549 dataset, where the precision
(75%) and selectivity (76.1%) are below the threshold.

The above classification approach shows that the MCNM
toxicity towards the different cell lines and bacteria can be pre-
dicted with acceptable accuracy, using the same two descriptors
(HE and Dbio). The fact that the same descriptors were used can
hint towards similar underlying toxicity mechanisms for the
different MCNMs, towards a variety of cell lines or organism.
Furthermore, the abovementioned results show that the additive

Table 3 Model accuracy with the different descriptor combinations
towards the A549 dataset

Dbio HE VWR_M Accuracy (%)

Single descriptor models
✓ ✗ ✗ 63.9
✗ ✓ ✗ 74.7
✗ ✗ ✓ 72.3
Two descriptor models
✓ ✓ ✗ 81.9
✓ ✗ ✓ 74.7
✗ ✓ ✓ 77.1
Three descriptor models
✓ ✓ ✓ 81.9

Fig. 2 Results for the four most relevant descriptors, as derived from (a) chi-square and (b) ReliefF methods.

Table 4 Results of the classification models built for individual cell lines and bacteria

Cell line/bacteria Model Descriptors Validation scheme Acc (%) Prec (%) Sens (%) Sel (%)

A549 SVM HE, Dbio 5-fold cross validation 81.9 75 89.2 76.1
HeLa kNN HE, Dbio 5-fold cross validation 96.4 100 92.9 100
HepG2 SVM HE, Dbio 5-fold cross validation 96.7 97 97 96.3
MCF 7 SVM HE, Dbio 5-fold cross validation 84.1 89.3 86.2 80
3T3 SVM HE, Dbio 5-fold cross validation 97.7 95.7 100 95.2
E. coli SVM HE, Dbio 5-fold cross validation 94.9 97.7 93.3 97.1
S. aureus kNN HE, Dbio 5-fold cross validation 96.2 93.8 100 91.3
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mixture approach, suggested by Mikolajczyk et al.,47 complemen-
ted by the approach used for the calculation of descriptors for
surface-loaded MCNMs, is able to compute descriptors that can
predict the toxic class of MCNMs towards a variety of cell lines
and bacteria. This can also provide information on the inter-
action between the various components and biological media.
The above-mentioned findings will be discussed in the following
section of the present work.

3.3 Cell and organism groups

Since the same descriptor combination was found to be the
optimal for the different individual cell and bacteria models,
the focus is shifted towards the development of models for
cells that belong to the same group. SAR models are developed
for the Human cells, Mammalian cell, and bacteria datasets.
Furthermore, a model is built for the total dataset, to examine
whether the combination of the two descriptors (HE, Dbio) is
predictive towards the whole set of heterogeneous data. The
classification model results are shown in Table 5.

As for the case of individual cell lines and bacteria, the
model predictions show a very good accuracy towards the vali-
dation sets, while the different statistical metrics, such as pre-
cision, sensitivity and selectivity, show acceptable values for all
the cell and organism data groups. This shows that despite the
heterogeneous nature of the data used for the model building,
the same combination of MCNM descriptors can accurately
predict the toxic class of the respective measurements, using the
same descriptors. These results, together with a mechanistic ana-
lysis of the descriptors and their effect on toxicity (discussed in a
subsequent section) can assist towards a more global under-
standing of the toxicity mechanisms of MCNMs. As the dataset
consists of a large number of MCNMs, with various measure-
ments towards different cells and bacteria, the results of the SAR
models encourage the notion that the dominant underlying tox-
icity mechanisms for metal and metal oxide MCNMs are similar,
even towards different cell morphologies. Furthermore, the addi-
tive mixture approach for MCNM descriptors can predict the
toxic class of MCNMs towards a wide range of cell lines and
organisms, as for previous works using such approaches to
describe MCNM properties.47–49

3.4 Model extrapolation

Following the above analysis, as the same set of descriptors
was found to be optimal for the model development with

different datasets (Tables 4 and 5), we aimed at investigating
whether the models built for a specific dataset could be
extrapolated to predict the toxic class of the measurements in
the rest of the data. This is done by using the A459 cell line
model to predict the toxic class of the measurements in the
rest of the datasets, as well as the total dataset. This could
further support the idea that metal/metal oxide MCNM toxicity
is dominated by similar mechanisms, towards different cell
morphologies. The A549 model is chosen as it is the most
populous individual cell dataset, in terms of number of
measurements and different MCNMs (Table 2). The predic-
tions of the A549 cell model towards the different datasets are
presented in Table 6.

Table 6 shows that the A549 cell model can accurately
predict the toxic class of the measurements in the rest of the
individual cell line datasets, the human and mammalian cell
and bacteria datasets, as well as the total dataset. This shows
not only that the toxic class can be predicted using the same
set of descriptors, but also that these descriptor values can be
used to predict the toxicity towards a very heterogeneous
dataset. Furthermore, the approach used for the calculation of
descriptors for MCNMs, based on the descriptors of individual
components, can produce predictive descriptors for the large
and heterogeneous data of toxicity measurements.

3.5 Applicability domain

The identification of the descriptor space over which the devel-
oped models are applicable is conducted by determining the
applicability domain. The number of MCNM toxicity measure-

Table 5 Results of the classification models built for cell and organism groups

Cell/organism group Model Descriptors Validation scheme ACC (%) Prec (%) Sens (%) Sel (%)

Human cells SVM HE, Dbio Train. (n = 389) 93.8 90.7 98 89.4
Val. (n = 91)

Mammalian cells SVM HE, Dbio Train. (n = 98) 91.6 87.5 87.5 93.8
Val. (n = 24)

Bacteria SVM HE, Dbio Training (n = 151) 97.3 100 95.6 100
Validation (n = 37)

Total dataset SVM HE, Dbio Train. (n = 637) 91.2 89.4 93.8 88.5
Val. (n = 159)

Table 6 Results of the A549 cell line model extrapolation towards the
rest of the datasets

Dataset Model ACC (%) Prec (%) Sens (%) Sel (%)

Individual cells/organisms
HeLa A549 90.9 87.1 96.4 85.2
HepG2 A549 96.7 100 93.9 100
MCF 7 A549 84.1 95.8 79.3 93.3
3T3 A549 95.3 95.5 95.5 95.2
E. coli A549 79.7 100 64.4 100
S. aureus A549 84.9 100 73.3 100
Cell/organism groups
Human cells A549 92 91.7 92.1 91.8
Mammalian cells A549 91 87 92.2 90.1
Bacteria A549 87.2 100 78.9 100
Total dataset A549 90.6 93 88.2 93.1
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ments in the dataset that were deemed to be outside the appli-
cability domain of the respective model (defined over its train-
ing set), using the different methods for the applicability
domain definition, are shown in Table 7.

The bounding box PCA and convex hull methods included
all the MCNMs in the applicability domain of each model, as
seen in Table 7, for the individual datasets. However, the cen-
troid distance showed that some of the MCNMs were outside
of the applicability domain. For the cell and organism group
models, as well as the complete dataset model, some MCNMs
were found to be outside the applicability domain, by all three
methods, with the centroid distance method showing a nar-
rower applicability domain. These results show that the
method used for the definition of the applicability domain is
crucial. The dependency of the applicability domain to the
different methods has been discussed in scientific literature.74

From the applicability domain analysis, it is seen that MCNMs
with more negative HE values, as well as MCNMs with higher
Dbio values, are found to be deemed as outside the applica-
bility domain of the models. Such applicability domains have
been presented in works that used classification SARs built
using similar descriptor combinations.45,46 This should be
taken into account when the model results are discussed.

3.6 Overall toxicity evaluation

Based on the results of the different models, the model devel-
oped for the whole dataset was employed to assess the toxicity
classification of the 340 different MCNMs over the space
defined by the descriptors used (HE, Dbio). The results are pre-
sented in Fig. 3a. For comparison, the percentage of toxic
measurements for each MCNM is also presented over the
descriptor space, in Fig. 3b, for comparison.

Fig. 3a shows that the toxic classification of the MCNMs is
separated descriptor space. It is shown that toxic MCNMs have
a lower absolute Dbio and HE value. These results show that
MCNMs with a conduction band energy (Ec) close to the redox
potential of biological pairs as well as a less exothermic metal
cation hydration, are more probable to be toxic. A less negative
hydration enthalpy and a smaller Dbio value result in a higher

toxicity probability of the NPs. Such results have previously
been presented for the case of pure metal oxide NPs in litera-
ture scientific works.44–46 In the same direction with those
works, the results of Fig. 3 hint towards the same underlying
mechanisms of toxicity for the case of MCNMs, with the addi-
tive mixture approach and the correction for surface loaded
MCNMs being able to predict the toxic class of MCNMs.
Fig. 3b shows that the percentage of toxic measurements
follows the above-mentioned behavior over the descriptor
space. Although some of the MCNMs are misclassified by the
classification model, most of these misclassifications are situ-
ated close to the plane in the descriptor space that separates
the two toxicity classes. This shows that the two applied
descriptors are able to quantify the key characteristics of the
MCNMs that induce toxicity. Although the exact descriptor
values that separate the two classes may not be identified in
detail, the key MCNM characteristics which lead to the
MCNMs to induce toxicity, namely a lower Dbio value and a
less negative HE, can be identified. Within the context of the

Table 7 Number of MCNMs toxicity measurements that are deemed to
be outside the applicability domain

Dataset
Bounding box
PCA

Convex
hull

Centroid
distance

A549 — — 1
HeLa — — 1
HepG2 — — 2
MCF 7 — — 1
3T3 — — —
E. coli — — —
S. aureus — — 3
Human cells — 10 20
Mammalian
cells

3 13 5

Bacteria — 3 12
Complete
dataset

2 19 33

Fig. 3 (a) Toxicity classification of the different MCNMs over the
descriptor space by the model, (b) percentage of toxic measurements
for each of the MCNMs in the complete dataset.
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present classification model, which is not targeting to predict
a quantitative toxicity endpoint, but to reveal the key character-
istics resulting in a large number of different MCNMs toxic
action, towards different cell lines and bacteria, the results of
Fig. 3a are in very good agreement with the experimental
measurements of Fig. 3b. The fact that the model classification
results reproduce the experimental findings over the hetero-
geneous nature of the dataset shows that these MCNM pro-
perties play a crucial role over the MCNM toxicity towards a
wide range of cells and bacteria, unravelling general trends for
MCNM toxicity. This allows a more global analysis of the
MCNMs toxicity pathways, as discussed in the next section.

In Fig. 3, the majority of data consist of MCNMs that
exhibit a metal ion HE > −100 eV. In the same way, most of the
MCNMs have a Dbio < 1.5 eV. This explains the results of the
previous section, where the MCNMs that were deemed to be
outside the applicability domain of the models exhibited
higher Dbio and more negative HE values.

Based on the above results, the analysis proceeds with the
interpretation of the results and the discussion of the toxicity
mechanism of metal and metal oxide MCNMs.

3.7 Toxicity mechanisms of metal and metal oxide MCNMs

The results presented in the previous sections allow to proceed
with a mechanistic interpretation of the MCNM toxicity. The
additive mixture approach suggested by Mikolajczyk et al.,47

along with the approach suggested in the present paper for the
descriptors of surface loaded MCNMs, provided descriptors
that could predict the toxic class of the different MCNMs with
good accuracy. All of the developed models used the same
descriptor set, showing that the primary toxicity mechanisms
were similar towards the wide range of cell morphologies
under study.

The descriptor Dbio reflects the energy difference between
the conduction band and the mean standard redox potential
of biological pairs. MCNMs that were classified as toxic exhibi-
ted lower values of Dbio, which express possible electron trans-
fer between the MCNM and the biological pairs, unbalancing
the reducing capacity of a cell and increasing its oxidative
stress.43

Such mechanisms of actions have been identified for metal
oxide NPs.42,43 The generation of various reactive oxygen
species (ROS), such as OH radicals anf hydrogen
peroxides,31,76–82 has been investigated towards E. coli and cor-
related with the conduction band energy of NPs.83 The effect
on the reduction capabilities of antioxidants in the cells upon
exposure to metal oxide and biological redox pairs may also
lead to increased oxidative stress.43 The descriptor Dbio
expresses the above mechanisms. Similar descriptors have
been adopted to explain the toxicity of metal oxides towards
various cells31,34,45 and bacteria,44 reproducing experimental
results. A similar descriptor has also been used for the group-
ing of metal oxides based on their redox activity.24 Finally, in a
previous work, we showed that Dbio was used as a descriptor
to predict the toxic class of metal and metal oxide NPs towards
human and mammalian cell lines, fish, bacteria, crustaceans,

plants and eukaryotes,46 with good accuracy, providing a more
global understanding of metal and metal oxide toxicity
mechanisms.

HE was also predictive as a descriptor for the MCNM tox-
icity towards the different cells and bacteria of the dataset.
This descriptor quantifies the affinity of water to the metal
ions that are released from the MCNM,44 with a more negative
value suggesting enhanced affinity. HE also reflects the resi-
dence time of water molecules near a cation, indirectly expres-
sing the permeability of a cation. A metal ion with a more
negative HE value will attract more water molecules, which
increase its hydration shell, hindering its transport through
cell membranes.84–88

Latimer’s equation (eq. (1)), which is used to compute HE,
uses the product of the oxidation number or cation charge (z)
and ionic potential (z/r). The oxidation number has been corre-
lated with metal oxide solubility and the release of metal
ions,24,32,89 leading to higher toxicity.56 The ionic potential
expresses the charge potential or electronegativity of the metal
cation,24,32 also correlated with toxicity.90 The ionic potential
has also been used as a metric for the surface charge of metal
oxide NPs.24 The factor of z2/r, which is the product of the two
aforementioned quantities, has been previously used by Liu
et al., in order to classify metal oxide NPs,45 while HE has also
been deemed predictive for the toxicity of metal oxides.44,46 To
summarize, HE includes the contribution of the three mecha-
nisms: the release of metal ions, their electronegativity and
surface charge, and their interaction with aqueous media.

The release of metal ions has been identified as an impor-
tant toxicity mechanisms for metal oxides,76 by inducing oxi-
dative stress91–95 and enzyme inactivation.91,94 Metal ions have
been found to replace elements in proteins and enzymes.91,92

They can also cause damage to cell membranes,31,96 or even
DNA.91,97,98 Although the solubility of NPs is a major factor for
the release of ions,24 it cannot explain the toxicity of every
metal oxide, as shown for the case of MgO.29,55,99

The results presented in this work are unable to indicate
which of the abovementioned mechanism is dominant for
MCNM toxicity. The MCNMs that are classified as toxic from
the developed models are characterized by both a lower Dbio
value and a less negative HE of the corresponding metal
cations. As seen from the results of Table 3, the incorporation
of only a single descriptor could not provide predictive models
for the toxicity of the different MCNMs. In contrast, it is the
combination of the two mechanisms that defines the toxic
class of the different MCNMs: electron exchange and release of
ions that permeate the cell before hydration occurs are both
crucial toxicity pathways.

The developed models were trained using heterogeneous
datasets consisting of toxicity measurements of MCNMs
towards different cell lines and bacteria. Although the cell
morphology has an influence on the toxicity of the MCNMs,
the models developed for all the individual and cell group
datasets have shown the same optimal descriptor combination
of HE and Dbio. Furthermore, the model built for a specific
cell line (A549) was able to predict the toxic class of the
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measurements in the bacteria datasets with good accuracy,
using the same descriptors. This could hint that that even
though the cell morphology is different, the principal mecha-
nisms of toxicity of MCNMs could be similar. The different
cell morphology could affect the mechanisms in a quantitative
way (leading to higher or lower uptake rates, electron transfer
rates, or metal ion release rates) but not in a way that affects
the toxicity classification qualitatively. As the present model is
qualitative, the quantitative differences in the value of the tox-
icity endpoints cannot be obtained by the model, unless they
change the toxic class of the MCNM. Such similar mechanisms
of toxicity towards different cells and bacteria have been pre-
viously reported for the case of metal oxides,31,44 where nano-
particles with conduction bands close to the redox potential of
biological pairs were found to induce toxicity towards BEAS-2B
and RAW264.7 cells,31 as well as E. coli.44 This has led the
development of classification models for metal oxide NP tox-
icity using heterogeneous toxicity data in terms of cell
morphology,36–40,46 which produced sets of descriptors that
are predictive for the toxicity of metal oxide NPs towards a
wide range of cells and organisms.

The descriptors used to predict the MCNM toxic class were
computed using the additive mixture approach.47 Although
some works have tested the use of descriptors computed using
an independent action approach for the case of nanomaterial
or chemical mixtures,100,101 the additive mixture approach has
been the main approach used to build predictive models for
nanomaterial mixtures,66,67,102 as well as for the case of
MCNMs.47–50,52 Nevertheless, the list of MCNMs has been
more limited. The results of the present manuscript show that
the additive mixture approach can accurately predict the toxic
class of a large number of different MCNMs, towards a wide
range of cells and bacteria. Furthermore, the approach pre-
sented for the calculation of descriptors for surface loaded
MCNMs produced descriptors that were predictive over the
whole range of large dataset. These results can hence provide
valuable information regarding the nature of the interaction
between the individual components of the MCNMs and
different cells and bacteria. However, as the model outcome is
a qualitative classification rather than a quantitative prediction
of a toxicity endpoint, it is difficult to assess the quantitative
impact of each component in certainty. In previous works, a
similar approach has produced predictive quantitative models,
even for a more limited number of MCNMs.48,49 These works
showed that the toxic action of the MCNMs could be predicted
by the ratio of its respective components, showing an additive
effect of each component to the MCNM toxicity. Although in
the present work this cannot be directly implied by the classifi-
cation model results, the good accuracy over a very populated
toxicity dataset, for a large number of MCNMs could hint that
this additive effect could be more global. Nevertheless, this
would be the subject of a future work, performed by testing
quantitative models for more restricted datasets under the
same experimental conditions, in order to draw conclusions
regarding the quantitative effect of each component on the
MCNM toxicity.

The heterogenous datasets used to build the classification
models presented in this work can unravel the key character-
istics of the MCNM toxicity pathways and mode of action. In
this work, however, the size and shape of the MCNMs was not
used as a descriptor in the final model, as in the case of other
predictive models have been built for ENMs.24,28,31,34,44,103 The
non-inclusion of size as a descriptor in the classification
model may show that size may not have a qualitative effect on
which mechanism occurs. However, since the size and shape
of the MCNMs defines their surface, it could affect the
different mechanisms quantitatively, by affecting their kine-
tics.24 The quantitative prediction of toxicity endpoints is not
in the scope of the present manuscript, and will be the subject
of future work.

In the same way, the surface charge of MCNMs has not
been directly used as a predictive descriptor in the final
models. The surface charge of metal or metal oxide particles
has been previously found to be an important characteristic
for the toxicity of such NPs, and is often expressed in QSAR
studies by a measured zeta potential for each NP.26,32,33 NPs
interact differently with cells depending on their surface
charge, with positively charged particles showing higher
cellular uptake than neutral or negatively charged NPs.24,104

The contribution of surface charge has previously been
assigned to its acidity, which can be expressed by the ionic
potential (z/r).24,89 Although in the present model the surface
charge or ionic potential is not used as a descriptor per se, the
term z/r is included in Latimer’s equation (eq. (1)), for the cal-
culation of HE. Hence, HE is a complex descriptor that incor-
porates some contribution from the surface charge. The non-
inclusion of surface charge per se in the present models does
not mean that it does not affect the MCNM toxicity, but rather
that it has a combined effect with other key characteristics of
MCNMs. Besides the surface charge, which affects the cellular
uptake of the MCNM, the release of metal ions, their electro-
negativity, and their interaction with aqueous media are
expressed by HE, while the electron transfer between the cells
and the MCNM is expressed by the Dbio descriptor. The com-
bination of these descriptors, that express different mecha-
nisms, yields the classification of the MCNMs as toxic or non-
toxic.

The accuracy of the classification models developed
towards such heterogeneous datasets, illustrates the potential
of classification SAR models to provide a more global under-
standing of the toxicity pathways for the case of MCNMs.
Beside such models being used as predictive tools, focus can
also be shifted towards the extraction of mechanistic infor-
mation, by employing larger datasets of toxicity measurements
for the nanomaterials under study. Such mechanistic insight
could help assist the safe-by-design synthesis and production
of functional MCNMs. For example, Feng et al., designed
MCNMs with control over their toxicity by altering their energy
bands, based on a mechanistic approach to ENM toxicity
similar to the results of the present study.105 The results pre-
sented in this work can serve as a basis towards such a knowl-
edge-based development of MCNMs.
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4. Conclusions

In this work, an extensive dataset consisting of 796 individual
toxicity measurements is used to build classification SAR
models for MCNMs. The novelty of the approach lies in the
multicomponent nature of the nanomaterials, as well as the
size, diversity and heterogeneous nature of the dataset used.
The developed classification models showed good results
towards individual cells and bacteria, as well as cell groups
and the total set of data, using the same descriptor set.
Furthermore, the approach used for the descriptor calculation
was able to provide predictive descriptors, shedding light on
the interaction between the different components of MCNMs.
The approach used to calculate descriptors for surface loaded
MCNMs, and the mechanistic insight provided by the model
results can assist the understanding of MCNM toxicity in a
more global way.

The two descriptors that were used for the predictive model
expressed the electron transfer between the MCNM and the
biological pairs, leading to the increased oxidative stress of
cells, and the release and transport of metal ions from the
MCNMs. The good accuracy towards the heterogeneous
measurements of the dataset showed that the abovementioned
mechanisms could explain the toxicity of MCNMs towards a
wide range of cells and bacteria. This analysis showed that
these toxicity mechanisms are crucial for the case of metal
oxide MCNMs, leading to a more global understanding of
MCNM mode of action. The understanding of the effect of the
multiple components of MCNMs on different cells and bac-
teria can assist in the synthesis of MCNMs for targeted biologi-
cal applications. Finally, such approaches lead to a more
knowledge-driven hazard assessment of nanomaterials, assist-
ing the synthesis of safe-by-design MCNMs for various
applications.
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