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Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many
maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical
lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades,
with recent advances in our bioinformatic and enzymatic understanding providing further insights
into their construction. However, many intriguing questions remain, including exactly how the
enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled.
This review will explore the literature from the initial isolation of maleidride compounds in the 1930s,
through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in
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1. Introduction

Maleidrides are a group of biosynthetically related polyketide-
based natural products that have been isolated from diverse fila-
mentous fungi.’> They contain at least one maleic anhydride
moiety fused to a central carbocyclic core. There are three groups
of maleidrides classified by the number of carbons in the central
ring structure, the nonadrides (nine carbons), octadrides (eight
carbons) and heptadrides (seven carbons) (Fig. 1A).* Other maleic
anhydride based metabolites are known,> for example the cor-
dyandhydrides® and the tropolones.* However, maleidrides are
specifically formed by the coupling of two monomer units (1-3,
Fig. 1B) to form a central carbocycle, with differing regiochemical
dimerisation modes leading to significant structural diversity
(Fig. 1C).*” Dimerisation is proposed to occur in a head-to-head,
head-to-tail, or head-to-side manner leading to the observed mal-
eidride core structures (Fig. 1). The initial position of the pendant
alkyl chains varies dependent on the mode of dimerisation, with
head-to-head coupling leading to neighbouring side chains and
head-to-tail to side chains on opposite sides of the central carbo-
cycle (see Fig. 1A, Sections 5.1 and 5.2 for further details). Further
tailoring modifications and rearrangements increase the structural

This journal is © The Royal Society of Chemistry 2023
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complexity of maleidride natural products and can influence their
bioactive properties.

The numbering systems used for the maleidrides varies
greatly in the literature and shows no consistency. Hence in
2020 we proposed a more systematic method based on the size
of the ring (1-9, 1-8, 1-7 as appropriate) beginning at the
carbon alpha to the maleic anhydride ring, which gives the
lowest numbers to the side chains. The maleic anhydride
carbons are numbered with a prime, appropriate to the ring
numbering, hence 3’ 4’ and 8’ 9’ for byssochlamic acid, and 1”,
2" etc. for the first side chain, numbering from the ring junc-
tion, and 1", 2", etc. for the second chain.® We have used this
numbering system throughout.

This review aims to bring together studies on the chemical,
genetic, and enzymatic aspects of maleidride biosynthesis. We will
explore the literature regarding the biosynthesis of the monomer,
evidence for dimerisation, and maleidride tailoring, by reviewing
feeding studies, biomimetic syntheses, bioinformatics, gene dele-
tions, heterologous expression and in vitro enzyme assays.

Katherine Williams received her
PhD from the University of Bris-
tol in 2010, before moving to the
Bristol Polyketide Group, inves-
tigating the Dbiosynthesis of
fungal metabolites with inter-
esting  bioactive  properties.
Research posts at the Leibniz
Universitdt Hannover, Germany
with Prof. Russell Cox, and at
Cardiff University with Prof.
Ruedi  Allemann  followed.
Subsequently, Katherine moved
back to the University of Bristol, working with Dr Andy Bailey and
Prof. Chris Willis, on a project developing a high-throughput
heterologous production platform for fungal natural product
antibiotic discovery.

Kate de Mattos-Shipley obtained
her PhD from Bristol University
in 2011, for her investigations
into the biosynthesis of a mush-
room-derived antibiotic called
pleuromutilin. She spent the
next 10 years studying a wide
range of fungal natural prod-
ucts, with a focus on genome
mining, bioinformatic analyses
and  pathway  elucidation
through genetic manipulations
and heterologous production. In
2021 she left the bench behind after accepting a position as
a biotechnology editor for Nature Communications.
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2. Maleidride structures and their
bioactivities

2.1. Nonadrides

In 1931 Wijkman and co-workers isolated the first maleidrides
from culture extracts of Penicillium glaucum, glauconic and
glaucanic acids 4 and 5, (Fig. 2).° Soon after, an isomer of
glaucanic acid 5, (+)-byssochlamic acid 6 was isolated from
Paecilomyces fulvus, a common contaminant of pasteurised
goods.” In the 1960s full structural elucidation of these
compounds was achieved through both chemical degradation
studies and X-ray crystallography.”™* In 1965, Barton and
Sutherland named this family of related compounds (4-6) the
‘nonadrides’ in reference to the Co-monomers thought to be
involved in their construction,” however this name has later
become associated with the number of carbons in the central
carbocyclic core of the maleidrides.

None of the initially discovered nonadrides have shown any
significant bioactivities.'*'” Many years later, (—)-byssochlamic
acid 7, along with (—)-hydroxybyssochlamic acid 8 were

Agnieszka Szwalbe obtained her
bachelor's degrees in both
Chemistry (2012) and Biotech-
nology (2012) at the University
of Warsaw, Poland. She then
studied biosynthesis of malei-
drides during PhD studies under
the supervision of Prof. Russell
Cox and Prof. Tom Simpson at
Bristol University, UK, and
graduated in 2016. She is
currently pursuing a career as an
analytical chemist in medicinal
chemistry division at Celon
Pharma (Poland).

Andy Bailey is a senior lecturer
at the University of Bristol, UK.
His research interests are based
around different aspects of
fungal biology and their analysis
using molecular genetic
approaches.  This  includes
genome mining to explore fungal
secondary metabolism, fungi as
pathogens of plants and inver-
tebrates and other fungi, plus
establishing methods for genetic
analysis of basidiomycetes.
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extracted from a fungus that was isolated from a mangrove
swamp.'®*® (—)-Byssochlamic acid 7 was shown to have medium
cytotoxic activity against HEp-2 and HepG2 cells, whereas
(—)-hydroxybyssochlamic acid 8 showed weak activity.” A
reduced derivative of (+)-byssochlamic acid, dihydrobysso-
chlamic acid 9 was isolated from P. fulvus in 2015 (Fig. 2).*
The rubratoxins A and B, 10 and 11 were first isolated from
Penicillium rubrum in 1962,>° and identified as the likely caus-
ative agents of fatal hepatotoxic poisoning events that occurred
from contaminated foodstuffs. By 1970 their structures had
been elucidated using a combination of degradation studies
and X-ray crystallography, with the only difference between A
and B being the reduction of one maleic anhydride moiety to
a +y-hydroxybutenolide in rubratoxin A 10 (Fig. 3).*** These
compounds are strikingly more complex than the nonadrides
(4-9) that had been previously characterised, and also the first
nonadrides which appear to be formed not from two Co-
monomers, but instead by coupling of C,;-units. Despite their
complexity, it is apparent that the mode of dimerisation is head-
to-tail coupling, as occurs in byssochlamic acid 6 biosynthesis,
as their pendant alkyl chains are positioned on opposite sides of
the central carbocycle (Fig. 1 and 3). A desaturated derivative of
rubratoxin B 11, rubratoxin C 12 was later isolated from a Peni-
cillium sp.”® Rubratoxin A 10 is a potent and highly specific
inhibitor of protein phosphatase 2A, (PP24A), a target for anti-
cancer drug development. Notably, it has approximately 100-
fold stronger inhibition of PP2A than rubratoxin B 11.° The -
hydroxybutenolide motif has been shown to be an important
pharmacophore in other compounds.”’”** Rubratoxin B 11
exhibits antitumour activity, likely linked to blocks in the

Russell Cox was born in 1967 in
the New Forest in the UK where
he grew up. He studied chem-
istry at the University of
Durham, and then worked with
Prof. David O'Hagan at the same
institution for his PhD, studying
the biosynthesis of fungal
metabolites. Post-doctoral
periods with Professor John
Vederas FRS in Edmonton
Alberta, and Professors David
Hopwood FRS and Tom Simpson
FRS at Norwich and Bristol in the UK were followed by his
appointment as a lecturer in the School of Chemistry at the
University of Bristol where he rose to become full Professor of
Organic and Biological Chemistry. He moved to become Professor
of Microbiological Chemistry at the Leibniz Universitdt Hannover
in Germany in 2013. He has served as an editorial board member
of Natural Product Reports until 2012, and has been past chair of
the Directing Biosynthesis series of scientific conferences. He is
currently chair of the editorial board of RSC Advances, and Head
of the Institute for Organic Chemistry at the Leibniz Universitdt
Hannover.
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progression of the cell cycle.** Rubratoxin C 12 shows weak
activity against human cancer cell lines.”® Ceramidastin 13, an
analogue of the rubratoxins, has been isolated, also from
a Penicillium sp.** Inoue et al’' state that the 'H and **C
chemical shifts and coupling constants of ceramidastin 13 were
very similar to those reported for rubratoxin B 11, suggesting
the same stereochemistry between the two compounds, as
shown in Fig. 3. Ceramidastin 13 was shown to be a novel
inhibitor of bacterial ceramidase,*" an enzyme which is believed
to contribute to skin infections of patients with atopic derma-
titis.>* In 2019, a rubratoxin producing fungus, Talaromyces
purpurogenus® was shown to produce five other nonadride
compounds (14-18), one of which is an analogue of rubratoxin
B 11 with one of the maleic anhydride moieties hydrolysed to
a diacid (rubratoxin acid A 14).>* Maleic anhydride ring-open
forms of nonadrides may be artefacts of extraction protocols,
and are known to interconvert with the ring-closed forms."?**3¢
Hence it is difficult to determine whether 14 is a true natural
product, although the authors note that 14 appears stable in
their hands.** Compounds 15, 16,17 and 18 also all contain one
ring-open diacid and appear to be intermediates/shunts from
the rubratoxin pathway.’” All five compounds (14-18) were
tested for their in vitro anti-inflammatory activities, with
rubratoxin acid A 14 showing significant inhibitory activity
against nitric oxide production (thought to play a crucial role in
inflammatory responses)*® from liposaccharide (LPS)-induced
RAW264.7 cells.?*

In 1972 scytalidin 19 was isolated from a Scytalidium species
and characterised, however the relative and absolute configu-
rations were not determined.** Later analysis of various

Chris Willis is Professor of
Organic Chemistry and Head of
Organic and Biological Chem-
istry at the University of Bristol.
Her research focuses on natural
product biosynthesis including
the application of total
synthesis, isotopic labelling,
pathway engineering and mech-
anistic studies to produce bio-
catalysts and new bioactive
molecules. She was the recipient
of the Natural Product Chem-
istry Award of the Royal Society
of Chemistry in 2020.
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a)

maleidrides

head-to-head

nonadrides

octadrides heptadrides
head-to-side
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3 (0]
tail  head
/\/’O cartoon monomer
c) Modes of dimerisation
head-to-head head-to-tail head-to-side

Fig.1 (a) Examples of the core dimeric structures of the maleidrides. (b) The three maleidride monomers, with the 'tail’ depicted in blue, and the
‘head’ in red. (c) A pictorial representation of the various modes of dimerisation.

This journal is © The Royal Society of Chemistry 2023
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glauconic acid 4 R=OH (+)-byssochlamic acid 6

glaucanic acid 5 R=H

(-)-byssochlamic acid 7 R=H
(-)-hydroxybyssochlamic
acid 8 R=OH

dihydrobyssochlamic acid 9

Fig. 2 Nonadrides 4-9, with carbons numbered according to the
system described in de Mattos-Shipley et al.®

Scytalidium species revealed that deoxyscytalidin 20 is also
produced by scytalidin 19 producers.*® Nonadrides 19 and 20
possess the same ring structure as byssochlamic acid 6, but with
longer alkyl chains, providing further confirmation that the
maleidrides are not limited to compounds formed from the
dimerisation of Co-units. Scytalidin 19 shows antifungal activity
with low phytotoxicity, and was first identified due to its fun-
gitoxic effects towards Poria carbonica, a wood-rotting fungus.*
Recent work has confirmed the absolute and relative configu-
rations of both scytalidin 19 and deoxyscytalidin 20.* In 1989
a ring hydroxylated analogue of scytalidin 19 named casta-
neiolide 21 was isolated from Macrophoma castaneicola, which
causes ‘black root rot disease’ in chestnut trees. Assays using
the purified castaneiolide 21 showed that it induced wilting in
chestnut leaves.** More recent studies have confirmed the
structure of castaneiolide 21 (Fig. 4).®

The structure of heveadride 22, isolated from Bipolaris
heveae, was solved in 1973 by MacMillan and co-workers
through degradation studies.”” Interestingly this nonadride
shows a different substitution around the 9-membered ring
compared with the byssochlamic acids, scytalidins and rubra-
toxins and has neighbouring side-chains on the same side of
the molecule, reminiscent of glauconic and glaucanic acids 4
and 5, arising from a head-to-head dimerisation. In 1987
a longer chain analogue of 22, homoheveadride 23 was isolated
from the lichen symbiont Cladonia polycarpoides.**

Dihydroepiheveadride 24, a y-hydroxybutenolide analogue
of heveadride 22, as well as epiheveadride 25, were later isolated
from an unidentified fungus, with 24 providing significant
antifungal activity.** Heveadride 22 and epiheveadride 25 also
produced a fungitoxic effect, albeit significantly weaker than
dihydroepiheveadride 24.** In 2010 Wicklowia aquatica was
shown to be a prolific producer of heveadride analogues,
producing epiheveadride 25, dihydroepiheveadride 24, deox-
oepiheveadride 26, tetrahydroepiheveadride 27,

132 | Nat. Prod. Rep., 2023, 40, 128-157
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rubratoxin A 10 rubratoxin B 11

3

rubratoxin acid C 16 rubratoxin acid D 17

rubratoxin acid E 18

Fig. 3 Nonadrides 10-18, with carbons numbered according to the
system described in de Mattos-Shipley et al.®

This journal is © The Royal Society of Chemistry 2023
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5" o’ ¢
scytalidin 19

homoheveadride 23

R1 R2
) H OH - dihydroepiheveadride 24
g " 0 - epiheveadride 25
H H - deoxoepiheveadride 26
H OH- tetrahydroepiheveadride 27
H H - dideoxoepiheveadride 28
H H - deoxodihydroepiheveadride 29

(0]

curvulariahawadride 30

Fig. 4 Nonadrides 19-30, with carbons numbered according to the
system described in de Mattos-Shipley et al.®

dideoxoepiheveadride 28, and deoxodihydroepiheveadride 29
(Fig. 4).* Of these, 27-29 did not appear to show antifungal
activity.*® Another heveadride analogue, curvulariahawadride 30
has recently been isolated from a Curvularia sp. and was shown
to have nitric oxide production inhibitory activity (Fig. 4).*¢

In contrast to all the nonadrides discussed above, cornex-
istin 31 and its derivatives contain only one maleic anhydride
moiety (Fig. 5). Cornexistin 31 was isolated and characterised in
1992 by the Sankyo pharmaceutical company.*” It is produced

This journal is © The Royal Society of Chemistry 2023
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W
3J HO

cornexistin 31 R=H

dehydroxy-
dihydrocornexistin 33 R=H hydroxycornexistin 35

dihydro-

hydroxy-
cornexistin 32 R=OH  dihydrocornexistin 34 R=OH

phomoidride A 36
C-2""" = B-H a-OH

phomoidride B 37
C-2"" =B-H a-O

phomoidride C 38
C-2"" = o-H pB-OH

phomoidride D 39
C-2"" = a-H -0

phomoidride E 40 phomoidride F 41

phomoidride G 42

Fig. 5 Nonadrides 31-42, with carbons numbered according to the
system described in de Mattos-Shipley et al.®

by the thermotolerant fungus Paecilomyces divaricatus, which is
closely related to the byssochlamic acid 6 producer, P. fulvus.*®
Cornexistin 31 has significant broad-spectrum phytotoxic
activity and is of especial interest due to its low toxicity to the
crop plant maize (Zea mays).*” It also appears to have a unique
mode of action, possibly involving inhibition of the plant

Nat. Prod. Rep., 2023, 40, 128-157 | 133
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aspartate amino transferase.®® A derivative of cornexistin 31,
hydroxycornexistin 32, was later isolated from P. divaricatus,
which has significantly stronger activity against broadleaf
weeds.” Intermediates 33, 34 and 35 from the cornexistin
biosynthetic pathway were later isolated from a P. divaricatus
strain engineered to produce fewer competing metabolites, thus
allowing for greater flux towards the cornexistin pathway.*®

In 1997 the phomoidrides A 36 and B 37 were isolated from
cultures of a fungus (ATCC 74256), later identified as belonging
to the pleosporales order.***® Trace amounts of an epimer,
phomoidride D 38 were also isolated.’>**** The phomoidrides A
36 and B 37 have been shown in vitro to inhibit squalene syn-
thase and Ras farnesyl transferase and therefore are attractive
lead structures for the development of both cholesterol
lowering and anticancer drugs.”* A further isomer named pho-
moidride C 39 was isolated in 2001.>> Recently, three further
phomoidrides have been isolated from ATCC 74256, phomoi-
drides E 40, G 41 and F 42 (Fig. 5).® The phomoidrides are
nonadrides assembled on a complex central core with func-
tionalised side chains at C-2 and C-3. It is apparent however that
they are formed from a head-to-head dimerisation in a manner
somewhat similar to the glauconic and glaucanic acids 4 and 5.
They are unique amongst the maleidrides discovered thus far in
that the carboxylic acid of one of the monomers appears to be
retained in the mature structure. This is corroborated by
feeding studies which demonstrate that the C-10 carboxylic acid
is derived from succinate.>

Very recently, six further nonadrides, the talarodrides A-F
43-48 were isolated from an Antarctic sponge derived fungus,
Talaromyces sp. HDN1820200 (Fig. 6).” These unusual malei-
drides also appear to be formed in a similar manner to glau-
conic and glaucanic acids 4 and 5, and share the bridgehead

talarodride A 43 Ry=H R,=OH
talarodride B 44 R4=CH3 R,=OH
talarodride C 45 R;=CH; R,=H

talarodride D 46

talarodride E 47

talarodride F 48

Fig. 6 Nonadrides 43—-48, with carbons numbered according to the
system described in de Mattos-Shipley et al.®
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olefin present in most phomoidrides e.g. 37. Talarodrides A 43
and B 44 show specific antibacterial activity against Proteus
mirabilis and Vibrio parahemolyticus.> The methoxy groups
present in talarodrides B 44 and C 45 are potentially artefacts
due to the use of methanol during isolation.>

The structures of the nonadrides have attracted significant
attention from the scientific community not only because of
their fascinating biosynthesis but also their structures have
proved a challenge to the skills of synthetic chemists. Stork
completed the first total synthesis of racemic byssochlamic
acid in 1972 (ref. 58) and was later followed by White's “pho-
toaddition-cyclodimerisation” strategy for the efficient
assembly of the functionalised 9-membered ring.>® The first
enantioselective synthesis was reported by White and co-
workers in 2000 following a similar approach used in the
synthesis of the racemate.® The molecular complexity of the
phomoidrides has demanded the development of selective
strategies and several elegant total syntheses have been ach-
ieved.**"** Cornexistin 31 and related compounds have been of
particular recent interest due to their potential value as
herbicides.*”** Clark and Taylor®**” have explored synthetic
routes towards cornexistin 31 and in 2020 the first total
synthesis of (+)-cornexistin was reported by Magauer and co-
workers.®®*® Starting from malic acid, key steps included
a Hiyama-Kishi coupling, stereoselective aldol reaction and
intramolecular alkylation to deliver >150 mg of cornexistin 31.
This approach could be readily adapted for the preparation of
analogues.

zopfiellin
tetracarboxylate 50

agnestadride A 53

agnestadride B 54

Fig. 7 Octadrides 49-52, and heptadrides 53 and 54, with carbons
numbered according to the system described in de Mattos-Shipley
etal®

This journal is © The Royal Society of Chemistry 2023
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2.2. Octadrides

Zopfiellin 49 was the first octadride to be reported, and was
isolated from Zopfiella curvata in 1994, by Nissan Chemical
Corp.” It shows promising antifungal activity against many plant
pathogenic fungi, as well as various fungi that cause human
diseases.” Zopfiellin 49 readily interconverts between the ring-
closed dianhydride form and the ring-open tetracarboxylate 50,
which is favoured at low pH (Fig. 7).*® The dianhydride form does
not appear to have significant fungicidal activity.**”* The activity
of zopfiellin 49/50 is ameliorated by addition of oxaloacetate to
fungal cultures, suggesting that the mode of action is associated
with oxaloacetate metabolism.*® Zopfiellin 49 was recently iso-
lated from a close relative of Z. curvata, Diffractella curvata, and
using a combination of NMR spectroscopy and the X-ray struc-
ture of a crystalline derivative, the absolute and relative config-
urations of zopfiellin 49 were confirmed.®

Another antifungal octadride, viburspiran 51, was isolated
from Cryptosporiopsis sp. in 2011.” Viburspiran 51 contains an
ethylene bridge between C-3 and C-8. A similar metabolite,
botryoanhydride 52, was recently isolated from an uncharac-
terised fungus which has an n-propyl group attached to C-1,
instead of the n-pentyl group present in viburspiran (Fig. 7).”

2.3. Heptadrides

The first natural heptadrides, agnestadrides A 53 and B 54, were
isolated from the byssochlamic acid 6 producer, P. fulvus in
2015 (Fig. 7). Baldwin and co-workers had previously charac-
terised a compound with a heptadride structure during their
biomimetic investigations into nonadride monomer dimerisa-
tion.” A head-to-side mode of dimerisation can explain the
formation of the seven-membered central carbocycle (see Fig. 1
and Section 4.2 for more detail).»”

3. Origin of the monomers

Soon after the first structure elucidation of the maleidrides,
Sutherland and co-workers™'* proposed that their biosynthesis
may proceed via the coupling of two monomeric units. They
were prescient in their hypotheses, proposing that monomer
units could be derived from a citric acid intermediate, and that
an anionic type coupling mechanism in either head-to-head or
head-to-tail coupling could account for the structural differ-
ences between glauconic and glaucanic acids 4 and 5, and
byssochlamic acid 6.*

To investigate the biosynthetic construction of the putative
monomers, Sutherland and co-workers” performed a series of
feeding experiments with 'C-labelled putative biosynthetic
precursors combined with degradation studies. As the degra-
dation of glauconic acid 4 into characteristic fragments had
been previously established,> Sutherland and co-workers’®
selected 4 for these studies as it would undergo controlled
decomposition to two known products: glauconin 55 and
diethylacrolein 56, and then further degraded to CO, and the
radioactivity measured (Scheme 1). The identified carbons
could then be referenced to the putative monomer unit, 57.

This journal is © The Royal Society of Chemistry 2023
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monomer unit 57

7 1 10

6/ —1\5 9I—\8

07 g 50 079 g 8~ O

diethylacrolein 56

glauconin 55

Scheme 1 Pyrolytic degradation route of glauconic acid 4, with
positions of the equivalent and distinguishable carbons identified with
reference to the putative monomer unit 57.

In an initial experiment, a P. purpurogenum culture was fed
separately [1-'*C]- and [2-'*CJ-acetate 58, subsequently,
labelled glauconic acid 4 was isolated (with 9.4% and 13.2%
incorporation radiolabel respectively) and the site of isotopic
labelling determined by degradation studies as shown in
Schemes 1 and 2.7® From these experiments it was deduced
that the Co-precursor 57 was assembled from two different
components coupled to generate the double bond of the
maleic anhydride (Scheme 2). The observed labelling pattern
was consistent with the longer C4-chain of the monomer unit
being the product of a typical polyketide/fatty acid synthase
(PKS/FAS), derived from a head-to-tail condensation of an
acetate and two malonate units (Scheme 2). Two adjacent

O OH O o o
HO OH HO/H\/YJ\OH
COOH o)
citric acid

ketoglutarate \

o}
+ oxaloacetate 60

HO
fo) succinate 59 O

,/U\O/SCOA lu

® [1-14C] acetate 58

® [2-1%C] acetate 58
OH
l H o)k/u\n/

OH

f

(o] o) o©O
'/.\'/.\/U\OH HOJ\)S(OH
hexanoate oxaloacetate 60 O

(FAS/PKS origin) 0
Cg-chain
\ ______________ o /
o Cz-chain

Cg monomer unit 57

Scheme 2 Proposed route of incorporation of labelled acetate into
the glauconic acid 4 C9 monomer unit 57 via the citric acid cycle and
the activity of an FAS/PKS.7677
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carbons from the C;-chain showed similar incorporation of
radioactivity from [2-'*CJ-acetate implying that these carbons
have become equivalent in a precursor. To account for this,
Sutherland and co-workers” proposed that labelled acetate
also enters the citric acid cycle (Scheme 2), where it subse-
quently labels the truly symmetrical intermediate, succinate
59. Succinate 59 is then converted to oxaloacetate 60, where
the [2-'*ClJ-acetate 58 activity is distributed equally between
the methylene and carbonyl groups.”®””

The above experiments” were supported by feeding
[2,3-"*C,]-succinate 59, which was observed to be efficiently
incorporated into the Cs-chain. The authors concluded that
oxaloacetate 60 is the likely direct precursor of the C; chain.”®””

A complementary experiment was undertaken by Cox and
Holker with [2,3-'*C,]-succinate 59 fed to P. purpurogenum’™
confirming that intact succinate 59 (or its derivative) was
incorporated into the Cjz-chain of the glauconic acid 4
precursor.”® Further evidence for the biosynthetic origin of the
monomers came from feeding studies using the rubratoxin
producer P. rubrum. Analysis of the isolated rubratoxin B 11
revealed a labelling pattern in accordance with the longer chain
(here Cy0) being derived from a fatty acid and the shorter C;
from the citric acid cycle.”

The origin of the putative monomers that form phomoidride
B 37 has also been investigated.*® The producing organism,
unidentified fungus ATCC 74256, was fed a series of carbon-13
labelled precursors, and phomoidride B 37 isolated and ana-
lysed by '*C NMR. The deduced labelling pattern shown in
Scheme 3 was in full accordance with the longer C;,-chain being
derived from a polyketide/fatty acid synthase.

In more recent investigations by Willis and co-workers® on
the biosynthesis of the nonadrides scytalidin 19 and deoxy-
scytalidin 20, [1,2-'°C,]-acetate 58 was fed to cultures of S. album

succinate 59
(0]
I

HO
b |/\/ “oH
)

acetyl-SNAC 61

0

AcHN\/\S)k.

o]

phomoidride B 37

Scheme 3 Incorporation of various labelled precursors into pho-
moidride B 37.5¢
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scytalidin 19 R=0OH
deoxyscytalidin 20 R=H

Fig. 8 [1,2-C,]-Acetate 58 incorporation into scytalidin 19 and
deoxyscytalidin 20.2

and analysis of the *C-NMR data of both metabolites was in
accord with the polyketide and oxaloacetate origin of the
natural products (Fig. 8).

4. Evidence for dimerisation during
maleidride biosynthesis

As discussed in Section 3, in 1965 Barton and Sutherland® with
immense prescience had proposed that the biosyntheses of
glauconic and glaucanic acids 4 and 5, and byssochlamic acid 6
may originate from similar building blocks (monomers) but
coupled in different ways to generate the various carbon skel-
etons. The head-to-head anionic coupling mechanism proposed
for the biosynthesis of glauconic and glaucanic acids 4 and 5,
requires two identical 57 monomers (Scheme 4). The head-to-
tail coupling required for byssochlamic acid 6 biosynthesis
would require one monomer 57 and the exo-diene analogue 62
(Scheme 4).

The exo-diene 62 (herein named waquafranone B) had been
reported to have been isolated from W. aquatica, a producer of
a variety of heveadride analogues (e.g. 25).*> However, recent

o) o)
= S
| o =— o)
57 62
o] o]

head-to-head dimerisation head-to-tail dimerisation

. = =0 o
= )
0 D/J o 0|9 \~o— 4

) N/ ) J 62 o)

57 Cy 57 w5
— H+ — — —

l l

glaucanic acid 5§ byssochlamic acid 6

Scheme 4 Mechanisms uniting the biosyntheses of glaucanic acid 5
and byssochlamic acid 6 according to Barton and Sutherland.®
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Fig. 9 Structural revision of the natural product waquafranone B 62
from to 63 as proposed by Willis and co-workers.&°

biomimetic dimerisation studies by Willis and co-workers®
revised the structure of waquafranone B to be diacid 63 (Fig. 9).
This is in accord with biomimetic studies by Sutherland and co-
workers®* who demonstrated that exo-diene 62 is unstable.

The instability of the exo-diene 62 does not preclude its
veracity as a true intermediate in maleidride biosynthesis, as
unstable intermediates may be chaperoned by enzymes in vivo.
The equilibrium represented between 57 and 62 in Scheme 4 is
a regiochemical rationalisation depicted to describe a potential
enzyme catalysed mechanism that remains to be proven.

In 2000 Sulikowski, Agnelli and Corbett were the first to
propose that the maleidride monomer might contain a carbox-
ylic acid, likely due to their specific interest in the phomoi-
drides, where one carboxylic acid is retained in the mature
natural product.*> They proposed that the reactive anionic
monomer is derived from decarboxylation of monomer 1.

Isolation of the carboxylated analogue of the anhydride 57,
monomer 64, from the byssochlamic acid 6 producer P. fulvus,
and the previous feeding studies by Sulikowski and co-
workers,** led Simpson and co-workers' to speculate that
carboxylated monomer 64 coupled with exo-diene 62 may be the
true intermediates for byssochlamic acid 6 biosynthesis, as well
as for the newly discovered heptadrides 53 and 54 also isolated
from P. fulvus (Scheme 5). The authors noted that in their hands

o) o o
= = N
| o—~ | o— 0
64 co, &7 62
o} o o)

(0)

head-to-side dimerisation

head-to-tail dimerisation

| l

byssochlamic acid 6 agnestadrides A and B 53 and 54

Scheme 5 Dimerisation mechanisms proposed for the biosynthesis of
byssochlamic acid 6 and agnestadrides A and B 53 and 54 via the
decarboxylation of monomer 64.*
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carboxylated anhydride 64 was unstable, and completely
decomposed to 57 in under 48 hours."

Key evidence for the involvement of a dimerisation step
during maleidride biosynthesis has come from four sources: (i)
feeding experiments performed in vivo; (ii) in vitro chemical
investigations of the substrates, reaction conditions and their
products; (iii) from combined chemical and genetic studies in
maleidride producers; and (iv) from cell free biocatalysis with
the proposed dimerisation enzymes.

4.1. In vivo studies

The first direct evidence for in vivo incorporation of maleic
anhydride-based monomers into the structure of a nonadride
metabolite was reported for glauconic acid 4 (Scheme 6).%* The
study by Moppett and Sutherland® involved separately feeding
two isotopically labelled substrates, tritiated 65 and carbon-14
labelled 57, into liquid cultures of the glauconic acid 4
producer, P. purpurogenum. Feeding compound 65 afforded
[1,4-*H,]-glauconic acid 4 which was confirmed by degradation
studies leading to an equal label distribution between glauco-
nin 55 (C-1) and diethylacrolein 56 (C-4) (degradative studies are
shown in Scheme 1). A 1: 1 ratio of activities established that
dimerisation had taken place, however the incorporation was
very low (0.25%).

Incubating growing cultures of P. purpurogenum with the **C-
labelled 57 resulted in the isolation of glauconic acid 4 with
51.5% incorporation of carbon-14, with 97.5% of the total
activity localised at C-7 and C-10 (Scheme 6).** In both experi-
ments, the radiolabels were found at positions expected for the
product of head-to-head dimerisation of the fed monomer
units, and the higher level of incorporation of 57 suggested that
the unsaturated anhydride is the correct monomer unit.*

Sulikowski and co-workers sought a biomimetic approach
towards the total synthesis of phomoidrides A 36 and B 37,
and this led the group to pursue biosynthetic studies in the
unidentified fungus ATCC 74256 using precursors incorpo-
rating stable isotopic labels. Although phomoidrides A 36 and B
37 and glauconic acid 4 differ in the length of the pendant side-

3 Fed to
o H P. purpurogenum
SO
0.25%
o] 65 incorporation
.=14C
(@]
AN
o
51.5%
o 57

incorporation

Scheme 6 Incorporation of monomer analogues into glauconic acid 4.8*

Nat. Prod. Rep., 2023, 40, 128-157 | 137


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2np00041e

Open Access Article. Published on 21 September 2022. Downloaded on 11/1/2025 12:22:31 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Natural Product Reports

chains, the same symmetrical pattern can be discerned and
consequently phomoidrides A 36 and B 37 were proposed to be
formed through coupling of analogous C;4-precursor units.*

Sulikowski and co-workers®* prepared synthetic analogues of
the predicted precursors incorporating deuterium (Scheme 7).
The first synthetic substrate was thiol ester 66, as N-acetylcys-
teamine (SNAC) has been shown to be a valuable CoA substitute
in biosynthetic studies, as it can readily pass through cell
membranes, unlike CoA adducts. These CoA mimics are often
used where carrier protein-bound thioesters are required in
enzyme biosynthetic machinery, for example when investi-
gating polyketide biosynthesis.** Sulikowski and co-workers®*
fed [*H,]-thiol ester 66 to a culture of ATCC 74256 and pho-
moidride B 37 was isolated with incorporation of 3 deuterium
atoms as determined by *H NMR and ESIMS analysis. This
provided evidence for a homodimerisation process having
occurred (Scheme 7). A similar experiment with [*H,]-67, with
a pendant methyl group rather than the thiol ester, did not
show any incorporation into phomoidride B 37 (Scheme 7). This
important experiment provided the first evidence that dimer-
isation requires decarboxylation, at least in the case of the
phomoidrides.®

4.2. Biomimetic studies

Several biomimetic synthetic studies aimed at reconstructing
the maleidride dimerisation event under laboratory conditions
provide interesting insights into the mechanism of the reaction.
Upon completing feeding studies with anhydride 57, Huff,
Moppett and Sutherland set out to test self-dimerising proper-
ties in vitro.*"*® To this end, maleic anhydride 57 was treated
with base in order to generate the required carbanion inter-
mediate. The reaction afforded a crystalline solid in a very low
yield (2% with NaH, improved to 4% by using Et;N), which was
not the expected glaucanic acid 5, but believed to be iso-
glaucanic acid 68, a stereoisomer of the natural product
formed in vivo (Scheme 8).* In parallel, an attempt was made to
synthesise fulgenic anhydride 62, in order to test a hypothesis
that this compound might be involved in the reaction leading

Fed to
ATCC 74256
(@] phomoidride B 37
24 2H Fed to
o | —
= ATCC 74256
O 67
Scheme 7 Incorporation of deuterium label into phomoidride B 37 via

a decarboxylative homodimerisation event involving C;6-monomers 8
The two monomer units present in phomoidride B 37 are depicted in
red and blue.
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Scheme 8 In vitro dimerisation reactions investigated by Sutherland
and co-workers.8-8¢

specifically to the formation of byssochlamic acid 6.** However,
the base-catalysed in vitro dimerisation reaction of the fulgenic
anhydride 62 again yielded iso-glaucanic acid 68 and not
byssochlamic acid 6 (Scheme 8). This was rationalised to be due
to the instability of anhydride 62, which under the reaction
conditions was found to isomerise to 57.

Interest in the dimerisation was reinvigorated almost 30
years later, inspired by the discovery of the phomoidrides®*>
and driven by the pursuit of an efficient total synthesis route.
The reports on in vitro dimerisation came in a series of papers
from the groups of Baldwin’**” and Sulikowski,***® who both set
out to investigate the chemical mechanism driving the reaction.

Studies were reopened by Baldwin and co-workers,” who
reinvestigated the in vitro dimerisation studies towards glau-
canic acid 5.5 Beside obvious differences in the lengths of the
side-chains (and consequently in the structure of the dimerising
monomer), there are key differences in the stereochemistry
between iso-glaucanic acid 68 and the phomoidrides. Despite
this the authors viewed this biomimetic dimerisation as
a potential synthetic route towards the phomoidrides.” Thus, 2-
[(E)-1"-pentyl]-methyl maleic anhydride 69 was synthesised and
treated with base under a range of conditions. Although mostly
polymeric products were formed, iso-glaucanic acid analogue
70 together with two other minor dimerisation products, the
spiro compound 71, as well as the heptadride 72 were isolated
in low yields (Scheme 9). A common structural feature of all
three products is the linkage of the two anhydride moieties via
a CH, bridge. Hence Baldwin and co-workers™ proposed that
a stepwise Michael addition is more likely than a concerted 67 +
47 cycloaddition. Furthermore they suggest that the anion in
intermediate 73 is able to attack at different electrophilic
centres, accounting for the formation of the different
products.”™

This journal is © The Royal Society of Chemistry 2023
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Scheme 9 Dimeric compounds formed from biomimetic studies with
the anhydride monomer 69.74

Further optimisation of the reaction conditions was carried
out, with the highest yield (8.5%) of 70 achieved using DMSO/
Et;N (0.66 eq.)/MgCl, (0.5 eq.). X-ray crystallography confirmed
the relative stereochemistry of the side-chains in accord with
Sutherland's assignment of the configuration of iso-glaucanic
acid 68.%¢

In 2000 Sulikowski, Agnelli and Corbett investigating the in
vitro dimerisation of phomoidride precursors®* proposed that
within an in vivo system at least one of the dimerising units is
likely to be covalently linked to an enzyme so imposing
conformation constraints. Furthermore, if the dimerisation
process is stepwise rather than concerted, in vitro studies link-
ing the two monomers prior to cyclisation may lead to cleaner
reactions.

In an initial experiment, Sulikowski and co-workers®*
lently linked the two units as bis-esters with varying chain-
lengths (compounds 74a-f, Scheme 10). Treating a mixture of
the six substrates, 74a-f (Scheme 10a, n = 1-6) with DBU in
anhydrous MeCN triggered dimerisation with only substrate
74b (n = 2), to produce 75a and 75b (different stereoisomers at
the newly formed stereocentres C-13 and C-17). A single
stereoisomer 76 was obtained in an analogous reaction with
symmetric diol 77 (Scheme 10b). A mechanism involving
a Michael addition was proposed and it was assumed that the

cova-
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74a:n=1 \
74b:n=2 DBU
74c:n=3 MeCN,70°C O
74d:n=4 i 74b
74e:n=5 only le}
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dimerisation o
(@)
b) 0

) <\:>
MeCN 70°C

O 76 (70%)

DBN 0
MeCN, 70°C

78a:n=3 (25%)
78b: n=4 (26%)
78c:n=5 (29%)

substrates 74a,b,f
unreacted

Scheme 10 Overview of initial ‘tethered’ in vitro dimerisation experi-
ments by Sulikowski, Agnelli and Corbett.®? Blue triangles indicate
where the formation of the ring closing C-C bond occurred.

observed compounds were the thermodynamic products of the
reaction. To trap kinetic products, the reaction using substrates
74a-f was repeated in the presence of excess acetic anhydride
(Scheme 10c). Three additional dehydrated products 78a—c were
identified, which were derived from substrates 74c-e (Scheme
10c). The position desired for the biomimetic synthesis of
phomoidrides requires formation of C-13, C-14 bond. To the
authors' disappointment, in all the in vitro products, the ring-
closing C-C bond was formed exclusively between C-13 of the
enolate and C-17 of the Michael acceptor instead.*

Sulikowski and co-workers® modified the substrate by using
a tertiary amide linker, to produce substrate 79 (Scheme 11).
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Scheme 11 Overview of further ‘tethered in vitro dimerisation

experiments by Sulikowski and co-workers.®®

Whilst products 80, 81, 82 and 83 were formed, no products
with the desired phomoidride core were detected.?®*

Baldwin and co-workers® also investigated the influence of
a covalent tether on the stereo- and regioselectivity of cyclisation.
Substrates (84a-d and 85) were exposed to a range of reaction
conditions and DBU in THF : DMSO (1:4) led to cyclisation
(Scheme 12). Only three out of the five prepared substrates, 84b,
84c and 85, gave products which could be isolated and charac-
terised showing the structures to be 86, 87, 88 and 89 (Scheme 12).
The authors proposed that these cyclic products were the result of
exo-orientated double Michael additions.*

A recent study by Willis and co-workers®* into maleic anhy-
dride and related diacid natural products used a biomimetic
approach to investigate in vitro dimerisations of the proposed
monomers required for scytalidin 19 biosynthesis. The authors
noted that in all previous biomimetic studies, the focus has
been on homodimerisation of analogues of 57, rather than
heterodimerisation using 57 and the exo-diene 62, which is
proposed to be involved in maleidride biosynthesis during
various modes of dimerisation (see Schemes 4, 5 and 17 and
Section 5). However exo-diene 62 was unstable even when kept
at —78 °C and after 96 h was converted to a mixture of products
including the corresponding maleic anhydride 57. Homo-
dimerisation of the maleic anhydride tetraketide monomer 90
using Et;N, MgCl, in DMSO (as used by Baldwin and co-
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Scheme 12 Overview of ‘tethered’ in vitro dimerisation experiments
by Baldwin and co-workers.®” Blue triangles denote bond formation at
the free ends of the substrate, red triangles denote the intramolecular
bond formation.

workers’™) gave iso-glaucanic acid analogue 91 in 10% yield.
However, efforts to heterodimerise 90 with either 92 or 93
(avoiding the unstable exo-diene), gave iso-glaucanic acid

This journal is © The Royal Society of Chemistry 2023
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Scheme 13 Biomimetic in vitro dimerisation studies by Willis and co-
workers.8°

analogue 91 in similar yields, with 92 and 93 recovered from the
reaction unchanged. Use of freshly prepared exo-diene 94 in
a heterodimerisation reaction with maleic anhydride 90 led to
a complex mixture of products, none of which could be char-
acterised (Scheme 13).*

5. Molecular reconstruction of
maleidride biosynthesis

5.1. Core genes for monomer biosynthesis

The genetic and enzymatic basis of maleidride biosynthesis
remained cryptic until 2015, when Oikawa and co-workers*
investigated the biosynthetic pathway for the production of
maleidride monomers. In fungi the genes required for the
biosynthesis, regulation and transport of a specific natural
product are generally co-located as a single biosynthetic gene
cluster (BGC).”**> Therefore Oikawa and co-workers® initially
sequenced the genome of the phomoidride (e.g. 37) producer,
the unidentified fungus, ATCC 74256, to identify a putative BGC
for the production of the phomoidrides (e.g. 37). As previous
feeding studies had demonstrated,*»”*® the likely origin of the
maleidride monomer is the condensation of the product of
a FAS/PKS with oxaloacetate. Oikawa and co-workers®® proposed
that a putative maleidride BGC might contain either an FAS/PKS
clustered with a gene encoding a citrate synthase-like (CS)
enzyme (Scheme 14). They identified a BGC they named phi
(Fig. 10) which consisted of a highly-reducing PKS (hrPKS), phiA,
clustered with phil, a gene encoding a CS-like enzyme,* as well
as a gene encoding a 2-methylcitrate dehydratase-like enzyme
(2MCD, phiJ),** which is a likely candidate for the dehydration
reaction required to form the unsaturated monomer 1 (Scheme
14). At the time, no genes encoding hydrolytic enzymes for
hydrolysis of ACP-bound polyketide chains were detected,
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Scheme 14 Proposed similarities between the enzymatic reactions in
maleidride monomer biosynthesis and primary metabolism.

Unidentified fungus ATCC 74256 putative phomoidride e.g. 37 BGC
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Fig. 10 Putative phomoidride e.g. 37 BGC.

although more recent analysis has determined that phiM
encodes a hydrolase, which is a homologue of the esterase from
the asperlin BGC (alnB - C8V]JR6.1).9%°¢

Phylogenetic analysis of citrate synthase-like and 2-methyl-
citrate dehydratase-like enzymes from the likely phomoidride
BGC, along with other subsequently discovered maleidride
homologues, has determined that these enzymes form a sepa-
rate clade with those that are known and predicted to produce
or accept alkylcitrate.®® It is therefore accepted that these
enzymes should be referred to as alkylcitrate synthases (ACSs)
and alkylcitrate dehydratases (ACDHs).*
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Oikawa and co-workers® reconstructed phid, I, J in the
heterologous host Aspergillus oryzae (a suitable host for the
production of fungal natural products).®”*° This resulted in the
production of a new metabolite which possessed the charac-
teristic UV absorption (Anax 312 nm) for a maleic anhydride
conjugated with an olefin.®® Due to low titres, no specific
product of phiA, I, J, was isolated and so the attention of the
authors turned to a homologous cluster, ¢s¢t, which they had
identified in the publicly available Talaromyces stipitatus
genome. Although T. stipitatus itself has not been reported to
produce maleidrides, many Talaromyces species are known to
produce glauconic and glaucanic acids 4 and 5, as well as the

A. oryzae heterologous

expression o
X 7
TstA (hrPKS) o |
Tstl (ACS) —_—
TstJ (ACDH) 4 67

E. coli enzyme production and assays

0 o
OH NN
HO [¢) ]
o O Tstl (ACS) 9%
oxaloacetate 60 TstJ (ACDH) ¢

[e]
)J\/\/\/\/\ HO °
CoAS =

2-decenoyl-CoA 95

Scheme 15 Result of expression of T. stipitatus maleidride genes in A.
oyzae, and enzyme production and assays, conducted by Oikawa and
co-workers.°

N
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more complex rubratoxins e.g. 10 (although no Talaromyces
species are reported to produce phomoidrides).'* Expression of
the phiA, I, ] homologues, ¢st4, I, J in A. oryzae resulted in the
production of a compound with similar LCMS characteristics to
that which was produced by the heterologous expression of
phiA, I, J. The structure was confirmed to be 67 by NMR and
HRMS (Scheme 15). Compound 67 is the predicted monomer
required for phomoidride biosynthesis, and is an analogue of
the substrate 66 successfully utilised in the phomoidride
feeding studies conducted by Sulikowski and co-workers
(Scheme 7).%

Further evidence for the relatedness of the phi and ¢st BGCs
comes from phylogenetic analyses by Williams et al.*® This work
showed that maleidride PKSs appear to clade according to the
expected or confirmed chain length of their polyketide product,
with PhiA and TstA forming a separate ‘hexaketide’ producing
clade, which suggests that the T. stipitatus cluster may encode
phomoidride biosynthesis or a related analogue formed from
hexaketide based monomers.®

Oikawa and co-workers® also expressed the ¢stl, J genes in
Escherichia coli, followed by purification and enzyme assays
utilising 2-decenoyl-CoA 95 and oxaloacetate 60 as substrates.
This assay produced compound 96, which is carboxylated, with
the polyketide derived moiety one acetate unit shorter than the
compound isolated from A. oryzae (Scheme 15). Details of any
further substrates tested were not available, therefore it is
difficult to determine if 2-decenoyl-CoA 95 is the true substrate
for TstI (the alkylcitrate synthase), or whether TstI may have
some substrate flexibility regarding chain length.

Following isolation of the carboxylated monomer 96 from
the enzyme assays conducted by Oikawa and co-workers,”
(Scheme 15) a mechanism was proposed for dimerisation of
a carboxylated analogue of compound 67 (97) to produce the

OH

b) Claisen

Scheme 16 Proposed dimerisation of carboxylated monomer 97 to produce predicted phomoidride intermediate 98 via an adol-like reaction,®®

or via a Claisen condensation to produce intermediate 99.5®
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predicted phomoidride intermediate 98 via an aldol like reac-
tion (Scheme 16). Hu and co-workers®® recently isolated further
phomoidrides E 40, F 41, and G 42 which led them to propose
that the key phomoidride intermediate 99 is more likely to be
formed via a Claisen condensation (Scheme 16).

Oikawa and co-workers® have proposed a unified model for
maleidride biosynthesis (Scheme 17). This model is based on
the homo- and hetero-dimerisations of the carboxylated anhy-
dride, ‘monomer A’ 1, the decarboxylated anhydride ‘monomer
B’ 2 and the exo-diene anhydride ‘monomer C’ 3, and is driven
by the formation of an enolate derived from A 1. The authors
proposed that their model accounts for discrepancies in
previous feeding experiments, as these appeared to be based on
a single monomer.

In 2016 Cox and co-workers” reported the results of studies
on maleidride biosynthesis via heterologous expression in the
host A. oryzae. This study further characterised the pathway for
byssochlamic acid 6 and agnestadrides A and B 53 and 54
following on from earlier predictions by Simpson and co-
workers.' Genes homologous to those identified by Oikawa and
co-workers® (encoding an hrPKS, an ACS, and an ACDH) were
identified clustered within the P. fulvus genome (Fig. 11).
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Paecilomyces fulvus IMI40021 byssochlamic acid 6 BGC
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Fig. 11 Byssochlamic acid 6 BGC.

In addition, a gene (bfL1) encoding an enzyme with a puta-
tive hydrolytic function was identified, which is also homolo-
gous (35.48% identity) to the esterase from the asperlin BGC.*®
Expression of the P. fulvus hrPKS, ACS and ACDH in A. oryzae
did not produce any novel compounds, whereas these genes,
with the addition of bfL1, produced the carboxylated anhydride
64 and its decomposition product, 57. This is contradictory to
the results obtained by Oikawa and co-workers® where the
addition of a hydrolytic enzyme was not necessary for the
production of monomers. Later work by Cox and co-workers*
investigating the cornexistin 31 pathway via gene deletion
experiments, also suggested that the homologous hydrolase
(pvL1) in the cornexistin BGC (Fig. 12) is essential, as no

\ byssochlamic acid-type )
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|\ AN

M core monomer genes o o monomers
o
N = Cc
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PKS n n OH n o)
OH © COH F
ACS HO ACDH 3
hydrolase OH o
(0]
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Polyketides of differing chain lengths and saturation
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head-to-tail dimerisation head-to-side dimerisation head-to-head dimerisation head-to-head dimerisation || head-to-head dimerisation
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A+C A+C A+B A+C A+A

glaucanic acid-type
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see Scheme /
-._19)

heveadride-type

phomoidride-type
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Scheme 17 Proposal for a unified pathway to maleidrides driven by enolate formation based on work by Oikawa and co-workers,*® and Cox and

co-workers.*”® Figure reproduced from ref. 96.
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Paecilomyces divaricatus cornexistin 31 BGC
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Fig. 12 Cornexistin 31 BGC.

maleidride related compounds accumulated in the hydrolase
deletion strain.

Interestingly, all confirmed and putative maleidride BGCs
contain a hydrolase homologue, suggesting that it is important
for the biosynthesis of maleidride compounds.®® In vitro studies
by Cox and co-workers'* showed that the P. fulvus hydrolase,
BfL1, catalysed the hydrolysis of a series of a thiol esters, rather
than being ACP-selective, therefore exactly how selectivity is
controlled is unknown.'*

Investigations into the ACS and ACDH enzymes through in
vitro characterisation have also been reported.'** Assays using
both unsaturated (a) and saturated (b) versions of the substrates
100, 101, 102 and 103, with oxaloacetic acid and purified BfL2
(ACS) showed that only the CoA thiol ester 103a/b could be
turned over by BfL2 (Scheme 18) to produce 104a/b.

Comparison of 104a to synthetic standards revealed that the
enzyme product is exclusively the anti diastereomer.*

The synthesis of citrate is catalysed in most organisms by
a Si-citrate synthase, with known Re-citrate synthases phyloge-
netically unrelated to Si-citrate synthases.'® A structural model
of BfL2 was built based on the primary metabolism citrate
synthase from Acetobacter aceti,'** which is phylogenetically
related to other Si-citrate synthases. Furthermore, the crystal
structure of the A. aceti citrate synthase is bound to oxaloacetate
and an acetyl CoA mimic in positions that should result in an S
stereocentre.'” The structural model of BfL2 showed that all of
the residues involved in catalysis and binding oxaloacetate and
acyl CoA are structurally highly conserved with the A. aceti
citrate synthase.'** This led to the proposal that BfL2 also creates
a 3S-stereocentre, and thus ultimately an 3S,4R configuration.'**
Cox and co-workers' also suggested that differences in the
configuration at the 4-position of 104 must be controlled by the
geometry of the enoyl CoA intermediate.'” Recent in silico
analysis of maleidride BGCs by Williams et al.*® has shown that
many clusters contain an enoyl CoA isomerase, which may be
involved in providing the appropriate substrate for the ACSs.

(0] ACS BfL2
100: R=ACP —#—

3\
N\é)J\R 101:R=SNAC —#—>

102: R = pantetheine —>

+ 103: R=SCoA —
OH O
a = unsaturated
O%\)H(OH b = saturated
o}
oxaloacetic
acid

Scheme 18 Turnover of substrate 103 and oxaloacetic acid to 104 by
ACS BfL2.10t
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In vitro assays with purified ACDHs from the P. fulvus or P.
divaricatus BGCs (BfL3/PvL2) demonstrated that only the anti
diastereomer 104a can be dehydrated to produce the equilibrated
products 105, the diacid, and 64, the anhydride (Scheme 19).***

5.2. Core genes for dimerisation

Comparison of the maleidride BGC from P. fulvus by Cox and co-
workers” to putative maleidride BGCs identified from genome
sequences available on NCBI, as well as the putative phomoi-
dride e.g. 37 BGC® revealed further genes in common. Each
cluster encodes one or two proteins that have some similarity to
ketosteroid isomerases (KSI-like) and one or two proteins that
contain phosphatidylethanolamine-binding protein (PEBP)
domains.” Expression of the monomer forming genes (PKS,
hydrolase, ACS and ACDH) with both KSI-like genes in the host
A. oryzae led to the production of both byssochlamic acid 6 and
agnestadride A 53 demonstrating that within the context of the
A. oryzae genome, there are sufficient catalytic activities to
perform both head-to-tail and head-to-side dimerisations of
maleidride monomers, and that the KSI-like enzymes catalyse
that dimerisation. The presence of both KSI-like enzymes
appeared to be required for the dimerisation to occur in vivo.
Addition of the two genes containing PEBP domains led to an
over 20-fold increase in dimerised products.”

Further studies by Cox and co-workers'** showed that in
contrast to the in vivo experiments, yeast cell-free extracts of
either P. fulvus KSI-like enzyme are capable of catalysing
dimerisation. Addition of the P. fulvus PEBP enzymes did not
appear to appreciably increase yields of dimerised products,
however the low-yielding nature of these experiments makes
quantitative comparisons difficult."”* We have previously
proposed that the KSI-like enzymes are renamed ‘maleidride

syn 104a o anti104a ©
ACDHs ACDHs
BfL3/ BfL3/
PvL2 PvL2 o
N4 s
| J o
Hooc_ 3 OH HOOC
105 64 0
o

Scheme 19 Turnover of substrate 104a by either BfL3 or PvL2 to the
diacid 105 and anhydride 64 .1t
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dimerising cyclases’ (MDCs), as they alone are sufficient to
perform the dimerisation reaction.®® All known and putative
MDCs contain an NTF2 domain (nuclear transport factor 2 —
IPR032710), which categorises them within the NTF2-like
superfamily.” This large group of proteins, which includes
enzymes that have isomerase, cyclase, dehydratase and hydro-
lase activities, have low sequence identity but share a common
structural fold that can be adapted to serve a range of
functions.***

Further gene deletions to the cornexistin 31 producer, P.
divaricatus corroborated these results, and suggested at least
a supplementary role for the PEBP enzymes.** Within the cor-
nexistin BGC, only one MDC and one gene containing a PEBP
domain are present (Fig. 12). Deletion of the MDC gene led to
complete cessation of cornexistin 31 biosynthesis, with accu-
mulation of the carboxylated anhydride monomer 64 and its
spontaneous ring open form 105, which had not previously
been detected from P. divaricatus extracts. Deletion of the gene
containing the PEBP domain led to a decrease in the titre of
cornexistin 31, and accumulation of 64, 105 and the decar-
boxylated monomer 57 (Fig. 13).*°

Further research investigating the biosynthesis of zopfiellin
49 by Oikawa and co-workers'® identified a zopfiellin BGC
(Fig. 14) from the genome of Z. curvata.

6] Partial Paecilomyces
divaricatus cornexistin 31 BGC
@ Maleidride dimerising cyclase 2.5kb
o) O PEBP '
OH 1 5

we

JHO

Deletion of MDC led to
complete cessation of
cornexistin 31 biosynthesis

(o] (0] 6]
= = OH =
| o | | o
—_— OH B ——
64 105 57
O (o] (o]
(o] OH (o] OH

Deletion of either the MDC or PEBP1
led to accumulation of the monomers

Fig. 13 Overview of deletion of genes involved in dimerisation from
the cornexistin 31 BGC.*°
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Fig. 14 Zopfiellin 49 BGC.
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This work again demonstrated that the MDC and PEBP genes
are involved in dimerisation of maleidride monomers; once
introduced to an A. oryzae strain producing the zopfiellin
monomer 106, two dimerised products were isolated, the
nonadrides prezopfiellin 20 (which was identified as deoxy-
scytalidin 20 by Willis and co-workers®) and iso-prezopfiellin
107 (Scheme 20).'* It is notable that the mode of dimerisation
for these nonadrides is different, i.e.: head-to-tail to produce
deoxyscytalidin 20 and head-to-head (mode B) for iso-
prezopfiellin 107 (see Scheme 17 for dimerisation types). This
is the second known system where different modes of dimer-
isation can occur within the same pathway, the first being the
biosynthesis of the nonadride byssochlamic acid 6 (head-to-tail
dimerisation) and the heptadrides, agnestadrides A and B 53
and 54 (head-to-side dimerisation).*

No evolutionary relationship regarding mode of dimerisa-
tion appears to be displayed by the MDCs.*® The lack of close
homologues to the MDCs constrains our ability to predict
a mechanism for these enzymes, with crystallisation, modelling
and mutation studies likely required to further our under-
standing of these unique enzymes. Until then, exactly how the
MDCs control dimerisation, including apparently simulta-
neously catalysing different modes of dimerisation, remains
cryptic.

The putative accessory role of the PEBP containing enzymes
has been hypothesised to involve the chaperoning of unstable
intermediates such as 1 and/or the known anionic binding
ability of PEBP containing enzymes.”>"%

5.3. Comparison of maleidride BGCs

To date there are six BGCs which have been linked to specific
maleidrides through experimental approaches: the bysso-
chlamic acid 6/agnestadrides e.g. 53 BGC,” the rubratoxins e.g.

A. oryzae heterologous expression experiments

(¢}
ZopA,M,J,| —> = | ')
106
o
O OH
zopC MDC
zopN PEBP-like

prezopfiellin

(deoxyscytalidin) 20 iso-prezopfiellin 107

Scheme 20 Heterologous expression of genes from the zopfiellin
BGC led to the production of nonadrides.**®
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Fig.15 Clinker®” comparison between definitively linked maleidride BGCs (through gene knockout or heterologous expression), as well as those
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between transport and regulatory genes have been removed for clarity.

10 BGC,” the cornexistin 31 BGC,* two zopfiellin 49 BGCs,*'*
and the scytalidin 19 BGC.? Two maleidride BGCs have been
identified from confirmed maleidride producing strains -
linked to phomoidrides e.g. 37 (ref. 90) and epiheveadride 25
biosynthesis (Fig. 15).°° A further fourteen putative maleidride
BGCs have been identified from publicly available genomes.”®
Bioinformatic comparison of these maleidride BGCs supported
the conserved core set of genes required for basic maleidride
biosynthesis in all clusters - those encoding monomer biosyn-
thesis - the hrPKS, the hydrolase, the alkylcitrate synthase and
the alkylcitrate dehydratase, and those involved in dimerisation
- the maleidride dimerising cyclases and the PEBP-like. In all
cases, the clusters contain one or two MDC genes. Most clusters
have one or two genes that contain a PEBP domain.”® The
hypothesised ancillary nature of the PEBP enzymes does not
preclude those clusters without genes that contain a PEBP
domain from encoding maleidride biosynthesis.*

Figure reproduced from ref. 96.

There are further sets of genes in common between the
maleidride BGCs, some of which are common to many fungal
natural product BGCs, the cytochrome P450s, a-ketoglutarate-
dependent dioxygenases (aKGDDs), regulators and trans-
porters, and some of which are more specific to maleidride
BGCs, for example the isochorismatase-like, and a group of
genes with sequence homology to each other, but with no
characterised homologues (conserved maleidride proteins)
(Fig. 15). Many of the genes which encode for catalytic enzymes
are likely to be involved in post-dimerisation tailoring (see
Section 5.4.2), however, the function of many others currently
remains obscure.

5.4. Genes responsible for maleidride structural
diversification

5.4.1. Monomer diversification. Amongst the maleidride
PKSs linked to a specific maleidride compound, a tentative
phylogenetic relationship between amino acid sequence and

Talaromyces stipitatus ATCC 10500 putative rubratoxin e.g. 10 BGC Z?b
Y o OGR! ot ok i o o G EE o0 Ol o
OhrPKS O ACs @ Maleidride dimerising cyclase @ TauD-like alphakGDD @ Isochorismatase @ P450 @ Snoal-like @ Regulator
O ACDH OHydrolase @ PEBP QO AsaB-like alphaKGDD @ AMP CoA ligase @ Thioesterase O Transporter O Other

Fig. 16 Putative rubratoxin e.g. 10 BGC - the completely syntenous BGC from the Talaromyces stipitatus genome is shown, as the P. dangeardii

sequence is not publicly available.
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polyketide chain length has been shown, which may allow for
chain length prediction in novel maleidride PKSs.*® Known
maleidride monomers have variations only in chain length
(triketide to hexaketide) and the degree of saturation in the
polyketide chain. A potential exception are the rubratoxins,
where a BGC has been identified from the genome of the
rubratoxin e.g. 10 producer Penicillium dangeardii (Fig. 16).>
Investigation of the rubratoxin pathway via gene deletions in P.
dangeardii and in vitro studies suggested that one of the
monomers for rubratoxin biosynthesis is w-hydroxylated prior
to dimerisation.*”

Deletion of a P450 within the rubratoxin BGC, rbtl, produced
a range of dimeric nonadrides without the terminal hydroxyl
group identified in the known intermediate 108. The deoxy
analogue 109 of 108 was proposed to be the substrate for Rb¢I,
however feeding of 109 to the PKS deletion strain did not restore
rubratoxin A 10 or B 11 biosynthesis. Additionally, no hydrox-
ylation was detected upon feeding of 109 to cell free extract of
a yeast strain expressing RbtI (Scheme 21). The Hu, Yu and Tang
groups®” proposed that the true substrate of Rb¢ is one of the
monomers, however direct evidence for this was not provided.*”
Phylogenetic analysis of an orthologue, TsRbtl, from T. stip-
itatus, demonstrated that this enzyme clades with other P450s
which possess a similar function, providing further evidence
that this enzyme catalyses w-hydroxylation.®

5.4.2. Post-dimerisation diversification

fed to yeast
microsomal
fraction containing
Rbtl (the P450)

109 o 108

fed to ArbtJ known
strain (PKS intermediate
mutant) O in the rubratoxin
pathway

rubratoxin B 11

Scheme 21 Experiments to attempt to determine the function of Rbtl,
a P450 from the rubratoxin BGC.*”
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5.4.2.1. Cytochrome P450s. Cytochrome P450s are oxidative
enzymes that are common in fungal natural product BGCs,
interestingly very few maleidride clusters contain a P450. One is
RbtI, discussed in Section 5.4.1, which appears to be involved in
pre-dimerisation diversification.?”

PyL13 is a P450 encoded within the cornexistin 31 BGC
(Fig. 12). Work by Cox and colleagues® to investigate the
biosynthetic pathway to the herbicidal compound cornexistin
31, produced a mutant strain with a deletion of the P450,
ApvL13. This strain accumulated the compound dihy-
drocornexistin 34, and neither the hemiacetal 110 nor cornex-
istin 31 were detected. This led Cox and co-workers to propose
that the C-6 double bond is introduced via a hydroxylation at C-
6, though only the more stable hemiacetal 110 was isolated. The
exact mechanism for conversion of 110 to cornexistin 31 is
unclear, but the P450 may be multifunctional (Scheme 22).%°

5.4.2.2. Flavin-dependent monooxygenase. The Hu, Yu and
Tang groups® investigating the rubratoxin biosynthetic
pathway had isolated a shunt compound with an o,B-unsatu-
rated aldehyde at C-6"', which suggested that the production of
the carboxylate required for the mature lactone moiety in
rubratoxins A 10 and B 11, might proceed stepwise via an
aldehyde. The rubratoxin BGC is the only known or putative
maleidride BGC to contain a flavin-dependent monooxygenase
(FMO), RbtA (Fig. 16).°° Bioinformatic analysis of this enzyme
shows that it contains a berberine-bridge enzyme (BBE) domain
(IPR012951) and an PCMH-type (p-cresol methylhydroxylase)
FAD-binding (flavin  adenine dinucleotide) domain
(IPRO16166). A mutant strain, ArbtA, was no longer able to
produce rubratoxins A 10 or B 11, but accumulated the known
compound ceramidastin 13, suggesting RbtA is involved in the
oxidation of the C-6"" alcohol to the aldehyde. RbtA was
expressed and purified from Saccharomyces cerevisiae and sub-
jected to assays with ceramidastin 13 as a substrate and FAD
which led to the production of 111, confirming the role of RbtA
in the rubratoxin biosynthetic pathway (Scheme 23).”

5.4.2.3. Ferric reductase. Within the rubratoxin BGC is
a gene encoding a ferric reductase, RbtH (Fig. 16), consisting of
three domains - a ferric reductase like transmembrane domain

ceramidastin 13

Scheme 22 Proposed route for the production of cornexistin from
dihydrocornexistin according to Cox and co-workers via the cyto-
chrome P450 PvL13.%°
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(IPR0O13130), a ferredoxin-like (FR) domain, a ferredoxin
reductase (FNR) like domain as well as binding sites for [Fe,S,],
FAD and NADH (reduced nicotinamide adenine dinucleotide).
The Hu, Yu and Tang groups®” produced a mutant ArbtH strain
which accumulated rubratoxin B 11, with the cessation of
rubratoxin A 10 biosynthesis, suggesting that RbtH selectively
reduces the C-8' carbonyl to a corresponding hydroxyl group.
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Additionally whole cell bioconversion assays using RbtH
expressed in S. cerevisiae, subjected to rubratoxin B 11, showed
complete conversion to rubratoxin A 10.*”

Although other maleidrides contain the y-hydroxybutenolide
motif present in rubratoxin A 10 (for example phomoidrides A
36 and C 39, tetrahydroepiheveadride 27, dihydroepiheveadride
24 and dihydrobyssochlamic acid 9), no homologous ferric
reductase is present in any other confirmed or putative malei-
dride BGC.*® Furthermore, this reduction is not seen in the
structurally related rubratoxin C 12 and ceramidastin 13, which
might suggest the BGCs encoding the biosynthesis of 12 and 13
do not contain rbtH homologues.

5.4.2.4.
eidride BGCs contain a-ketoglutarate-dependent dioxygenases
(eKGDDs). These are versatile enzymes that catalyse various
C-H bond activation reactions, including hydroxylation, desa-
turation, ring expansion/contraction, dealkylation, epoxidation,
epimerisation, halogenation, cyclisation and peroxide forma-
tion.'”® Even within the maleidride clusters, characterised
aKGDDs catalyse hydroxylation (PvL5,° ScyL2,® RbtB, RbtG,
RbtE, and RbtU*), and oxidative ring contraction (ZopK'®/
ZopL9®). aKGDDs lack sequence identity, but possess structural
similarities, including a core double-stranded B-helix fold that
binds Fe and the co-substrate aKG via a conserved HXD/E:--H

a-Ketoglutarate-dependent dioxygenases. Many mal-

Fe2* succinate
CO,
g'KG Fe?* a-KG O,
2

succinate CO,

- Fe?* a-KG O,

succinate CO,

Scheme 24 Summary of the reactions catalysed by «aKGDD enzymes within the rubratoxin pathway based on experiments by the Hu, Yu and

Tang groups.®”
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motif.'” The confirmed maleidride «KGDDs fall into three
distinct groups, those in the taurine dioxygenase TauD-like
superfamily (IPR042098), the isopenicillin N synthase-like
(IPR027443), and the AsaB-like (IPR044053).°°

The rubratoxin BGC contains four aKGDDs, two TauD-like,
RDtE and RbtU, and two from the AsaB-like IPR044053 group,
RbtB and RDtG (Fig. 16). The activities of these enzymes were
deduced via gene knockout, chemical complementation and in
vitro enzyme assays (Scheme 24).*” An in vitro experiment using
E. coli expressed and purified RbtB demonstrated that the
presence of oKG and Fe*" is a requirement for catalysis. Further
assays for RbtG, RbtE and RbtU assumed the necessity of aKG
and Fe®'. Interestingly RbtB was shown to be bifunctional and
catalyse both C-2"" hydroxylation to give 112, and the C-6"
oxidation of 111 to give 115 (Scheme 24).*”

PvL5 of the cornexistin 31 pathway is the only aKGDD
enzyme from the maleidride BGCs which is isopenicillin N
synthase-like (IPR027443).°° A gene knockout of pvL5 (Fig. 12)
accumulated dehydroxydihydrocornexistin 33, suggesting that
the PvL5 enzyme is involved in ring hydroxylation at C-2
(Scheme 25).°

In 2020, both Oikawa and co-workers'® and Willis and co-
workers® demonstrated that for the zopfiellin 49 biosynthetic
pathway, «KGDD enzymes (the orthologues ZopK/ZopL9 -
within the AsaB-like IPR044053 group) are responsible for the
oxidative ring contraction required for the formation of the
octadride, zopfiellin 49, via successive oxidation of the nona-
dride 20, to 116, followed by a final conversion to the octadride
deoxyzopfiellin 117, albeit at low titre (Scheme 26).5%

Both groups identified putative maleidride BGCs from the
genomes of Z. curvata No. 37-3,'” and from D. curvata CBS
591.74 respectively.® Oikawa and co-workers'® undertook
heterologous production experiments using the heterologous
host, A. oryzae. Expression of all the genes predicted to produce
a simple nonadride led to the accumulation of 20 (see Scheme
20). Addition of the «KGDD enzyme ZopK to this strain led to
two new products by LCMS analysis. The major product was
shown to be the nonadride, 116, whilst small amounts of the
octadride, deoxyzopfiellin 117 were also detected.

To characterise the activity of the aKGDD enzyme further,
both Oikawa and co-workers'® and Willis and co-workers®
performed in vitro assays with the ZopK/ZopL9 enzymes using
aKG, Fe** and substrate. Willis and co-workers? had determined

JHO

dihydrocornexistin 34

dehydroxy
dihydrocornexistin 33

Scheme 25 The pvL5 mutant strain accumulated dehydroxydihy-
drocornexistin 33, suggesting PvL5 is involved in C-2 ring hydroxyl-
ation, according to experiments by Cox and co-workers.*°
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ZopK/ZopL9
(aKGDD)

deoxyscytalidin 20

5-hydroxyscytalidin 116

ZopK/ZopL9
co, (aKGDD)

deoxyzopfiellin 117

Scheme 26 Proposed stepwise catalysis of the ring contraction
required for zopfiellin 49 biosynthesis 1%

through gene disruption and chemical complementation
experiments that the substrate for ZopL9 is in fact deoxy-
scytalidin 20, a known nonadride isolated from Scytalidium sp.*®
Both groups showed that 20 was turned over by ZopK/ZopL9 to
produce 116 and trace amounts of deoxyzopfiellin 117.%'%
Assays using ZopK/ZopL9 with the substrate 116 led to increased
turnover (albeit still low titre) to deoxyzopfiellin 117. This
confirms the stepwise catalysis by the aKGDD enzymes ZopK/
ZopL9 to produce the octadride deoxyzopfiellin 117 from the

Scytalidium album UAMH 3620 scytalidin 19 BGC 2.5kb
RERLR R0 «off® S PO R iR ot sool? o
O hrPKS @ Maleidride dimerising cyclase O AsaB-like alphakGDD O Other
© ACDH OPEBP @ Isochorismatase
O Acs @ Enoyl CoA isomerase O Transporter

OHydrolase O Maleidride conserved protein @ Regulator

Fig. 17 Scytalidin 19 BGC.

deoxyscytalidin 20

scytalidin 19

Scheme 27 The scyl2 mutant strain accumulated deoxyscytalidin 20,
which suggests the aKGDD enzyme ScyL2 performs the 6-hydroxyl-
ation required to produce scytalidin 19.8
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nonadride 20 via an oxidative ring contraction (Scheme 26).%'%
However the low titre of the ring contraction product, deoxy-
zopfiellin 117, demonstrated in both the in vivo heterologous
expression experiments,'® and the in vitro assays®'®> suggests
that perhaps another enzyme(s) might be required to support
this activity.

Bioinformatic analysis by Willis and co-workers® showed
that the closest characterised homologue of ZopL9 is the
gibberellin desaturase DES (SOE2Y4.1). This enzyme catalyses
the desaturation of gibberellin A4 to gibberellin A7, although it
can also perform hydroxylations."'® Interpro analysis shows
that ZopK/L9 and DES share a currently unnamed domain:
PTHR34598:SF3.

PhiK and
PhiQ

oaKGDD
and FMN

phomoidride G 42

PhiK and | | aKGDD
PhiQ j

and FMN

isomerisation
R —— O

phomoidride B 37

phomoidride D 38

View Article Online

Review

The study by Willis and co-workers® also investigated an
aKGDD enzyme from the scytalidin 19 pathway. The authors
identified a putative maleidride BGC from the genome of the
scytalidin producer, S. album UAMH 3620 (Fig. 17).

The direct comparison of the BGCs for scytalidin 19 and
zopfiellin 49 revealed that each cluster encodes an aKGDD
enzyme, the aforementioned ZopL9, and ScyL2, which although
both fall within the AsaB-like IPR044053 group, have low
sequence identity, suggesting differing function (~25% iden-
tity).* Mutant strains of S. album were generated with a deletion
of the scyL2 gene, which accumulated deoxyscytalidin 20, sug-
gesting that ScyL2 is responsible for the hydroxylation at C-6
(Scheme 27).%

phomoidride E 40

phomoidride F 41

R= N

Scheme 28 Proposed pathway to the phomoidrides B 37, D 38, E 40, F 41, and G 42 according to Hu and co-workers.>* Intermediates in square

brackets are predicted and have not been isolated.
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Willis and co-workers® also identified that PhiK, an unchar-
acterised protein encoded within the phomoidride BGC, is
homologous to ScyL2, RbtG and ZopK/L9. 1t is likely that this
enzyme catalyses one or more of the post-dimerisation oxidative
steps required to produce the mature phomoidride structure.®
The recent discovery of phomoidrides E 40, F 41, and G 42

View Article Online

Natural Product Reports

prompted Hu and co-workers® to propose that PhiK undertakes
multiple oxidations in concert with PhiQ, an FMN binding
oxidoreductase, to synthesise phomoidrides B 37, D 38, E 40, F
41 and G 42 (Scheme 28), however no molecular evidence has
been provided.

head-to-tail dimerisation - nonadrides

dihydrobyssochlamic acid 9

rubratoxin B 11

rubratoxin
acid B 15

rubratoxin
acid A 14

cornexistin 31

hydroxy-
cornexistin 32

(-)-byssochlamic acid 7

rubratoxin
acid C 16

dehydroxy
dihydrocornexistin 33

(-)-hydroxybyssochlamic acid 8

rubratoxin
acid E 18

rubratoxin
acid D17

(R

JHO

dihydrocornexistin 34

w

JHO

dihydro-
hydroxycornexistin 35

Fig. 18 Structures of head-to-tail dimerised nonadrides. Heterodimerisations of monomers A 1 and C 3 are depicted according to the colours

shown in Scheme 17.
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glauconic acid 4 R=OH talarodride D 46

glaucanic acid 5 R=H

talarodride A 43 Ry=H R,=0OH
talarodride B 44 R4=CHj3 R,=OH
talarodride C 45 R4=CH; R,=H

talarodride E 47

talarodride F 48
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- dihydroepiheveadride 24
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- deoxoepiheveadride 26
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- dideoxoepiheveadride 28

- deoxodihydroepiheveadride 29
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curvulariahawadride 30

phomoidride A 36
C-2"" = B-H a-OH

phomoidride B 37
C-2""" = B-H o-O

phomoidride C 39
C-2"" = a-H p-OH
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Fig. 19 Structures of head-to-head dimerised nonadrides, as well as octadrides and heptadrides. Where mode of dimerisation can be deduced,
and therefore which monomers have dimerised (homo- and hetero-dimerisations of monomers A1, B 2, and C 3), these are depicted according

to the colours shown in Scheme 17.
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Table1l Maleidrides classified according to the size of central ring structure and mode of dimerisation. The producing fungus, the predicted size
of the monomer unit, and known bioactivities are shown

Maleidride type = Dimerisation Mode Compound Fungus Monomer Bioactivity
Nonadride Head-to-head A Glauconic acid 4 Various Talaromyces Triketide Unknown
Glaucanic acid 5 species'® Triketide Unknown
Talarodride A 43 Talaromyces sp. Pentaketide Antibacterial®”
Talarodride B 44 HDN1820200 (ref. 57)  Pentaketide Antibacterial®”
Talarodride C 45 Pentaketide Unknown
Talarodride D 46 Pentaketide Unknown
Talarodride E 47 Pentaketide Unknown
Talarodride F 48 Pentaketide Unknown
Nonadride Head-to-head B Heveadride 22 Bipolaris heveae CBS Triketide Antifungal**
241.92 (ref. 42)
Homoheveadride 23 Cladonia polycarpoides  Tetraketide Unknown
nyl. in Zwackh*?
Dihydroepiheveadride 24 Wicklowia aquatica CBS  Triketide Antifungal®*
Epiheveadride 25 125634 (ref. 45) Triketide Antifungal®*
Deoxoepiheveadride 26 Triketide Antifungal®®
Tetrahydroepiheveadride 27 Triketide Unknown
Dideoxoepiheveadride 28 Triketide Unknown
Deoxodihydroepiheveadride Triketide Unknown
29
Curvulariahawadride 30 Curvularia sp. Triketide Nitric oxide production
MFLCC12-0192 (ref. 46) inhibitory activity*®
Nonadride Head-to-head C Phomoidride A 36 Unidentified fungus Hexaketide Squalene synthase and
ATCC 74256 (ref. 51-53) ras farnesyl transferase
inhibitory activities®'
Phomoidride B 37 Hexaketide Squalene synthase and
ras farnesyl transferase
inhibitory activities®
Phomoidride C 39 Hexaketide Unknown
Phomoidride D 38 Hexaketide Unknown
Phomoidride E 40 Hexaketide Cytotoxic against HeLa
and p388 cells*
Phomoidride F 41 Hexaketide Unknown
Phomoidride G 42 Hexaketide Unknown
Nonadride Head-to-tail (+)-Byssochlamic acid 6 Various Paecilomyces Triketide Unknown
species™®
Dihydrobyssochlamic acid 9 Paecilomyces fulvus Triketide Unknown
IMI40021 (ref. 1)
(—)-Byssochlamic acid 7 Phomopsis sp. K38 (ref.  Triketide Unknown
(—)-Hydroxybyssochlamic 18 and 19) Triketide Cytotoxic against HEp-2
acid 8 and HepG2 cells"’
Rubratoxin A 10 Various Talaromyces Pentaketide PP2A inhibitor*®
Rubratoxin B 11 species'® Pentaketide Antitumour activity>°
Rubratoxin C 12 Pentaketide Weak activity against
human cancer cell
lines®®
Ceramidastin 13 Penicillium sp. Mer- Pentaketide Ceramidase inhibitor®"
17067 (ref. 31)
Rubratoxin acid A 14 Talaromyces Pentaketide Nitric oxide production
purpurogenus®* inhibitory activity**
Rubratoxin acid B 15 Pentaketide Unknown
Rubratoxin acid C 16 Pentaketide Unknown
Rubratoxin acid D 17 Pentaketide Unknown
Rubratoxin acid E 18 Pentaketide Unknown
Scytalidin 19 Scytalidium album Tetraketide Antifungal®®
Deoxyscytalidin 20 UAMH 3620 and UAMH Tetraketide Unknown
3611 (ref. 40)
Castaneiolide 21 Macrophoma Tetraketide Wilting in chestnut

This journal is © The Royal Society of Chemistry 2023

castaneicola M1-48 (ref.
41)

leaves*!
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Table 1 (Contd.)
Maleidride type  Dimerisation Mode Compound Fungus Monomer Bioactivity
Cornexistin 31 Paecilomyces Triketide Herbicidal***°
Hydroxycornexistin 32 divaricatus*"**° Triketide Herbicidal**"*°
Dehydroxydihydrocornexistin Triketide Unknown
33
Dihydrocornexistin 34 Triketide Unknown
Dihydrohydroxycornexistin Triketide Unknown
35
Octadride Head-to-tail Zopfiellin 49 Zopfiellia curvata Tetraketide Antifungal®®”%7!
no. 37-3 (ref. 70) and
Diffractella curvata CBS
591.74 (ref. 8), Zopfiella
curvata no. 37-3 (ref. 70)
Unknown Viburspiran 51 Cryptosporiopsis sp. Unknown Antifungal’>
8999 (ref. 72)
Unknown Botryoanhydride 52 Unidentified fungus Unknown Weak cytotoxicity to
BCC 54265 (ref. 73) cancer cell-lines”
Heptadride Head-to-side Agnestadride A 53 Paecilomyces fulvus Triketide Unknown
Head-to-side Agnestadride B 54 IMI140021 (ref. 1) Triketide Unknown

6. Overview of maleidride
compounds

The structures of all maleidride compounds discussed in this
review have been classified in Fig. 18 and 19 according to their
mode of dimerisation, to demonstrate the structural relation-
ships between these compounds. Furthermore, their known or
predicted monomer chain length, producing species, and any
known bioactivities have been collated in Table 1.

7. Conclusions

Since the first maleidride isolation in the 1930s,” exactly how
these compounds are formed have posed a challenge to our
biosynthetic understanding, with increasing insight leading to
the potential to synthesise and manipulate their structures in
arational manner. The core ring of 7-, 8- or 9-carbons is unusual
in nature, and this class of compound has received growing
interest as more representatives have been isolated, particularly
given that the majority have important biological activities.*
Recent genetic and biochemical studies®®”>?*'*%'% have
added support to the original feeding studies®*”*”® showing that
the monomer for the maleidrides is derived from an oxaloace-
tate cross-linked via its B carbon to the B carbon of a polyketide.
The core set of enzymes responsible for formation of the
monomer have been characterised: a highly reducing-PKS,
a hydrolase, an alkylcitrate synthase and an alkylcitrate dehy-
dratase.”*%¢'* Moving beyond the monomer, the core enzyme
required for dimerisation, and therefore ultimately controlling
the structure of the mature maleidride, is the maleidride
dimerising cyclase.>*7>9%10%19 Thjs coupling reaction appears to
be aided by the PEBP-like enzymes, although their exact role is
currently obscure.’®7*?%1°%1%  The precise detail of how

154 | Nat. Prod. Rep., 2023, 40, 128-157

cyclisation is controlled remains cryptic, at present it is not
possible to predict whether a biosynthetic gene cluster will
deliver dimers showing head-to-head, head-to-tail or head-to-
side modes of cyclisation, highlighting that there is still much
to be discovered in this type of pathway.

In terms of the octadrides, we now have a far better under-
standing of how the octadride zopfiellin 49 is formed via a ring-
contraction, with the oxidative elimination of a ring-carbon by
an o-ketoglutarate dependent dioxygenase, converting the
nonadride precursor to the octadride.*'* It is yet to be deter-
mined whether the ZopK/ZopL9 enzyme responsible for this step
of zopfiellin 49 biosynthesis can be modified to ring-contract
other nonadrides. Furthermore, with only limited yields recov-
ered from both in vitro and in vivo reactions, a question remains
as to whether additional, as yet unidentified, enzymes are
required to elevate the yield of this type of reaction.®**

Various modes of post-cyclisation tailoring have been high-
lighted and, given the ongoing discovery of new maleidride
BGCs from sequence data hinting at unidentified members of
this class,” we expect the range of modifications available to
continue to increase. The maleidrides are a challenging, but
rewarding class of fungal natural product and the increasing
knowledge about their biosynthesis raises interesting possibil-
ities for combining synthetic biology approaches with semi-
synthetic chemistry to deliver a wide range of maleidrides for
future pharmacological assessment.
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