
NJC

CORRECTION

View Article Online

Cite this: New J. Chem., 2023, **47**, 1573

Correction: Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies

Abdelaziz S. Fouda, Mohamed A. Ismail, Aliaa M. Temraz and Ashraf S. Abousalem*ab

DOI: 10.1039/d2nj90169b

rsc.li/njc

Correction for 'Comprehensive investigations on the action of cationic terthiophene and bithiophene as corrosion inhibitors: experimental and theoretical studies' by Abdelaziz S. Fouda et al., New J. Chem., 2019, 43, 768-789, https://doi.org/10.1039/C8NJ04330B.

The authors regret that the SEM and EDX images for samples MA-1191, MA-1190 and MA-1112 published in Fig. 11 of the original article were incorrect. The corresponding data in Table 8 were also incorrect. The correct versions of Fig. 11 and Table 8 are shown below.

^a Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. E-mail: ashraf.abousalem@gmail.com

^b Quality Control Laboratory, Operations Department, Jotun, Egypt

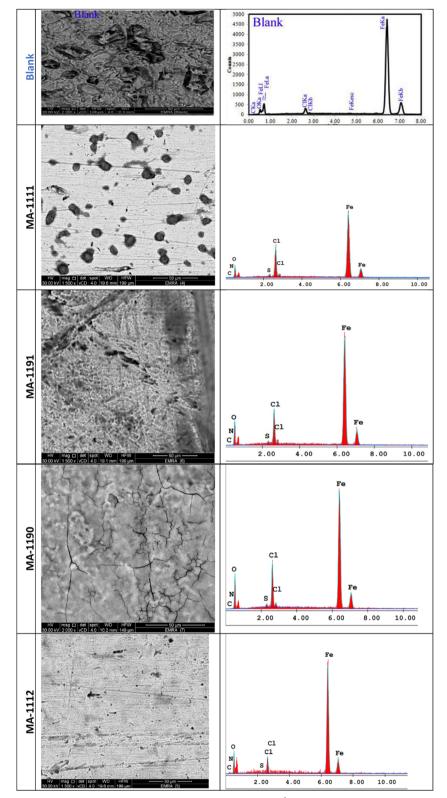


Fig. 11 SEM micrographs (left) and EDX (right) of CS without (blank) and with 18×10^{-6} M of the investigated derivatives.†

[†] The SEM Image for blank in Fig. 11 and the EDX data for blank in Table 8 are reprinted from Emad A. Badr, M. A. Bedair and Samy M. Shaban, Adsorption and performance assessment of some imine derivatives as mild steel corrosion inhibitors in 1.0 M HCl solution by chemical, electrochemical and computational methods, *Mater. Chem. Phys.*, 2018, 219, 444–460, Copyright (2022), with permission from Elsevier.

Table 8 Quantitative analysis of EDX of the CS surface after 24 h of immersion in 1.0 M HCl in the presence and absence of the investigated compounds

Compound Element	Blank		MA-1111		MA-1191		MA-1190		MA-1112	
	Atom%	Mass%	Atom%	Mass%	Atom%	Mass%	Atom%	Mass%	Atom%	Mass%
Cl	2.73	3.58	13.65	14.3	10.2	10.46	11.11	10.44	5.28	5.59
C	1.58	6.14	1.7	5.17	1.2	3.64	0.91	2.52	1.91	5.96
N	_	_	1.16	3.04	0.67	1.74	1.24	2.96	0.47	1.25
O	5.07	14.75	13.67	31.29	16.35	37.14	21.52	44.8	14.71	34.54
S	_	_	1.17	1.33	0.9	1.02	0.90	0.94	0.9	1.05
Fe	90.62	75.53	68.44	44.86	70.68	46	64.31	38.35	76.64	51.61

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.