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Size-dependent diffusion of supported metal
nanoclusters: mean-field-type treatments and
beyond for faceted clusters†

King C. Lai, ‡ab Charles T. Campbell c and James W. Evans *ab

Nanostructured systems are intrinsically metastable and subject to

coarsening. For supported 3D metal nanoclusters (NCs), coarsening

can involve NC diffusion across the support and subsequent coa-

lescence (as an alternative to Ostwald ripening). When used as

catalysts, this leads to deactivation. The dependence of diffusivity,

DN, on NC size, N (in atoms), controls coarsening kinetics. Tradi-

tional mean-field (MF) theory for DN versus N assumes that NC

diffusion is mediated by independent random hopping of surface

adatoms with low coordination, and predicts that DN B hN�4/3neq.

Here, h = n exp[�Ed/(kBT)] denotes the hop rate, and neq =

exp[�Eform/(kBT)] the density of those adatoms. The adatom for-

mation energy, Eform, approaches a finite large-N limit, as does the

effective barrier, Eeff = Ed + Eform, for NC diffusion. This MF theory is

critically assessed for a realistic stochastic atomistic model for

diffusion of faceted fcc metal NCs with a {100} facet epitaxially

attached to a (100) support surface. First, the MF formulation is

refined to account for distinct densities and hop rates for surface

adatoms on different facets and along the base contact line, and to

incorporate the exact values of Eform and neq versus N for our

model. MF theory then captures the occurrence of local minima

in DN versus N at closed-shell sizes, as shown by KMC simulation.

However, the MF treatment also displays fundamental shortcom-

ings due to the feature that diffusion of faceted NCs is actually

dominated by a cooperative multi-step process involving disassem-

bling and reforming of outer layers on side facets. This mechanism

leads to an Eeff which is well above MF values, and which increases

with N, features captured by a beyond-MF treatment.

Introduction

Coarsening in nanostructured bulk and surface systems has
long been of interest1,2 since such structure evolution generally
impacts system properties. A common mechanism is Ostwald
ripening (OR) discovered in the late 19th century,3 for which
appropriate LSW theory was developed in the mid-20th
century.4,5 For systems of supported 3D metal nanoclusters
(NCs), rather than OR wherein metal monomers diffuse from
smaller to larger NCs, coarsening can instead be mediated by
particle (i.e., NC) migration and coalescence (PMC).6–14 PMC is
sometimes also described as Smoluchowski ripening (SR), as
opposed to OR. Coarsening via SR (as well as OR) is of
particular importance with regard to deactivation for catalysts
involving supported nanoparticles.6–14 The kinetics of coarsen-
ing via PMC is determined entirely by the size-dependence of
the diffusion coefficient for supported NCs.6,15 Consequently,
reliable treatment of PMC kinetics requires a predictive theo-
retical description of NC diffusivity.
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New concepts
Diverse nanostructured materials are increasingly utilized for energy and
environmental technologies including catalysis. However, these systems
are generally intrinsically metastable and are subject to coarsening. A key
challenge is to elucidate coarsening pathways and to characterize
kinetics. A prominent example is supported 3D metal nanoclusters
(NCs) which can coarsen either via Ostwald ripening (OR) or via particle
migration and coalescence (PMC). For PMC, coarsening kinetics is
determined entirely by the size-dependence of NC diffusivity. However,
only mean-field (MF) treatments of this dependence have been generally
available and utilized, where NC motion is assumed to derive from
independent random hopping of surface adatoms. Our analysis shows
that this assumption is incorrect for faceted epitaxially-supported NCs,
and that an alternative conceptual framework is needed to describe NC
diffusion. We show that accounting for the appropriate cooperative multi-
step mechanism underlying NC diffusion does capture the size-
dependence of NC diffusion coefficients and of the associated
activation energies.
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The standard treatment of the diffusivity of supported 3D
NCs is based on a mean-field (MF) picture wherein lateral
motion of the center of mass of an NC of N atoms is associated
with essentially random independent hopping of mobile sur-
face adatoms across the NC surface.6,16–19 In this treatment,
such adatom diffusion is described by a single characteristic
hop rate h = n exp[�bEd]. Here, Ed denotes the diffusion barrier,
n is the attempt frequency, and b = (kBT)�1 denotes the inverse
temperature (where kB is the Boltzmann constant, T is the
surface temperature). In this scenario, each hop of a surface
atom shifts the NC center of mass (CM) laterally by dRCM B a/N,
where ‘a’ is the surface lattice constant. The NC surface area, A
(in units of adsorption sites) scales like A B N2/3, and the total
rate of surface atom hopping scales like H B hAneq, where neq =
exp[�bEform(N)] is the density (the number per adsorption site)
of mobile surface adatoms. Here, Eform is the adatom formation
energy which together with neq depends on NC size as typically
determined by continuum Gibbs–Thompson (GT) type
relations.11,20 As an aside, natural extensions of GT relations
can be developed for small faceted NCs (see the ESI†). The MF
treatment predicts that the NC diffusion coefficient satisfies

DN B H(dRCM)2 B na2N�4/3 exp[�bEeff(N)],
where Eeff(N) = Ed + Eform(N). (1)

As N - N, Eform(N) approaches a finite value reflecting bulk
and surface thermo-dynamics. Note that N�4/3 size-scaling was
also predicted for bulk diffusion of 3D voids.21

In the following, we first describe the atomistic-level sto-
chastic model on which we base our analysis of the diffusion of
{100} epitaxially-supported faceted fcc metal NCs. Next, a
refinement of the conventional MF-treatment of NC diffusion
is provided which is appropriate for faceted NCs considered
here. Then, we present results from our refined MF analysis for
NC diffusivity versus NC size, N, and compare these with
accurate benchmark results previously obtained for the sto-
chastic model from Kinetic Monte Carlo (KMC) simulation.
Finally, we describe and present results from an appropriate
beyond-MF formulation accounting for the feature that diffu-
sion of faceted NCs is actually mediated by a cooperative multi-
step process, rather than MF-type independent random
hopping of NC surface atoms. Specifically, the multi-step
process involves disassembly and reformation of outer layers
on the side facets of the NC. Finally, conclusions are provided.

Stochastic atomistic model for {100}-
epitaxial fcc metal nanoclusters

We utilize a stochastic lattice-gas model for {100} epitaxially-
supported fcc metal NCs where the (potential) energy of the
system is modeled by an effective nearest-neighbor (NN) pair-
wise attraction of strength f 4 0 between metal atoms.22 The
effectiveness of this prescription of energetics is validated by
DFT analysis,23 and by extensive previous modeling of homo-
epitaxial growth and relaxation of thin metal films.24,25 Note
that f is chosen to recover surface thermodynamics, and is well

below one sixth of the bulk cohesive energy, Ec, which would
recover bulk thermodynamics. The model applies for any fcc
metal. However, we will perform simulations here with para-
meters corresponding to Ag, choosing f = 0.225 eV versus
Ec/6 = 0.49 eV.12 For {100}-epitaxially supported clusters, we
regard each atom in the lowest {100} layer of the metal NC as
interacting with each of four atoms in a top {100} layer of
the support with an attraction of strength ff. Thus, f 4 0
measures the strength of adhesion with f = 1 corresponding
to fcc{100} homoepitaxy. The modeling in this paper will
neglect possible vibrational entropy differences between var-
ious NC structures (but in some cases consider configurational
entropy differences).

For this fcc lattice-gas model with NN interactions, the large-
size continuum equilibrium Wulff shape for unsupported NCs
is a truncated octahedron with all edges between {100} and
(111} facets of equal length.26 The large-size continuum equili-
brium Winterbottom shape for supported NCs truncates a
portion of the Wulff NC dependent on the value of f. See Fig. 1.

To facilitate detailed atomistic-level analysis, we consider
the case of strong adhesion, f = 0.75, where the continuum
Winterbottom shape is a simple truncated pyramid (TP) with all
edges having equal length.22 In the atomistic model, for general
discrete NC sizes, N (in atoms), the most stable ground state
shape will not be a perfect truncated pyramid. However, one
might anticipate the existence of a sequence of closed-shell
sizes, Ncs, corresponding to perfect TPs which constitute non-
degenerate ground states configurations. This is the case. Such
clusters with an n � m atom base (where m = n or n � 1) which
are k layers tall will be denoted by TPn�m,k.

A comprehensive analysis of ground state NC configurations
and energetics (as well as their configurational degeneracy) for
the lattice-gas model with f = 0.75 was performed for NC sizes
N = 13–126. Extensive results are provided in the ESI.† However,
an illustrative portion of these results is presented in Fig. 2
showing schematics of non-perfect TP ground state configura-
tions between two particularly stable magic closed-shell sizes
Ncs = 50 (TP5�5,3) and Ncs = 62 (TP5�6,3) with perfect TP
configurations, and in Table 1 which tabulates for ground state
energies and configurational degeneracies for N = 50–65. These
magic sizes, which correspond to deep local minima in DN, are
highlighted in bold italic font in Table 1. For non-closed shell
sizes, we note that ground state degeneracy occurs in a sig-
nificant fraction of cases as indicated by listing the various

Fig. 1 Winterbottom shapes of supported clusters for a fcc metal. We
consider the case with substantial adhesion f = 0.75.
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possible NC heights, k, as well as by listing the different
possible numbers of atoms, Nbase, in the base layer of the
ground state NCs configurations. We also list the total energy
for the ground state of the supported NCs, EN (relative to that
for gaseous metal atoms and a metal-free support surface), in
units of f. Note that total interaction of each base layer atom
with the support surface is �4ff = �3f, so conveniently values
of EN/f are all negative integers. Table 1 also lists the quantity
DEN = EN � EN�1, where DEN = �6f, �5f, or �4f takes just
three values. DEN is a key component in the determination of
the adatom formation energy, Eform(N) (which is also listed in
Table 1), and thus in determination of the density, neq, of
mobile surface adatoms in our refined-MF treatment.

NC diffusivity also depends on the specification of hopping
dynamics of surface adatoms. Our stochastic model allows
hops of under-coordinated surface adatoms to unoccupied
NN fcc crystalline sites, which are still connected to the NC.
Hop rates, h = n exp[�bEact], have an Arrhenius form where nE
1012.5 s�1 is a prefactor or attempt frequency chosen to be
identical for all hops. Most modeling of 3D crystalline NC
evolution has used a standard bond-breaking or so-called
Initial Value Approximation (IVA) prescription of the local
environment-dependent activation barrier, Eact.

11 However, this
and other generic prescriptions fail qualitatively to capture
realistic barriers for fcc metals.11,21 In contrast, we used a
refined Brønsted–Evans–Polanyi (BEP) formalism which allows

sufficient flexibility in the specification of Eact to recover DFT
values for various key diffusion processes. See ref. 12, 27 and 28
for details. In the model with parameters for Ag, we recover
Ed(100) = 0.425 eV and Ed(111) = 0.10 eV for terrace diffusion on
{100} and {111} facets, respectively, and Ee(100) = 0.275 eV and
Ee(111) = 0.30 eV for edge diffusion along {100} and {111}
micro-faceted steps, respectively.

It is appropriate to comment further on our prescription of
mass transport. Hopping of under-coordinated surface atoms
to neighboring crystalline sites has been the default prescrip-
tion for effective modeling of homoepitaxial film growth and
relaxation,24,25 as well as for surface-diffusion mediated evolu-
tion of unsupported metal NCs.29–31 Diffusion across mono-
layer steps and facets boundaries (particularly from one {111}
side facet to an adjacent one) can impact diffusion of supported
NCs. Such process occur via a sequence of hops to NN fcc
crystalline sites. See the ESI.† An additional Ehrlich–Schwoebel
(ES) barrier for interlayer transport above that for terrace
diffusion across {111} facets of 0.1 eV is also incorporated
(for Ag NCs). As an aside, interlayer diffusion sometimes
involves atom exchange rather than hopping. However, for
the modeling to accurately capture NC structure evolution, it
is only necessary to correctly incorporate the rate of this process
rather than the mechanism, and our selection of ES barriers is
made to achieve this goal. For diffusion around the NC base, we
relax the constraint that atoms hopping to available NN fcc

Fig. 2 Examples of ground state configurations (top down view) of supported NCs between closed-shell TP sizes N = 50 and N = 62. Degenerate
ground state configurations are also shown.
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sites must remain connected to the NC. Specifically, atoms can
hop to second NN sites at the corner of the rectangular base of
an NC, thereby allowing rounding of the corner from one side
to another of the faceted NC. See the ESI.† (This atom rounding
the corner still has 4 NN substrate atoms, thus avoiding a high
energy configuration associated with an atom hopping to a site
with no NN higher in the NC.) For corner rounding at the base,
there is an additional ES barrier relative to edge diffusion along
the base of 0.1 eV.

KMC simulation of Ag NC diffusion is then performed where
surface hopping processes are implemented with probabilities
proportional to the physical rates using a rejection-free algo-
rithm. The diffusion coefficient, DN, is obtained by tracking the
lateral mean-square displacement of the center of mass of the
NC as a function of time. Fig. 3 presents illustrative results
from previously performed KMC simulations22 for DN versus N
for Ag NCs at 700 K. We note that similar behavior has been
observed in simulations for diffusion of supported Pt NCs.32

The strong oscillatory decay with local minima at or near
certain closed-shell TP sizes will motivate subsequent discus-
sion and analysis. In this contribution, we will compare results
from our refined MF theory (also shown in Fig. 3), and from a
beyond-MF treatment, with those from KMC analysis.

Refined-MF treatment for diffusion of
faceted NCs
Overview

The MF formulation described above requires adaption to
provide a reasonable treatment of the diffusion of the faceted

epitaxial NCs in our model. It is important to recognize that the
density of mobile adatoms per adsorption site on the {100} top
facet, n100, the {111} side facets, n111, and also at sites along the
base contact line, nbase, differ primarily due to different adatom
formation energies. Below we use a or a0 = 100, 111, or ‘‘base’’ to
label these three cases. The adatom densities will be denoted by
na and the formation energies by Eform(a), where na p

exp[�bEform(a)], and where both quantities depend on a and
on NC size. The formation energy, Eform(a) corresponds to the
minimum energy cost to extract an atom from a highly-
coordinated site (generally a kink site) in a ground state
configuration of the NC, and move it onto the desired facet
or to the perimeter of the NC base. Note that the coordination
of this atom to be extracted is given by the quantity |DEN|/f
listed in Table 1, and this coordination depends on NC size, N.
Since |DEN| also corresponds to the energy cost to entirely
remove an atom to the vapor phase from such a site in a NC of
size N, it follows that

Eform(a) = |DEN| � |Eads(a)|, with Eads(a) = �maf, for NC size N,
(2)

where Eads(a) is the adsorption energy for case a. One has that
m100 = 4 (m111 = 3) for adsorption at 4-fold (3-fold) hollow sites
on {100} ({111}) facets; also mbase = 4f + 1 as an adatom at the
base perimeter has 4 bonds of strength ff to the substrate, and
one lateral bond of strength f to another atom in the NC. Thus,
for our model with f = 0.75, adatoms on {100} facets and at the
base perimeter just happen to have the same Eform. Again, these
different formation energies (and also different configurational
entropy factors discussed below) result in the above-mentioned
different densities.

Diffusion barriers, Ed(a), for mobile surface adatoms also
depend on a. For Ag NCs, one has that Ed(100) = 0.425 eV and

Table 1 Illustrative results for the lattice-gas model with f = 0.75 for {100}
epitaxially-supported 3D fcc metal clusters sizes N = 50–65: ground state
configurations and energetics, EN and DEN = EN � EN�1, as well as
formation energies, Eform(a) for adatoms on the top (a = 100) and side
(a = 111) facets, and at the perimeter of the NC base (a = base). (See Section
3.1 for details where it is shown that Eform(100) = Eform(base) for f = 0.75)
NC sizes, N, corresponding to closed-shell TP, where DN has deep local
minima, as well as where DN has local maxima are indicated in bold italic
font. A comprehensive analysis for NC sizes N = 13–126 is provided in the
ESI

N Nbase k �EN/f �DEN/f
Eform(100)/f =
Eform(base)/f Eform(111)/f D700K

50 5 � 5 = 25 3 251 6 2 3 min
51 25, 26 3, 4 255 4 0 1
52 25, 27 3, 4 260 5 1 2
53 25, 27, 28 3, 4 265 5 1 2 max
54 5 � 5 = 25 4 271 6 2 3
55 28 3 276 5 1 2
56 29 3 281 5 1 2
57 29 3 287 6 2 3
58 30 3 292 5 1 2
59 30 3 298 6 2 3
60 30 3 303 5 1 2
61 30 3 309 6 2 3 Bmin
62 5 � 6 = 30 3 315 6 2 3 min
63 30, 31 3, 4 319 4 0 1
64 30, 32 3, 4 324 5 1 2
65 30, 32, 33 3, 4 329 5 1 2 max

Fig. 3 KMC simulation results (circles) for DN versus N for {100}
epitaxially-supported Ag NCs at 700 K for N = 48–105. Also shown are
predictions from a somewhat simplified version of a refined MF treatment
(squares). Blue triangles indicate MF values for sizes N = Ncs + 1 where
there are particular issues with MF. Vertical dashed lines correspond to
close-shell NC sizes, Ncs.
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Ed(111) = 0.10 eV on {100} and {111} facets, respectively;
Ed(base) = Ee(100) = 0.275 eV for edge diffusion along {100}
micro-faceted steps at the NC base. Thus, the corresponding
hop rates ha = n exp[�bEd(a)] for these mobile surface adatoms
also depend on a.

In our refined MF treatment, we will separately account for
the contribution of these three different classes of mobile
surface adatoms to NC diffusion. Below, we let A100, A111, and
Abase denote the number of adsorption sites on the top {100)
facet, on all four side {111} facets, and around the base,
respectively. For adatoms on the top {100} facet and at the
base, one has a lateral change in the NC center of mass of
dRCM = a/N for each hop. Thus, the corresponding contribu-
tions to DN are

DN(100) = a2h100n100A100/N2 and DN(base) = a2hbasenbaseAbase/N2.
(3)

For adatoms on the {111} side facets, the two lateral hops of the
6 possible hops between fcc(111) adsorption sites have a lateral
dRCM = a/N, but the other 4 have a lateral dRCM = 2�1/2a/N. Then,
appropriate random walk analysis (see the ESI†) shows that the
contribution to DN is

DN(111) = (2/3)a2h111n111A111/N2. (4)

Combining these three contributions gives the total DN. We
comment below on possible further modification to incorpo-
rate the effect of ES barriers.

From (3) and (4), it is clear that for each a, we can associate
an effective barrier, Eeff(a) = Ed(a) + Eform(a), for transport across
the relevant facet or around the base. Values for these effective
barriers are reported in Table 2 for Ag NCs revealing that
Eeff(111) and Eeff(base) are significantly lower that Eeff(100).
This indicates that that contributions to DN from transport
across {111} side facets and around the base of the NC
dominate those from transport across the {100} top facet.

To more clearly show the NC size scaling of DN, it is
convenient to consider a subset of perfect closed-shell TPs of
k layers with a top k � k atom {100} facet, and thus a (2k � 1) �
(2k � 1) bottom {100} layer, i.e. TP(2k�1)�(2k�1),k. For these TP,
which most closely mimic the continuum Winterbottom shape,
one has that

N = k(2k � 1)(7k � 1)/6, A100 = (k � 1)2, A111 = 2k(3k � 1), and
Abase = 4(2k � 1). (5)

Thus, in the large k or large N regime, one has that

A100 B (3N/7)2/3, A111 B 6A100, and Abase B 8(3N/7)1/3.
(6)

As a result, combining the above contributions to DN, one
concludes that

DN E (3/7)2/3a2N�4/3[h100n100 + 4h111n111 + 8(3N/7)�1/3hbasenbase].
(7)

Finally, we identify one self-evident limitation regarding the
utility of the MF formulation. Consider NCs whose size exceeds
that for structures with closed-shell ground states by one, i.e.,
N = Ncs + 1. Then, the ground state structure already has one
isolated adatom either on the {100} top facet or at the base. The
formation energies, Eform(100) = Eform(base) = 0 vanish, and the
adatom densities n100 E nbase E 1/(A100 + Abase) on {100} facets
and at the base are correspondingly ‘‘anomalously’’ high.
However, these high densities do not correlate with correspond-
ingly high NC diffusivity. In these cases, NC dynamics primarily
involves this isolated atom moving around a static closed-shell
‘‘core’’ of the NC, which in itself does not result in NC diffusion.

Analysis of adatom densities na including entropic effects

A detailed analysis of the mobile adatom densities, na = n100,
n111, or nbase, is possible utilizing a standard statistical mechan-
ical formalism to determine the probability that the system is
in an energetically excited state with such an adatom at the
desired location. The analysis below does not apply for the
cases N = Ncs + 1 (where as noted above, there is already a
surface adatom in the ground state), or for N = Ncs + 2 where
slight refinement of the following analysis is needed. See the
ESI.† Let ON denote the degeneracy of the ground state of the
NC with N atoms and energy EN. Then, the degeneracy of the
‘‘excited state’’ configuration where an atom is shifted from
this ground state to a lower-coordinated adsorption site of type
a is ON�1 Aa, and the energy of this excited state is EN�1 +
Eads(a). Thus, the canonical partition function for the NC of N
atoms becomes

QN = ON exp[�bEN] + ON�1
P

a0Aa0 exp[�b{EN�1 + Eads(a0)}] +. . .

(8)

The implicit terms reflect the more highly excited states of the
NC. Then, the probability, Pa, that the NC is in an excited state
with exactly one mobile adatom on an adsorption site of type a
is given by

Pa = ON�1Aa exp[�b{EN�1 + Eads(a)}]/QN. (9)

We consider the regime of temperatures and relatively small
NC sizes where the system is most likely in the ground state (so
the first term in QN dominates), and where it is unlikely that
there is more than one mobile adatom on a side or top facet or
at the base. Then, it follows that the density of such atoms on
adsorption site type a satisfies

na E Pa/Aa E (ON�1/ON)exp[b{EN � EN�1 � Eads(a)}] =
(ON�1/ON)exp[�bEform(a)]. (10)

Table 2 Effective barriers, Eeff(a), for different mass transport pathways
(i.e., diffusing adatoms on different facets, etc.), a, for Ag NCs

Eeff(a) in eV a = top {100} a = side {111} a = base

N = Ncs & some other N 0.875 0.775 0.725
aN = Ncs + 1 (mostly) 0.425 0.325 0.275
N = Ncs + 2,3 (mostly) 0.650 0.550 0.500

a As noted in the text, the barriers listed for N = Ncs + 1 do not correlate
with NC diffusion.
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Again, there are special cases where this formalism must be
modified. Thus, to determine na, in addition to Eform(a), which
is reported in Table 1, it is appropriate to determine configura-
tional degeneracies. However, the factor ON�1/ON is typically of
order unity, so that the approximation na E exp[�bEform(a)] is
generally reasonable.

Refined-MF predictions for DN versus
KMC results
Refined-MF analysis for N = Ncs (low DN) and N = Ncs + j with j =
1–3 (high DN)

Motivated by the results for NC diffusivity shown in Fig. 3, we
initially focus on special NC sizes, N = Ncs (for closed-shell TP
ground states) where DN generally exhibits local minima, and
sizes N = Ncs + j with j = 1, 2, or 3, noting that KMC values for DN

exhibit local maxima for N = Ncs + 3 (and values for N = Ncs + 2
are only slightly lower). These cases are analyzed in detail
separately below. We present refined-MF results for DN for
Ncs = 50, 62, 77, and 92, and directly compare these with
accurate results from KMC simulation.

(i) For N = Ncs, the NCs have non-degenerate ground states,
so that ON = 1. One also has that ON�1 = 4 corresponding to
removing an atom from one of the 4 corners of the top {100}
facet on the perfect TP. Since Eform(100) = Eform(base) = 2f and
Eform(111) = 3f (see Table 1), one has from (10) that

n100 = nbase = 4 exp[�2bf] and n111 = 4 exp[�3bf]. (11)

Since the Eform(a) are largest for these cases, it follows that na

adopt the lowest possible values. Thus, the refined-MF formu-
lation predicts particularly low diffusivity for these cases, con-
sistent with KMC results.

(ii) For N = Ncs + 1, we have already noted above that this is
an anomalous case as the ground state structure already has
one isolated adatom adsorbed on the {100} top facet or at the
base of a closed-shell ‘‘core’’. Thus, one has that Eform(100 or
base) = 0, and n100 = nbase = 1/(A100 + Abase) are correspondingly
high. Additional analysis reveals that n111 = nbase exp[�bf]. See
the ESI.† This allows determination of the refined-MF predic-
tions for diffusivity which are artificially high, corresponding to
local maxima with respect to N, in contrast to KMC results.

(iii) For N = Ncs + 2, the ground state consists of a dimer
adsorbed on the {100} top facet (for Ncs Z 18), or at the base of
a closed-shell ‘‘core’’. A feature specific to this case is that when
the dimer dissociates, it creates two mobile adatoms. As a
result, some refinement of the formulation leading to the
prefactor in (10) is required. See the ESI.† Since typically
Eform(100) = Eform(base) = f and Eform(111) = 2f from Table 1,
ignoring the prefactors it follows that

n100 = nbase B exp[�bf] and n111 B exp[�2bf], (12)

which are substantially higher than for N = Ncs.
(iv) For N = Ncs + 3, the ground state usually consists of a

trimer adsorbed on the {100} top facet (for Ncs Z 18) or at the
base of a closed-shell ‘‘core’’. Then, ON corresponds to the

number of locations on the core of a linear or bent trimer on
the top {100} facet plus the number of locations of a linear or
triangular trimer at the base. ON�1 corresponds to the number
of locations on the core of a dimer. See the ESI,† for more
details. These degeneracies can be readily determined in spe-
cific cases. Since typically Eform(100) = Eform(base) = f and
Eform(111) = 2f from Table 1, it then follows that

n100 = nbase E (ON�1/ON)exp[�bf] and n111 E
(ON�1/ON)exp[�2bf], (13)

again substantially higher than for N = Ncs.
It is clear that the refined-MF treatment will capture aspects

of the oscillatory trend in DN versus N shown in KMC simulation
with local minimum values at N = Ncs substantially below
similar high values at N = Ncs + 2 and N = Ncs + 3. As noted
above, refined-MF values for N = Ncs + 1 are artificially high
corresponding to local maxima (in contrast to KMC). Table 3
compares refined-MF DN values at 700 K from (3) and (4)
incorporating detailed evaluation of Aa and na with accurate
KMC values. This is done for various closed-shell NC sizes, Ncs =
50, 62, 77, and 92. As already indicated above, contributions to
DN from transport across {111} side facets and around the base
of the NC dominate those from transport across the {100} top
facet. This dominance primarily reflects the lower effective
barriers, Eeff(a) for a = 111 and a = base versus a = 100 (see
Table 2), but also partly reflects entropic factors.

It is clear that the refined-MF treatment is reasonably
effective in predicting the relative values of DN at local minima
at N = Ncs and the much higher values for N = Ncs + 2 and N = Ncs

+ 3 (the latter being a local maximum for KMC). The refined-MF
treatment does not capture the more subtle feature that accu-
rate KMC values for N = Ncs + 2 are slightly lower (not higher)
than those for N = Ncs + 3. It should be emphasized, however,
that all refined-MF values are roughly two orders of magnitude
above those from KMC. As noted above, this discrepancy could
be partly ameliorated by incorporating an additional universal
factor, exp[�bd] in the refined-MF DN which reflects an addi-
tional ES type barrier, d 4 0, for transport between different
sides of the NC. However, we argue that the discrepancy
primarily reflects the fundamental shortcoming that the
refined-MF treatment greatly under-estimates the effective bar-
rier for NC diffusion, as will be discussed in detail within the
framework of beyond-MF treatments.

Table 3 Comparison of refined-MF and KMC predictions for diffusivity,
DN/(a2n), for selected NC sizes N = Ncs (corresponding to local minima)
and for N = Ncs + j with j = 1–3 (which include local maxima). See Fig. 3.
Entries in the table should be multiplied by 10�9 for KMC, and 10�7 for the
refined MF treatment

Refined-MF DN/(a2n) (�10�7) KMC DN/(a2n) (�10�9)

Ncs Ncs + 1 Ncs + 2 Ncs + 3 Ncs Ncs + 1 Ncs + 2 Ncs + 3

Ncs = 50 3.31 57.54 37.29 23.07 2.91 21.61 43.53 48.75
Ncs = 62 2.40 36.01 24.92 17.12 1.33 10.95 30.92 41.12
Ncs = 77 2.03 22.01 17.21 12.50 0.98 5.66 15.84 19.60
Ncs = 92 1.59 14.67 12.60 9.71 0.53 3.79 8.63 13.01
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Approximate refined-MF analysis for all NC sizes versus KMC
results

Here, we explore an approximate version of the refined-MF
treatment which has the advantage of providing a convenient
general formula for DN. To this end, we utilize a simplified form
(7) which already incorporates approximations for Aa, but now
we also include additional reasonable approximations for ada-
tom densities which neglect some entropic factors as described
below. We thereby obtain

DN/(a2n) E (3/7)2/3N�4/3{exp[�bEd(100)] + 4 exp[�b(Ed(111) + f)]
+ 8(3N/7)�1/3 exp[�bEd(base)]}nbase, (14)

using nbase = n100 and n111 = exp[�bf]nbase. For all N a Ncs + 1,
we use nbase E exp[�bEform(base)] where the N-dependent
Eform(base) = Eform(100) = |DEN| � 4f is listed in Table 1 for a
narrow range of N, and in the expanded Table in the ESI,† for a
broader range of N = 13–126. For N = Ncs + 1, we use nbase = 1/
(A100 + Abase). The first term with Ed(100) = 0.425 eV is clearly
dominated by the second term with Ed(111) + f = 0.325 eV, and
also by the third term with Ed(base) = 0.275 eV.

In Fig. 3, we have compared the predictions of (14) with
accurate KMC values for DN. As expected, the simplified MF
form (14) effectively captures the local minima of DN for N = Ncs,
and much higher values for N = Ncs + 2 and N = Ncs + 3.
However, (14) produces ‘‘excessive’’ oscillatory behavior of DN

reflecting the rapid oscillatory variation in Eform(N), although
(14) does captures the slow overall decrease in the oscillatory DN

with increasing N. Again, MF values of DN are substantially
above KMC values, a shortcoming elucidated by a beyond-MF
analysis.

Beyond-MF analysis for DN versus MF
and KMC results
Overview

The above results reveal that refined-MF theory fails to reliably
describe detailed trends in NC diffusivity with size, and also
thus fails to elucidate the relationship between NC structure

and diffusivity. However, this structure-diffusivity relationship
can be elucidated and captured by a beyond-MF analysis
tailored to the diffusion of epitaxially-supported faceted NCs.
In this section, we outline such a beyond-MF analysis which
recognizes that the diffusion of such NCs is controlled by a
cooperative multi-step mechanism wherein the outer layer of a
facet on one side of the NC is disassembled and those adatoms
transferred to form (i.e., to nucleate and grow to completion) a
new outer layer on a target facet another side of the NC.19 See
Fig. 4. This picture of a cooperative multi-step mechanism
contrasts the MF assumption that NC diffusion results from
(non-cooperative) independent random hopping of surface
atoms. It should also be noted that such cooperative nucleation
and growth type processes have also been identified as under-
lying the shape equilibration of faceted fcc metal NCs with
initial non-equilibrium shapes.12,27–31,33

Our beyond-MF analysis will naturally consider the change
in system energy, dE(q), as a function of the number, q, of
atoms transferred from the facet which is being disassembled
to the target facet on another side of the NC. dE(q) will generally
quickly increase from zero as q increases above zero and will
then return to zero once a new outer layer of the target facet is
completed on another side of the NC, or when the NC returns to
a configuration identical to the initial configuration but shifted
by a surface lattice constant.

Some aspects of the definition and determination of dE(q)
should be mentioned. First, values of dE(q) for integer q will
correspond to the change in energy after completion of transfer
of the qth atom, i.e., after its incorporation at an adsorption site
at the base of the target facet if q = 1, or after its incorporation
into a 2D cluster of atoms forming on the target facet for q 4 1.
We will also define dE(q) for half-integer values of q. The value
for say q = n + 0.5 for integer n, corresponds to the change in
system energy when the (n + 1)st atom has been detached from
the facet being disassembled, but is not yet incorporated into a
2D cluster of n + 1 atoms on the target facet. The strength of the
adsorption energy of this isolated mobile atom which is in
transit is taken to be 3f corresponding to adsorption on a {111}
facet, or at a corner site at the base of the NC. Second, for the

Fig. 4 Schematic of disassembly and reformation of outer layers of facets on: (a) perfect; and (b) imperfect TPs. Ncs = 50 for the cases shown.
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above mass transfer process, one considers the specific sce-
nario where atoms are removed from the disassembling outer
layer of one side facet in a way which minimizes the number of
broken bonds, and added to the growing 2D cluster forming the
new outer layer on another side facet in order to maximize the
number of bonds formed. Such a process will minimize dE(q)
for each q, and thereby generate the minimum energy path
(MEP) for facet disassembly and formation. Third, it should be
emphasized that dE(q) is associated with energetic changes at
T = 0 K rather than free energy changes, dF(q), for T 4 0. The
latter would also account for the influence of changes in
configurational entropy to more accurately capture the effective
barrier.

The effective barrier, Eeff = Eeff(N) for disassembling and
forming outer layers of facets, and thus for NC diffusion, will be
controlled by dEmax = dEmax(N) = maxqdE(q) for this MEP. If one
neglects entropic effects, one can then identify Eeff(N) = Ediff +
dEmax(N), where Ediff is an appropriate diffusion barrier for
mobile surface atoms. Adatom diffusion across the top {100}
facet should not contribute significantly to NC diffusion given
the high terrace diffusion barrier Ed(100) = 0.425 eV. Thus, we
choose a lower value of Ediff E 0.15 eV reflecting a combination
of transport across {111} facets and around the NC base with
possible ES effects. In summary, the effective barrier, Eeff(N), for
NC diffusion is actually controlled by the entire MEP for the
cooperative multi-step process of disassembly and formation of
outer layers on the faceted NC. This contrasts the barrier(s) in
the MF treatment which are associated with the ‘‘single-step’’
process of forming a mobile surface adatom on various facets
or at the NC base.

Detailed analysis of dE(q) vs. q and of dEmax(N) for N = Ncs + j
with j = 0–3

Next, we provide a detailed analysis of dE(q) versus q, extracting
the associated dEmax, and focusing on comparison of cases N =
Ncs (closed-shell sizes often with local minima in DN) and N =
Ncs + j for j = 1–3 (with higher DN). For specificity, in Fig. 5, we
show dE(q) versus q for N = Ncs + j with j = 0, 1, 3, where Ncs = 50.
This closed-shell NC size corresponds to a truncated pyramid
TP5�5,3.

For N = Ncs = 50, the outer layer of a complete side facet is
composed of qmax = 12 atoms, and consequently Fig. 5 shows
the MEP dE(q) for 0 r q r qmax = 12. This dE(q) initially
increases quickly (as mentioned above), and is symmetric about
q = qmax/2, and shows that dEmax(N = 50) = 6f. Details of NC
configurations versus the number q of atoms transferred are
shown in the ESI.†

For N = Ncs + j with j 4 0, a cluster of j atoms already exists
on one facet, which reduces the energy cost dE(q) relative to j = 0
for transferring atoms from another perfect facet to grow a 2D
cluster and complete a new layer on that target facet. Further-
more, to complete that layer, one now needs to transfer only
qmax � j atoms. These features are shown in Fig. 5 which also
presents dE(q) versus q for j = 1 (N = 51) where dEmax(N = 51) =
5f, and for j = 3 (N = 53) where dEmax(N = 53) = 4f. The case j = 2
(N = 52) is not shown to avoid overcrowding the plot, but in this

case one has that dEmax(N = 52) = 4f as for N = 53. As a final
remark for cases with j 4 0, a small cluster of j atoms is left
behind on the disassembled facet (see Fig. 4b). However, there
is a relatively low cost to transfer this cluster to another side
facet recovering a shifted version of the initial NC configu-
ration. This portion of the MEP is not shown in Fig. 5. Conse-
quently, this feature does not impact the effective barrier,
Eeff(N) = Ediff + dEmax(N), for NC diffusion.

To summarize the above analysis, a local maximum occurs
in dEmax for N = Ncs, with dEmax lower for N = Ncs + 1, and lowest
for N = Ncs + 2 or N = Ncs + 3. This corresponds to local minima
of DN at N = Ncs and local maxima at N = Ncs + 3 (with just
slightly lower values for N = Ncs + 2). While these trends are only
illustrated above for Ncs = 50, they actually apply for general Ncs.
This analysis effectively elucidates a NC structure – diffusivity
relationship. Perhaps not surprisingly, NCs with N = Ncs and
ground-state closed-shell TP structures have low diffusivity,
reflecting the higher energy cost to disassemble and reassem-
ble outer layers of side facets. Next, consider NCs where the
ground state structure includes a closed shell TP core, but also
additional atoms which form a 2D cluster on a side facet. Here,
the presence of the additional 2D cluster lowers the energy cost
of disassembling and reassembling outer layers of side facets,
and thus enhances diffusivity relative to the case with N = Ncs.

As an aside, we note that in general, NC structure-diffusivity
relationships can be subtle. Note from Fig. 3 that NCs for sizes
just below closed-shell sizes generally have DN comparable to
‘‘local minima’’ for N = Ncs (and actually sometimes even
slightly lower DN as is the case, e.g., for Ncs = 77). Below, we
show examples where for such sizes, dEmax has the same local
maximum value as for the closed-shell size, which does
straightforwardly explain the low value of DN. Another observa-
tion regarding subtle NC structure – diffusivity relationships is
that for single-atomic-layer 2D epitaxially-supported NCs,
closed-shell structures do not correspond to local minima in

Fig. 5 dE(q) versus q for N = 50, 51, 53 (i.e., for N = Ncs + j with j = 0, 1, and
3 with Ncs = 50 corresponding to TP5�5,3). dEmax = 6f, 5f, and 4f for N =
50, 51, and 53 (& 52), respectively.
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diffusivity.34,35 This feature reflects the stronger influence of
entropic over energetic factors in these 2D systems in determin-
ing DN versus N.

Note that the MEP for TP5�5,3 with Ncs = 50, and TP5�6,3 with
Ncs = 62, should be identical. For TP5�6,3, the outer layer on a
{111} side facet with base length 5 and height 3 (just as for
TP5�5,3) can disassemble, forming a new outer layer on an
adjacent {111} side facet with initial base length 6 which upon
completion of this process will have a base length 5. Repeating
this process for TP5�6,3 induces NC diffusion. Likewise, MEPs are
identical for TP6�6,3 with Ncs = 77, and TP6�7,3 with Ncs = 92, etc.

Trend in dEmax(N) for increasing N

Next, we show that apart from oscillations in DN and dEmax(N)
as N varies between consecutive closed-shell sizes, there is
an overall increase without bound in dEmax(N) as N increases
(in marked contrast to MF behavior). Specifically, we
focus on a special subset of ‘‘ideal’’ closed-shell sizes men-
tioned previously. These correspond to truncated pyramids,
TP(2k�1)�(2k�1),k, where the length of the edge of the top {100}
facet and the edge between adjacent {111} side facets are equal
(to k atoms). As a result, these structures best mimic the
continuum Winterbottom shape shown on Fig. 1 for f = 0.75.
Fig. 6 shows the behavior of the ‘‘upper envelope’’ of dE(q)
versus q for cases with k = 2, 3, 4, 5, 6, 7,. . . where N = 13, 50, 126,
255, 451, 728,. . . and the number of atoms in the outer layer of
a single {111} side facet of qmax = 5, 12, 22, 35, 51, 70,. . .,
respectively. The ‘‘upper envelope’’ just corresponds to values
of dE(q) for half-integer q associated with states where an atom
is in transition between the side facet being disassembled and
the target facet on which a new layer is being formed. These
dE(q) exceed those for adjacent integer values of q (cf. Fig. 5),
and thus suffice to determine dEmax. From Fig. 6, we find that
dEmax = 4f, 6f, 8f, 9f, 11f, and 13f, for k = 1–7, respectively.
These results reflect the feature that dEmax increases roughly
linearly with increasing NC height, k (or with NC width or edge
length) for ideal closed-shell TPs. Thus, MEP analysis predicts
that the effective barrier, Eeff(N) = Ediff + dEmax(N), increases
without bound for increasing NC size.

Comparison of beyond-MF MEP with KMC and refined-MF
predictions

To demonstrate that our MEP analysis effectively captures the
trend in accurate KMC values for Eeff(N) versus N (particularly
for N = Ncs + j with j = 0–3), both MEP and KMC results are
compared in Fig. 7 for N = 48–68. Values from the refined-MF
treatment are also shown. The MEP analysis reasonably cap-
tures the feature that Eeff is highest for N = Ncs, lower for N = Ncs

+ 1, but lowest for N = Ncs + 3 (and gives an equally low value for
N = Ncs + 2). In contrast the refined-MF treatment fails funda-
mentally as it predicts that Eeff for N = Ncs + 1 is lowest. More
generally, MEP results capture the overall oscillatory variation
of Eeff between closed-shell sizes N = Ncs. MEP results also
include the feature that dEmax, and thus Eeff, are equal for Ncs =
62 and Ncs � 1 = 61, compatible with very similar values of DN

for these sizes. However, KMC values are significantly lower

than those from MEP analysis for, say, N = Ncs + j with j = 2–4.
Recall that MEP values come from a T = 0 K analysis of
energetics rather than a free energy analysis for T 4 0, and it
has been noted that entropic effects can lower the effective
barrier for the somewhat similar process of reshaping faceted
metal NCs.33

Another limitation of the T = 0 K MEP analysis of Eeff is an
inability to distinguish between behavior for N = Ncs + 2 and N =
Ncs + 3. However, the MEP analysis presented above considered
only dEmax(N) = maxqdE(q). For a more complete analysis to at
least elucidate the feature that DN is higher for N = Ncs + 3 than
for N = Ncs + 2, one could perform a first-passage time analysis
based on the entire MEP profile, dE(q) versus q. See Fig. 8 for
examples of the MEP with N = 52 and N = 53 corresponding to

Fig. 6 dE(q) versus q for N = 13, 50,. . . indicated in the legend which
correspond to TP(2k�1)�(2k�1),k for k = 2, 3,. . .. dEmax = 4f, 6f,. . . for N = 13,
50, . . ., respectively.

Fig. 7 Eeff(N) for Ag NCs with N = 48–68 from beyond-MF MEP analysis,
KMC simulation, and refined MF analysis. KMC values are determined from
behavior of DN for 700 K r T r 900 K. Refined-MF predictions corre-
spond to transport on {111} side facets (a = 111).
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Ncs = 50. In the first-passage time analysis, the system starts in
state q = 0 at time t = 0. Let P(q, t) denote the probability for the
NC to be in state q with q transferred atoms at time t, so that
P(q, 0) = 1 for q = 0, and P(q, 0) = 0 for q 4 0. Then, one
considers the evolution in time of P(q, t) based upon the set of
master equations

d/dt P(q, t) = k+(q � 1
2)P(q � 1

2, t) + k�(q + 1
2)P(q + 1

2, t) � [k+(q) +
k�(q)]P(q, t). (15)

Here k�(q) denotes rates to make a transition from state q to
state q � 1

2, where these reflect energy barriers along the MEP
while satisfying detailed-balance. See the ESI.† In addition, if
the total number of atoms transferred is qmax, then q = qmax =
qmax(N) is assigned as an absorbing or trapping state (since
completing the outer layer of a facet produces a relatively stable
configuration) so that k�(qmax) = 0. As a result, P(qmax, t) will
increase monotonically from 0 to 1, and one can assign a
characteristic time t = t(N) to traverse the MEP and thus to
reassemble an outer layer of a side facet via, e.g., P(qmax, t) = 1

2.
Then, the behavior of the diffusion coefficient is readily deter-
mined as DN should be roughly inversely proportional to t(N).

The relative values of t(52) and t(53) are not self-evident just
from inspection of the different forms the MEPs in Fig. 8 for N =
52 and N = 53, which we emphasize have the same dEmax =
maxqdE(q) = 4f. However, numerical integration of the master
eqn (15) using MathematicaTM reveals that t(52)/t(53) exceeds
unity for all T corresponding to D53/D52 4 1 consistent with
KMC results. See the ESI.† This analysis is not quantitative
predicting D53/D52 E 1.8 at 700 K versus 1.1 from KMC simula-
tion. However, we note that our master equation treatment has
still not incorporated the influence of ‘‘excited state’’ config-
urations above the MEP and associated configurational entropy
which can significantly change predictions.33

Finally, recall that in Fig. 6, results were presented for dE(q)
versus q for a broad range of ‘‘ideal’’ closed-shell TP sizes, N,
showing that the MEP analysis predicts an increase in Eeff

roughly linearly with NC height (or width). It is not viable to

perform accurate KMC simulation analysis of DN for such a
broad the range of N. However, Fig. 9 compares KMC, MEP and
refined-MF predictions for Eeff for closed-shell TP sizes where
KMC results are available providing evidence that the MEP
analysis captures the key features of the variation of the
effective barrier, Eeff(N), with N. The increase in Eeff(N) with N
is evident from KMC analysis for smaller N similar to the MEP
predictions, and in contrast to the refined-MF predictions. The
feature that the variation of KMC values for Eeff(N) with N is
somewhat irregular for these closed-shell TP reflects the feature
that not all closed-shell TPs are equally stable (relative to other
similar sized NCs). For example, the ‘‘ideal’’ closed-shell TP
sizes N = 13, 50, 126,. . . (as analyzed in Fig. 6) which match the
continuum Winterbottom shape are particularly stable, and the
corresponding Eeff are relatively high compared to other non-
ideal TP with comparable sizes. Again, accurate KMC values for
Eeff tend to be somewhat below MEP predictions, presumably
due to the neglect of the effects of configurational entropy, the
contribution of which could increase for larger NC sizes.33

Conclusions

This study provided a critical assessment of mean-field (MF)
treatments and their refinements for the size-dependent diffu-
sivity, DN, for the case of {100} epitaxially supported 3D fcc
metal NCs of N atoms. Essentially exact behavior for DN versus
N for a realistic stochastic model for the above class of systems
is obtained from KMC simulation for strong adhesion to the
substrate where the large-size equilibrium Winterbottom shape
of the supported NC is a truncated pyramid. MF treatments
regard NC diffusion as being mediated by independent random
hopping of surface atoms. As our specific focus was on faceted
NCs, the traditional MF treatment was refined to account for
the feature that the density of mobile surface atoms (which is
primarily determined by their formation energy), as well as
their hop rates, differ on distinct facets and at the base of theFig. 8 Comparison of MEP dE(q) versus q for: (a) N = 52; and (b) N = 53.

Fig. 9 Comparison of Eeff for closed-shell Ag TP from KMC simulation,
beyond-MF MEP analysis, and refined-MF analysis for a ranges of sizes, N.
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NC. For our specific stochastic model, we performed an exact
calculation of the formation energy and associated adatom
density for a range of sizes N. This analysis accounted for the
atomistic details of NC structure and energetics, e.g., the
existence of particularly stable close-shell sizes, N = Ncs. This
refined MF treatment was able to capture the feature that DN

determined accurately from KMC simulation exhibited local
minima for N = Ncs, but substantially higher and similar values
for N = Ncs + 2 or N = Ncs + 3 (although the former are slightly
higher in the MF treatment versus the latter for KMC). However,
this refined-MF treatment did fail in that it predicted local
maxima in DN for N = Ncs + 1.

More significantly, our analysis also revealed more funda-
mental shortcomings of even refined MF-type treatments.
These shortcomings derive from the feature that diffusion of
faceted NCs is actually not mediated by independent random
hopping of surface atoms, as assumed in MF formulations.
Instead, NC diffusion is mediated by a cooperative multi-step
process involving disassembling outer layers of atoms on side
facets, transferring those atoms to another side facet on which
a new outer layer is formed. The effective barrier for this multi-
step nucleation type process is typically far higher than the
barrier associated with the MF formulation which just corre-
sponds to that for the single-atom hopping process of forming
a single mobile surface adatom. The actual effective barrier
increases strongly with NC size in marked contrast to the
effective barrier in MF type treatments which converges to a
finite value in the limit of large NC size. The feature that the
effective MF barrier is well below the actual barrier also
accounts for the feature that MF predictions for DN are well
above the actual values (a feature which is only partly amelio-
rated by including the effect of an additional Ehrlich-Schwoebel
barrier in the MF treatment).

Finally, we note that our beyond-MF picture for diffusion of
supported NCs should apply more generally for faceted NCs.
Diffusion of all such NCs requires disassembly of one of more
facets on one side of the NC and reassembly on another side. Of
course, the process and its analysis is significantly more compli-
cated for weak adhesion where the Winterbottom shape of the
supported NC has overhanging facets (see Fig. 1), and it is clear
that multiple facets must be disassembled and reassembled to
shift the NC across the substrate and recover its initial structure.
On a separate topic, we should note that for any faceted NC, one
anticipates that as temperature increases, MF-type behavior will
be recovered (implying a strong reduction in the oscillatory
variation of DN with N between consecutive close-shell sizes
observed for lower T).22 In this context, it should be noted that
the roughening transition for small faceted metal NCs generally
occurs well below the bulk roughening temperature promoting
the recover of MF-type behavior.
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