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Four levels of in-sensor computing in
bionic olfaction: from discrete components
to multi-modal integrations

Lin Liu,ab Yuchun Zhanga and Yong Yan *abc

Sensing and computing are two important ways in which humans attempt to perceive and understand

the analog world through digital devices. Analog-to-digital converters (ADCs) discretize analog signals

while the data bus transmits digital data between the components of a computer. With the increase in

sensor nodes and the application of deep neural networks, the energy and time consumption limit the

increment of data throughput. In-sensor computing is a computing paradigm that integrates sensing,

storage, and processing in one device without ADCs and data transfer. According to the integration

degree, herein, we summarize four levels of in-sensor computing in the field of artificial olfactory. In the

first level, we show that different functions are conducted by using discrete components. Next, the data

conversion and transfer are exempt within the in-memory computing architecture with necessary data

encoding. Subsequently, in-sensor computing is integrated into a single device. Finally, multi-modal in-

sensor computing is proposed to improve the quality and reliability of the classification results. At the

end of this minireview, we provide an outlook on the use of metal nanoparticle devices to achieve such

in-sensor computing for bionic olfaction.

1. Introduction

The data collected from the analog world can’t be directly
processed using the von Neumann architecture1 in which
analog-to-digital converters are usually required. This architec-
ture separates the processor and memory (cf. the well-known
memory wall) which is friendly to engineers, however, the time
consumption required for data access shouldn’t be ignored2

with the outbreak of data in the era of the Internet of
Things (IoT). In addition, the energy and area consumption
due to the presence of ADCs3 also limits the further develop-
ment of edge computing. To address these problems, in-
memory computing4–7 and in-sensor computing8,9 were
recently proposed. Given that the human brain10 is the very
paradigm that integrates sensing, storage, and calculating with
high efficiency and low power consumption, bio-inspired elec-
tronic devices are constructed to mimic the functions of
synapses and neurons.11 In the biological olfactory system,
odorant molecules are sensed by olfactory receptor cells.

Electric signals are generated by olfactory receptor cells and
transmitted through the glomeruli to the olfactory bulb, in
which signals are preprocessed and then transmitted to the
brain. Inspired by the biological olfactory system in which
sensing, storage, and processing are not separate, in-memory
computing and in-sensor computing are proposed in the olfac-
tory field. In-memory computing is a computing architecture
aiming to alleviate the data transfer between the memory and
processor.12 Usually, data representing synaptic weights are
stored in a memory array and computing is performed in the
same place, thereby greatly reducing the need for data trans-
mission. In-sensor computing is the further step of in-memory
computing.9 In this case, designers attempt to utilize the
analog response from sensors directly rather than driving
ADCs and DACs together to generate the voltages required by
in-memory computing. Despite the great progress in visual13–17

and tactile18–22 in-sensor computing, the development of
artificial olfactory is truly challenging mainly because of
the involvement of material exchanges and sometimes
chemical reactions. In this minireview, we focus on the differ-
ent levels of in-sensor computing in the artificial olfactory.
We discuss the requirements and difficulties in the
integration of sensing, storage, and computing and also sum-
marize the reported exploration of sensing mechanisms, pro-
cessing algorithms, and integration methods. Finally, we
propose a possible candidate—metal nanoparticles—for the
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future development of multi-modal in-sensor computing for
bionic olfaction.

2. Four levels of in-sensor computing

The integration degree is an important metric for in-sensor
computing. According to the integration degree, in-sensor
computing can be divided into four levels (Fig. 1). Originally,
sensing, storage, and computing are conducted by discrete
components, corresponding to the lowest integration which
can be designated as the first level of in-sensor computing.
Second, the most representative components in the traditional
edge computing system, ADCs, are discarded by directly using
analog signals to participate in subsequent calculations. In the
computing part, in-memory computing is conducted according
to Ohm’s law and Kirchhoff’s law in an analog form. In the
third level, sensing and computing are integrated into one
device. The device responds to environmental signals
while simultaneously carrying out computing. In the last level,
multiple types of external signals can be detected by the same
device, which can be called multi-modal in-sensor computing.
The integration of sensors in different fields can capture

information in different dimensions, which is helpful to con-
duct classification in an unknown environment.

2.1. The first level: discrete components

In traditional edge computing systems, there are two main
parts: data acquisition and data analysis. In the data acquisi-
tion part, sensors capture external analog signals and change
their electrical properties accordingly. Usually, the resistance of
gas sensors will change in different gas atmospheres. Some gas
sensors also generate different voltages according to the
concentration and types of the gas. These electrical properties
of gas sensors will be converted into voltages and measured by
ADCs under the control of microcontrollers (MCU). Although
ADCs play a vital role in bridging the analog and digital worlds,
several negative effects cannot be ignored with the increasing of
sensor nodes. Due to the fixed amount of time required for
ADCs to communicate with MCU according to the communica-
tion protocol, the latency of the system is inevitable. Usually,
high-speed ADC needs multi-stage pipeline architecture to
conduct analog-to-digital conversion which means the integra-
tion degree of ADCs needs to be a trade-off with converting
speed and power consumption. The involvement of the ADCs

Fig. 1 Four levels of in-sensor computing. Four levels are arranged from top to bottom according to their integration degree. Analog-to-digital
convertor (ADC), digital-to-analog converter (DAC), trans-impedance amplifier (TIA), and the number of modals are used as metrics to compare different
levels of in-sensor computing. In the first level, sensing, storage, and processing are carried out by discrete components. Sensory data are captured by
ADCs and digital data are stored in memory with inevitable time consumption due to communication protocol. In the second level, sensory signals are
encoded into spikes and utilized by in-memory computing directly without ADCs and data transfer. The method of encoding should be designed to
bridge sensor and sequential computing parts. In the third level, in-sensor computing is conducted in a single array. Integration degrees are improved
further. In the fourth level, multi-modal in-sensor computing. Different types of analog stimuli are perceived by single devices. With the cooperation of
data from several dimensions, classification accuracy and reliability can be improved.
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adds a non-negligible burden to edge computing systems.
Besides, the colorimetric sensor array is an important multi-
modal identification method for volatile organic compounds
(VOCs).23–30 With the colorimetric sensor array being exposed
to the VOCs, the difference in the color captured by the scanner
can be used for gas classification by machine learning.

In the data analysis part, calculations are carried out in
von Neumann architecture, and information is extracted
into types that humans can understand directly. In this part,
several statistical algorithms can be used. Principal component
analysis31–33 (PCA) is usually used to reduce the dimensionality
of the data from multiple sensors which is also helpful for data
visualization. The clustering algorithm is another commonly
used data analysis method, which can extract categorical infor-
mation from data in the form of unsupervised learning. Sup-
ported by multi-threaded computing devices such as graphics
processing units (GPU), deep learning is widely used in
complex data analysis scenarios. The powerful fitting ability
of neural networks also brings a huge amount of calculation. In
the state-of-the-art, hundreds of billions of synaptic weights
participate in the classification together, which is a computing-
intensive task. However, discrete memory and processors need
to transfer data frequently. In von Neumann’s architecture,
data from ADCs are first stored in memory, which are fetched
by processors when they need to be calculated. During the
whole calculation, the intermediate results are frequently
stored in and accessed from the memory because the basic
calculation unit is an adder. All the calculations should be
carried out obeying the communication protocol between pro-
cessors and muti-level cache. A feasible and widely used
optimization scheme is to utilize multi-thread processors,
which is also a trade-off between speed and power
consumption.34

An artificial neural network (ANN) is a powerful and data-
intensive method for classification. Liu et al.35 proposed a
tactile-olfactory bionic sensing array for object recognition
(Fig. 2a). The resistance of silicon-based gas sensors decreases
as the gas molecules are absorbed by the gas-sensitive materials
(Fig. 2c). When sensors are exposed to the gas environment, the
gas molecules will contact the surface of the sensitive semi-
conductor material and corresponding chemical reactions will
occur. The electron transfer relative to the chemical reaction
leads to resistance changes in the semiconductor material. The
degree of the resistance change will be dependent on the types
and concentrations of the tested gas. As different sensitive
materials have various responses to specific gas molecules
and the same sensor responds to multiple gases to different
degrees, six gas sensors are integrated onto one glove to
sample data during grasping. A multi-modal neural network
(Fig. 2d) is carefully designed for combining the information
from tactile and olfactory sensors to recognize different objects.
Multi-modal analog signals can complement each other
and improve recognition accuracy. The requirement that gas
sensors need to meet is high sensitivity and designability to
capture enough information from more dimensionality for
subsequent recognition.

Using deep learning to solve the classification problem in
the gas sensing field, sensory data should be converted into the
form36–39 required by the neural network appropriately. Jirayu-
pat et al. conducted individual authentication based on breath
odor sensing with a 16-channel chemiresistive sensor array for
the first time.34 Sixteen sensors with different sensing materials
are utilized together for capturing olfactory information. A fully
connected neural network with 16 input neurons is used to
implement the classification task, in which each input neuron
corresponds to an olfactory sensor in turn.

Shi et al.40 proposed a data mining method of an electronic
nose for identifying beer olfactory information (Fig. 2b). A PEN3
E-nose used in this article consists of 10 metal oxide sensors.
The redox reaction between sensors and gases will change the
conductivity of sensor-active materials (Fig. 2e). In the comput-
ing part, a hybrid model consisting of convolutional neural
networks (CNN) and support vector machine (SVM) is con-
structed (Fig. 2f). The CNN containing convolutional layers,
pooling layers, and fully connected layers is trained first. A total
of 900 points of data from ten sensors are organized as an input
feature map with a size of 30-by-30. The data containing timing
information are encoded into a format like pixels in pictures,
which is suitable for CNNs. The targets are 5 classes of gas with
one-hot encoding. After the CNN is trained, fully connected
layers are replaced by a trained SVM, which shows a higher
classification accuracy.

In the first level of in-sensor computing, more methods can
be tested for classification conveniently. Different data proces-
sing methods have their advantages and disadvantages. PCA is
a kind of data preprocessing method, which can be a metric for
measuring the difficulty of classification tasks. Usually, PCA is
used to reduce the dimensionality for visualization. If the
sample points are linearly separable in the reduced dimension,
the classification seems to be relatively simple. In this case,
clustering algorithms or artificial neural networks with fewer
layers can be enough to implement the classification tasks. If
the sample points are linearly divisible, the classification task is
complicated, indicating the necessity of deep neural networks
or other powerful algorithms. From the point of view of sensor
construction, ANN is mostly used in the field of in-sensor
computing at a higher level. The core computing tasks of
ANN are multiply accumulation, which is much easier to be
implemented on devices than other algorithms. The methods
for integrating sensor data into a format compatible with
neural networks or other in-memory computing algorithms
will be valuable for the next levels of in-sensor computing. In
addition, at this level, sensors, storage, and processors are
discrete. It is a proven solution in ‘‘relatively low speed’’ or
‘‘relatively small amount of data’’. A lot of demonstration is
reported at this level. More attention can be paid to the co-
design of sensors and data analysis methods, and it can be a
foundation at other in-sensor computing levels.

2.2. The second level: sensors and in-memory computing

Given that the data transfer in von Neumann architecture limits
the further development of edge computing, several attempts
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are conducted to alleviate its negative effects. One of these
attempts is reducing the distance between processors and
memory. However, the essential computing architecture is still
discrete, leading to limited improvements. What if data trans-
fer is eliminated? In-memory computing is the very computing
architecture in which memory and processing are carried out in
the same place. The computing process will be mainly con-
ducted in analog format. Take the neural network as an
example, multiply accumulation (MAC) is the basic and data-
intensive operator. The computing task consists of the multi-
plication between input data and synaptic weights and the

accumulation of previous multiplication. Basically, the synaptic
weights can be represented by the conductance of non-volatile
memory units while the input data can be represented by the
voltage amplitude. The memristor, as an example of non-
volatile units, can be arranged as a crossbar to conduct MAC
in parallel. In this case, the voltage representing input data in
MAC can be applied to the memristor crossbar array, and
multiplication is finished according to Ohm’s law. Since the
memristors in the crossbar are connected in parallel, the
accumulation is finished according to Kirchhoff’s law. Without
a complex communication protocol, computing tasks are

Fig. 2 Discrete sensor, memory, and processor system. (a) Silicon-based tactile sensors and olfactory sensors. Fourteen tactile sensors are placed on
each finger while six different gas sensors are placed on the palm. (b) The schematic of PEN3 E-nose. The gas in the chamber will be reacted with ten
different gas sensors while sensory data are sampled by a data acquisition system and processed by computer. (c) Sensory response of tactile and
olfactory sensors. Due to the piezoelectric effect, the voltage generated by tactile sensors increased with the increase of pressure. The resistance change
of gas sensors is sensitive to the concentration of the gas. (d) Structure of neural networks for recognition. The tactile and olfactory information is
processed and fused in carefully designed neural networks. (e) The transient response curve of ten sensors to the test gas. The sensory data are
represented as the resistance of gas sensors. (f) The structure of CNN used for beer classification. The temporal information is organized in a format like
pictures, which is compatible with CNNs for classification. Reproduced with permission. Copyright 2019, Elsevier.
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carried out by applying voltages and the results of MACs are
represented by the amplitude of the current. With the approach
above, in-memory computing alleviates data transfer while
ADCs are still indispensable.

In the second level of in-senor computing, the input data of
the first MAC can come from sensors directly without ADCs.
The input data of the neural network includes information
about the analog signals to be classified. Traditionally, the
information is converted by ADCs from analog type to digital
type. In the case of in-memory computing, the information
subsequently needs to be converted into voltage for memristor
arrays. What if ADCs are eliminated? The analog signals from
sensors can be converted into the appropriate format and
applied to memristor arrays directly. Some of the gas sensors
change their resistance corresponding to different gas.41 An
additional divider resistor can be used to convert information
from resistance to voltage. As for the gas sensors42–45 featuring
a gas-controlled drain current,46 the signals can be encoded
into spike form.

Some electrical characteristics of devices can be used for
bridging the sense and in-memory computing. Han et al.47

proposed an artificial olfactory neuron for an in-sensor elec-
tronic nose (Fig. 3a). A chemiresistive gas sensor made of
semiconductor metal oxide is used for capturing gas informa-
tion. The ambient oxygen will be ionosorbed on the surface of
the sensing material while free electrons will be extracted,
leading to an electron-depleted region generated on the sur-
face of the metal oxide. When the gas reacts with the sensing
material, the electron-depleted region will change, resulting in
a resistance change of the metal oxide. In this way, the
information is presented as the resistance change of the gas
sensor. In the computing part, the neuronal leaky integrate-
and-fire (LIF) function can be mimicked based on the 1T-
neuron by using the single transistor latch (STL) phenomenon
(Fig. 3b). A silicon-based MOSFET with a channel width of
200 nm and a gate length of 1900 nm is fabricated as a 1T-
neuron. When a gate voltage of 0 V was applied, the MOSFET
should have been turned off. When a voltage beyond the
threshold was applied to the drain electrode, which is called
the latch-up voltage, a large current will abruptly flow through
the device because of the STL phenomenon. To mimic the LIF
function, 1T-neuron is constructed with a MOSFET and a
capacitor connected in parallel (Fig. 3c). With the capacitor
being charged under a constant current source, the voltage
applied on the drain is close to the latch-up voltage. When the
STL occurs, the MOSFET turns on and the capacitor will be
discharged. With the capacitor being charged and discharged
periodically, the 1T-neuron converts the information from
current to voltage pulses (Fig. 3d). The frequency of the pulses
is dependent on the capacitance and the current source,
which is relative to the resistance of gas sensors connected
in series. The type and concentration of test gas are encoded
into the pulse frequency, which can be used for building a
spike neural network for classification. Some effects like the
latch-up can also be utilized to combine the sensors and in-
memory computing under design.

Reservoir computing is an attractive data processing method
related to temporal signals, which is consistent with the
characteristics of gas sensing. Wang et. al.48 proposed an
olfactory inference system (Fig. 3e). The data from sensor arrays
are processed in RC computing first and the extracted features
are classified by a 3-layer neural network (ANN). RC computing
is a power-efficient network, which is suitable for working with
temporal information. The sensory data comes from the data-
set ‘‘Twin gas sensor arrays Data Set’’, which includes the
resistance changes of gas sensors under different ambient
conditions. The responses of gas sensors are transformed into
spike trains compatible with reservoir computing (Fig. 3f). The
information about response speed is represented as the resis-
tance difference between two neighboring sample points and
the spike trains will be generated if the resistance difference is
beyond a threshold. The information about the static response
is represented as the frequency of another spike train generated
obeying the Poisson model. A volatile memristor (W/WO3/
PEDOT:PSS:/Pt) based reservoir is utilized to extract features
from spike trains while the conductance states of the memris-
tor are output features of the reservoir. A non-volatile memris-
tor (Pd/W/WO3/Pd) array is used for building the 3-layer ANN
classifier. Although the sensory data comes from the asynchro-
nously collected dataset, attention should be paid to the
method that converts the information to a compatible format
for computing. The number of devices required for RC comput-
ing is small, leading to a reduction in energy consumption
further. Based on the previous work, a bio-inspired neuro-
morphic sensory system is proposed.49 In the system, leaky
integrate-and-fire (LIF) neurons realized with volatile memris-
tive devices Pt/Ag/TaOx/Pt are the basic computing units. The
sensory neurons based on LIF neurons and a gas sensor array
convert the chemical information of gases into neural spikes.
Synaptic weights realized with non-volatile memristive devices
Pt/Ta/TaOx/Pt conduct MAC calculations in parallel. Relay
neurons based on LIF neurons classify the signals into classes
finally. The resistive sensory information can be encoded into
the frequency of voltage spikes by the LIF neurons, which is
based on the periodic discharge of the capacitor with the help
of a volatile memristor.

Spiking neural network (SNN) is an algorithm that utilizes
spike coding of information with the potential improvement of
energy efficiency. Kwon et al.50 proposed a fusion of SNN and
FET-type gas sensors (Fig. 3g). The sensitive material in the
FET-type sensors reacted with gas at an appropriate tempera-
ture, resulting in the drain current (ID) dependent on the type
and concentration of the gas (Fig. 3h). The amplitude of current
related to sensory information is encoded into the spike
frequency for SNN implemented with the integrate-and-fire
(IF) neuron (Fig. 3i). During the encoding process, the
membrane capacitor is charged and discharged periodically,
generating voltage spikes with frequency dependent on the
sensory current. Non-volatile synaptic arrays consisting of the
gated Schottky diode (GSD) are used for implementing the SNN,
in which the synaptic weights are trained in a fully connected
neural network first. Benefiting from the IF neuron, the sensor
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current can be converted into spike rates without using ADCs or
DACs. With the help of a non-volatile memory array, in-memory
computing is conducted without additional memory to store
many weights. The spike encoding of information in SNN also
leads to low power consumption processing.

Integration technology is also important for in-sensor com-
puting. Shulaker et al.51 reported a three-dimensional in-sensor
computing system for gas classification (Fig. 4a). In their
system, each sensor is fabricated vertically above a memory
cell, enabling each sensor to connect directly into its respective

Fig. 3 Sensors with in-memory computing. (a) The schematic of an artificial olfactory neuron. The model is composed of a semiconductor oxide gas
sensor and a MOSFET-based 1T-neuron. (b) The single transistor latch phenomenon of 1T-neuron. When the drain voltage reaches the latch-up voltage,
a large current was abruptly flown due to the single transistor latch. (c) A schematic of the current-to-spike converter circuit. The current was applied to
the drain electrode and voltage was output at the same drain electrode. The capacitor was expected to be charged and discharged periodically. (d) The
output voltage of the capacitor. The frequency of voltage spikes is dependent on the drain current, which is affected by sensors connected in series.
Reproduced with permission. Copyright 2022, Wiley. (e) The schematic of reservoir computing conducted by memristive devices. The input is the
voltages applied on the devices while the output is the conductance representing the status of nodes. (f) Voltage spike trains are converted from the
sensory information of response speed and response amplitude. Reproduced with permission. Copyright 2021, Wiley. (g) Gas measurement system. The
signals applied to H control the micro-heater. The occurrence of reaction can be controlled by the micro-heater. The sensing layer of the FET-type gas
sensor is n-type In2O3. The voltage applied on the gate and drain electrodes allows the measurement of the drain current representing the sensory data.
(h) The transient response of sensors as parameters of gas types and concentration. Since the NO2 gas is an oxidizing gas, electrons are taken from the
In2O3 films, resulting in the increase of majority carriers in the FET-type sensors and the increasing of drain current. (i) The schematic diagram of the SNN
and FET-type sensor array for the artificial olfactory system. The sensory data are encoded into spike trains by the encoder circuits. Reproduced with
permission. Copyright 2021, Elsevier.
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underlying memory cell with an inter-layer via (Fig. 4c). The gas
sensor consisting of CNT-FET will change its resistance to a
different gas (Fig. 4d). The test gas will affect the threshold
voltage of functionalized CNTFETs, making it a sensitive resis-
tive gas sensor. Another CNT-FET plays the role of a ‘‘divider
resistor’’ connected serially but unexposed to the test gas
(Fig. 4b). It converts resistance to the voltage which will be
applied to a non-volatile memristor. The conductance of the
memristor is dependent on the voltage and indicates the
information of the gas. In this way, the analog signals can be
written into memory in parallel without ADCs, realizing a
massive sensing-to-memory bandwidth. Because of the var-
iance of the memristor, the appearance of SET is relative to
the voltage applied statically. Thus, the distribution and loca-
tions of the memory cell that are set to a low resistance state
include information about the test gas. In the computing part, a
support vector machine (SVM) is used for gas classification
(Fig. 4e). Half adders composed of CNT-FET add the bit-wise
multiplication results of the feature vector and weight vector.

The feature vector is fetched from the memory array sequen-
tially while the weight vector is trained and stored off-chip.
Because of the serial data reading, the data transfer between
half adders and off-chip memory will limit the processing
speed. An additional memristor array used for in-memory
computing can be considered to accelerate the classification
process further owing to the elimination of serial data access.

In the second level of in-sensor computing, MACs in the
computing part are mainly conducted in analog format. Inter-
mediate results can be used to generate voltages representing
the input data of the next MACs without data transfer between
memory and processors. No matter how many times the input
data need to be inferred, synaptic weights stored in memristor
arrays will not be fetched or written, which is the time-
consuming part of von Neumann architecture. Besides, ADCs
are omitted. The problems with power consumption and speed
are optimized to some extent resulting from reducing the usage
of communication protocol. In the olfactory field, the develop-
ment of sensors is attractive. The gas sensors designed can be

Fig. 4 Three-dimensional integration of in-sensor computing. (a) Illustration of the nano system. The gas sensors are fabricated with carbon nanotube
field effect transistors. Resistive random-access memory is utilized to store sensory information. The remaining logic circuits conduct the classification of
gas. (b) Schematic of the array. Two CNTFETs are connected in series. Only one of them is exposed to gas while the other is covered by dielectrics. The
divided voltage is applied to RRAM and sensory data are written into the memory directly with a massive sensing-to-memory bandwidth. (c) The memory
part of the system. The RRAM and CNTFET are connected to form a 1T1R structure, with a low resistance state and high resistance state representing
logic ‘‘1’’ and logic ‘‘0’’. (d) The sensor part of the system. The drain current of CNTFET exposed to the gas contains information on gas types. The RRAM
can be set by a higher divided voltage with a higher probability. (e) The computation part of the system. A support vector machine is conducted by the
system. A pre-trained vector of weights and a sampled vector of features are multiplied and added by half-adders. Reproduced with permission.
Copyright 2017, Springer Nature.
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integrated with the computing part with some extra effort. To
bridge the sensors with an in-memory computing array, analog
signals should be carefully processed for compatibility.

2.3. The third level: in-sensor computing in a single device

In the previous level, analog signals are used to participate
in computing directly and synaptic weights are stored in the
same place without fetching and writing. However,
analog signals from sensors are usually too weak to be applied
to crossbar arrays directly. External operational amplifiers
introduce external power consumption which is inconsistent
with the goal of in-sensor computing. In the third level,
sense and in-memory computing are carried out in a single
device. To play the role of the sensor,52 the device should
respond to environmental signals. To conduct in-memory
computing, the format of responses should be able to partici-
pate in computing. These requirements are difficult to meet in
single device.

Only a few examples have demonstrated in-sensor comput-
ing in the olfactory field, which is related to some junior
processing tasks. Song et al.53 proposed a bionic memory
system with a gas-controlled memristive effect based on a
single organic field-effect transistor (OFET). The PCDTPT thin
film used in OFET serves as the sensing and storage layer to
generate the drain current (ID). The test gas (NO2) is physi-
sorbed on the PCDTPT film, leading to carriers generated to
increase ID. The sensing process is conducted at room tem-
perature, resulting in a slow increase of ID. With the test gas
being turned off, the ID decreased gradually for the same

reason. The response speed, which is the faster the better in
other gas sensors, was designed to be slow for the gas-
controlled memristive behavior. Paired-pulse facilitation can
be mimicked with gas pulses rather than voltage pulses. The
analog sources are sensed by the OFET gas sensor and the data
are stored in a format of ID with a volatile characteristic, which
is processed with the bio-inspired PPF in a single device.

In the third level of in-sensor computing, sensing, and
computing should be implemented in the same device. It is a
challenge for researchers to integrate both sensing and com-
puting into one device, especially in the olfactory field. The goal
of in-sensor computing is sensing and processing signals with-
out ADCs and data transfer. In the olfactory field, devices need
to exchange materials with gas which results in the extra
difficulty of integrating computing parts into sensors compared
with other applications. Therefore, there are only a few reports
that meet the requirement of the third level in-sensor comput-
ing. The difficulty comes from two aspects, which can be
termed functional limitation and geometry mismatch. For the
functional limitation, traditional in-memory computing
requires devices to perform MACs using their conductance
while a large proportion of gas sensors converting olfactory
signals to their resistance. The single device in the third level of
in-sensor computing should utilize more kinds of properties to
balance sensing and computing. For the geometry mismatch,
the requirements for the arrangement of devices are different
for the role of the sensing unit and computing unit. Addressing
the limitation mentioned above allows more sensors to imple-
ment high-level in-sensor computing.

Fig. 5 Multi-modal in-sensor computing with an MXene-ZnO memristor. (a) The resistive switching characteristics of MXene-ZnO memristor with
electrical stimulus. The inset shows the distribution of the statistic ON/OFF ratio. (b) Non-volatile photon-mediated resistive switching characteristics.
Under UV light, the high-resistance states are closed to the low-resistance states with increasing light intensity. With the appropriate light intensity, the
devices can be set without electrical stimulus. (c) Humidity-mediated resistive switching characteristics. The SET voltage and RESET voltage increase with
increasing humidity. (d) Schematic illustration of high-level in-sensor computing. The sensing memristor is used to mimic synapses to implement weight
updating. Reproduced with permission. Copyright 2021, Wiley.
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2.4. The fourth level: multi-modal in-sensor computing

The high-level algorithm commonly related to in-sensor com-
puting is an artificial neural network, which generates intelli-
gence from a huge amount of data. Except for the smartly
designed models and powerful computing devices, the high-
quality dataset involving sufficient information is also impor-
tant. To reach high recognition accuracy, several types of analog
sources can be processed together.54–56 Based on the in-sensor
computing architecture, more attention should be paid to
multi-modal in-sensor computing.

Several analog sources can be designed to affect the behavior
of devices in different dimensions. Wang et al.57 proposed an
MXene-ZnO memristor for multimodal in-sensor computing
(Fig. 5a). The crossbar array is a structured ITO/MXene-ZnO/Al
sensory memristor on the flexible PDMS substrate, in which
MXene-ZnO is the switching layer. Normally, non-volatile mem-
ristor features that the resistance states can be modulated by
electrical pulses, which is similar to the MXene-ZnO memristor
under dark conditions. The resistive switching comes from the
formation and abruption of oxygen vacancy conductive fila-
ments. Besides, MXene-ZnO memristors can be set by optical
pulses and reset by electrical pulses (Fig. 5b). Under ultraviolet
light, the photons with appropriate energy will be absorbed by

ZnO and the excitons will be generated which will be separated
at the interface of MXene-ZnO. The photo-electrons will be
trapped by MXene, forming an internal electrical field. In other
words, the photogate effect can also induce the formation of
oxygen vacancy conductive filaments, which is called photo-
mediated resistive switching. Except for optical responses, the
switching behavior also varies in different humidity (Fig. 5c).
The on/off ratio decreases with the increase of RH. Under the
ambient high RH, water vapor will absorb onto the MXene-ZnO
via the double hydrogen bond. During the formation of oxygen
vacancy conductive filaments, the growth will be restricted due
to the electrostatic attraction between proton and oxygen
vacancy. Therefore, the MXene-ZnO can respond to both optics
and humidity, making it possible to construct a multi-modal in-
sensor computing system. In the computing part, in-sensor
noise filtering is implemented (Fig. 5d). Raw data are converted
into light pulses used for setting the MXene-ZnO memristor
under different humidity conditions while the resistance states
represent the filtered output data used for subsequent classifi-
cation. The noise supression can reduce the training cycles with
the same target classification accuracy. The entire process is an
attempt for multi-modal in-sensor computing, and the device
can be designed to respond to several analog sources in

Fig. 6 Metal nanoparticle devices. (a) The performance characteristics of logic gates assembled from all-AuNP components (NP gas sensors and NP
humidity sensors). Inset: schematic diagram of logic gates. (b) Photograph of the OR gate comprising two types of sensors and two diodes. Scale bar,
1 cm. Inset: TEM of AuNPs film. (c) Scheme of the AuNPs artificial synapse in which a layer of functionalized AuNPs is sandwiched between an active Ag
bottom electrode and an inert Au top electrode, Ag//MUA-DT AuNPs//Au. The right part shows the zero bias transmission spectra of the molecular
bridges between two adjacent AuNPs with and without Ag+. (d) Current–voltage characteristics of the Ag//MUA-DT AuNPs//Au device. The conductance
of the AuNP artificial synapse can be modulated in analog format. Reproduced with permission. Copyright 2022, ACS.
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different manners, except for the resistance being changed
directly.

3. Outlook

In the different levels of data processing architecture, the
integration degree is increasing gradually which raises more
strict requirements on the basic devices and materials. In the
first level, discrete components can be designed separately. A
lot of choices of materials are available to build sensors,
memory, and processors. To alleviate von Neumann’s bottle-
neck, several in-sensor computing methods are proposed to
conduct sensing, storage, and processing without ADCs and
data transfer. Except for the energy saving due to the absence of
ADCs, additional attention should be paid to the bridging
methods in converting the information from sensors to the
format suitable for subsequent computing. With the further
increase of integration degree, in-sensor computing is designed
in a single device. The material needs to possess several
controllable characteristics to participate in sensing and com-
puting in a single device, which is more difficult in the olfactory
field due to the involvement of the gases.

To construct high level in-sensor computing, devices that
can play a role of not only sensors but also processors are
needed. In the past several years, we have been developing a
form of electronics that is based not on semiconductors but,
instead, on metal nanoparticles. Metal nanoparticles with
various choices of functional groups58–60 are capable of being
designed for complex application scenarios (Fig. 6). The AuNP-
based device shows promising sensing properties in many types
of analog stimulus, which are attractive for building multi-
modal in-sensor computing. AuNP devices61 functionalized
with various ligands have been utilized to implement cation
sensors, acid/base gas sensors, humidity sensors, and so on.
The electron tunneling probability and/or hopping rate in
AuNP devices are very sensitive to the small changes in inter-
particle distance and the dielectric environment between them.
It is reported that the sensitivity for the volatile organic
compounds is dependent on the relative alkyl chain length of
the mediating –(CH2)n– vs. the capping –(CH2)m– structures.
This suggests that AuNP devices are suitable for gas sensors
with high sensitivity. Except for sensors, AuNP devices can also
be used for processing circuits. Logic gates assembled from all-
AuNP components were demonstrated, showing great potential
to construct circuits with metal nanoparticles being the build-
ing blocks of both the information processing as well as
sensing units. The electric-field-injected metallic cations can
affect the electron tunneling/hopping energy barriers of AuNP
devices, which have been utilized to implement artificial
synapses with analog modulation of conductance.62 With the
structure of Ag//MUA-DT AuNPs//Au,63 the conductance of
AuNP devices can represent the synaptic weights and conduct
in-memory computing. With the capability of both sensing
and processing, metal nanoparticle devices are suitable for
building in-sensor computing in a single device. In addition,

the involvement of several sensory data can improve the
accuracy and reliability of classifications. Looking forward, we
believe the metal nanoparticle devices are one of the appro-
priate candidates for in-sensor computing in the olfactory field.
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