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flow over a horizontal flat plate
with various boundary slip conditions and suction
effects

K. Sudarmozhi,a D. Iranian,a M. Asif Memon, b P. D. Selvi,c M. Sabeel Khand

and Amsalu Fenta *e

This study examines the numerical representation of fluid flow on the Maxwell model in a double-diffusive

boundary layer over a horizontal plate. The investigation incorporates slip conditions, encompassing

momentum slip, thermal slip, and suction parameters. Moreover, the study includes the inspiration of

thermal radiation, heat generation, and mass transfer. The governing partial differential equations

(pertaining to momentum, continuity, energy transport, and mass transport) are transformed into

ordinary differential equations (ODEs) using appropriate similarity transformations. To solve these

equations in conjunction with suitable boundary conditions, the bvp4c inbuilt software is implemented.

This is achieved through the shooting approach employed in MATLAB. A comprehensive agreement

between the numerical technique and previously published findings demonstrates its efficacy. The

outcomes are presented through graphical representations and tables, showcasing various parameters

such as momentum slip, temperature slip, local Nusselt number, Sherwood number, and suction

parameter. The primary motivation of this research lies in investigating the behaviour of Maxwell fluid

flow in the absence of slip conditions. The study of Maxwell fluid flow over a flat plate with the

combined effects of suction, thermal slip, and momentum slip conditions has a wide range of practical

applications that span multiple industries, contributing to improved designs, efficiency, and

understanding of fluid behaviour in various systems. The main aim of this study is to present streamlined

results under varying conditions, explicitly investigating the influence of suction effects and slip

conditions on the flow.
1 Introduction

Due to the importance of heat transmission in the design and
operation of heating and cooling systems, thermal engineering
strongly depends on the study of heat transfer. In several
scientic domains, heat transfer and solute transport play an
important role, including nuclear reactors, plastic extrusion,
electronic appliance cooling, and polymer manufacturing. The
study of suction, thermal slip, and momentum slip in the
context of Maxwell uid ow over a horizontal plate is of great
importance for understanding the behaviour of complex
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viscoelastic uids in practical applications. These effects inu-
ence the stress distribution, temperature prole, and velocity
prole near the boundary, and their consideration is crucial for
optimizing various engineering processes involving Maxwell
uid. Researchers and engineers continue to explore these
effects to develop more accurate models and design guidelines
for applications involving these unique uids.

Following this, non-Newtonian uids nd applications in
areas such as decreasing friction, notably in contexts such as oil
pipelines. Devi et al.1 made several noteworthy discoveries in
transport theory. In a numerical study, Venkatadri et al.2 dis-
cussed the MHD radiative heat transfer investigation of Carreau
nanouid ow past a perpendicular plate. Madhavi et al.3

analyzed the entropy analysis of MHD convection ow from
a at cylinder with slip. Ramesh Reddy et al.4 studied the
entropy of mixed convection ows of tangent hyperbolic uid
across an isothermal wedge. Beg and Makinde5 researched the
Maxwell uid ow and mass transfer in a Darcian porous
channel. Numerous researchers have explored diverse cate-
gories of non-Newtonian uids and various geometries of
Maxwell uids. Ahmed6 described Maxwell uid on a stretching
sheet. The consequence of radiation over Maxwell uid on
© 2023 The Author(s). Published by the Royal Society of Chemistry
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a porous sheet was explored by Mukhopadhyay et al.7 Yu Bai
et al. provided reports on the Maxwell nanouid ow.8

Radiative uid ow is an essential part of the design of
propellers, rockets, satellites, artillery, ssionable power plants,
and other multifunctional reduction structures. Heat genera-
tion on a at plate is fundamental to various engineering
systems and processes. Its control and management are critical
for these systems' efficient and safe operation. Engineers and
researchers continually explore innovative methods to optimize
heat generation and its effects, leading to technological
advancements, energy efficiency, and industrial processes. The
outcome of thermal radiation on a porous surface heated by
convection was calculated by Hosseinzadeh et al.9 They
proposed that there is a one-to-one correspondence between the
temperature distribution and the prole of radiation. In the
occurrence of radiation, Rashid et al.10 described a Maxwell
uid spinning over a porous three-dimensional surface. Samuel
et al.11 considered energy transfer in Maxwellian radiation ow
across an exothermic surface and considered the possessions of
thermal conductivity & variable viscosity. Maxwell uid ow
with radiation across a surface of varying thickness was solved
numerically by Elbashbeshy et al.12 Non-Newtonian Maxwell
uid ow along a linear sheet was discussed by Khan et al.13

Hayat et al.14 calculated thermophoresis and heat radiation
effects using magneto-hydrodynamic Maxwell uid on a linear
sheet. Hayat et al.15 presented a non-Newtonian Maxwell uid
ow with thermal radiation's impact in a porous media-lled
environment. In ref. 16, Mahanthesh et al. investigated a new
3D ow of a nonlinear radiative transfer equation. Numerous
sectors of industry and technology can benet from the ndings
of numerical research, including momentum slipping condi-
tions and the thermal transfer mechanism. Reddy et al.17

examined the study of the magnetohydrodynamics (MHD)
boundary layer slip ow of a Maxwell nanouid across an
exponentially stretching surface with convective boundary
conditions. Ibrahim and Negera18 analyzed the MHD slip ow of
upper-convected Maxwell nanouid across a sheet with
a chemical reaction. Gowda et al.19 examined the slip ow of
Casson–Maxwell nanouid conned over stretchable disks.
Ghalib et al.20 examined the non-time-dependent MHD ow of
Maxwell uid with slip/non-slip uid ow and Newtonian
heating at the boundary. Shamshuddin et al.21 researched the
bioconvection nanouid ow. Dogonchi et al.22 analyzed the
thermal and entropy investigations on buoyancy-driven nano-
uid ow inside a porous enclosure with two square cylinders.
Shamshuddin et al.23 showed a numerical analysis focusing on
heat transfer and viscous ow within a dual-rotating extendable
disk system. Pattnaik et al.24 explored the inuence of varying
the shape of Fe3O4-nanoparticles on energy transfer
phenomena, incorporating thermal radiation in their study. In
the work of Pattnaik et al.,25 a numerical simulation was carried
out to observe the ow characteristics of conducting metal and
metallic oxide nanouids. Pattnaik et al.26 delved into
a comprehensive study involving mixed convective-radiative
dissipative magnetized micropolar nanouid ow on a stretch-
ing surface in permeable media, considering double stratica-
tion and chemical reaction impacts. Mohanty et al.27 employed
© 2023 The Author(s). Published by the Royal Society of Chemistry
numerical methods to analyze magnetohydrodynamic (MHD)
nanouid ow on a stretching surface, taking into account
radiation. Mishra et al.28 inspected the impact of radiation and
cross-diffusion inuence on micropolar nano-liquid ow over
a stretching sheet featuring a heat source. Damseh et al.29 dis-
cussed the effects of heat generation and rst-order chemical
reactions in micropolar uid ows on a uniformly stretched
porous surface. Krishna et al.30 delved into the effects of Joule,
Soret, and Hall impacts on MHD rotating mixed convective ow
past an innite perpendicular permeable plate. Chamkha and
Khaled31 examined solutions for hydromagnetic, energy and
mass transfer in the context of free convection from an inclined
plate, considering internal energy generation. Rama Sub-
baReddy Gorla and Ali Chamkha32 investigated the free
convective boundary layer ow on a non-isothermal perpen-
dicular plate embedded in a porous medium. Kumar et al.33

studied the inuence of an induced magnetic eld and radia-
tion on the magneto-convection ow of a dissipative uid.
Takhar et al.34 analysed MHD ow on a moving plate in
a rotating uid, considering the inuence of a magnetic eld.

1.1 Objective of this study

Examining the ow of Maxwell uid over a at plate, while
considering the combined inuence of thermal slip and
momentum slip conditions, along with the effect of suction,
constitutes a research endeavour situated within the domains
of uid dynamics and heat transfer. This study has implications
for industries such as polymer processing and materials
manufacturing. Including slip conditions (momentum and
thermal slip) reects real-world scenarios where uid-solid
interactions are not purely no-slip. Studying these slip condi-
tions is essential for applications such as microuidics, where
slip effects become signicant due to the small scale of the
system. The introduction of suction at the plate's surface is
oen used to control or manipulate the ow in various engi-
neering applications. Understanding the impact of these
boundary conditions on Maxwell uid ow can help design
systems with enhanced control over uid behaviour.

1.2 The novelty of this research

According to the literature, the thermal radiation and
momentum slip inuence of the boundary layer over a Maxwell
uid ow on a horizontal plate in terms of heat mass transfer
across a at plate has yet to be thoroughly investigated by any
other authors in the literature. All others in the literature
researched only Maxwell uid ow on a horizontal scale with
the combination of fewer parameters, and few more authors
have performed their work in different uids and geometries.
So, the critical goal of this study is to solve governing equations
involving radiation, heat generation, velocity slip conditions,
thermal slip conditions, and suction parameter. A system of
ODEs was solved in MATLAB-encoded bvp4c aer the similarity
transformation was carried out successfully for PDEs. Valida-
tion is achieved through comparison to a current study. The
results are given for streamlining the suction effect and slip
conditions for different values.
Nanoscale Adv., 2023, 5, 6102–6114 | 6103
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2 Mathematical modeling

This article developed the theory of Maxwell uid ow in
a horizontal plate's boundary layer at a steady state. The u* & v*
velocity mechanisms are measured along the x & y axes. Heat
generation, radiation, velocity slip, and suction effect are
measured. The elongation of the at plate occurs along the x-
axis. Temperature T and solute concentration C are held
constant at Tw and Cw along the y-axis of the horizontal plate
(i.e., y = 0). The ambient concentration is denoted as CN,
respectively, at y > 0. Using the Oberbeck–Boussinesq approxi-
mation, we examine the incompressible, laminar ow of the
Maxwell boundary layer across a at plate. qr is the radiative
heat ux calculated using qr=−(4s*/3k*)vT4/vy. Here, s*and k*
represent the Stephan–Boltzmann coefficient and the mean
absorption coefficient. Haughty that the temperature variances
in the ow are small enough, T4 can be represented as a linear
function of temperature. This is achieved by mounting T4 about
the ambient temperature TN and ignoring the higher-order
terms to arrive at T4 y 4TTN

3 − 3TN
4 at the solution.
2.1 Applications related to this problem

Studying Maxwell uid ow on a horizontal plate with the
combined effects of suction, radiation, thermal slip, and
velocity slip conditions has applications in several elds,
particularly in advanced engineering, materials processing, and
aerospace.

� In this scenario, studying Maxwell uid ow with the
combined impacts of suction, radiation, thermal slip, and
velocity slip conditions allows engineers and researchers to
optimize the extrusion process for improved lm quality,
reduced energy consumption, and increased production rates.

� Investigating the combined effect of thermal slip and
radiation to ensure that the polymer melt solidies at the
desired rate and temperature, preventing defects such as
wrinkles and bubbles in the lm.

� Understanding how momentum and thermal slip condi-
tions affect the velocity and temperature proles near the at
plate can help design optimal cooling and suction systems.

� Optimizing suction and radiation can lead to energy-
efficient processes, reducing costs and environmental impacts.

� A better understanding of the complex uid dynamics and
energy transfer in the extrusion process can improve lm
quality, reduce waste, and enhance product performance.
2.2 Equation of continuity in the dimensional form

The continuity equation is oen combined with other equa-
tions, such as the Navier–Stokes equations for uid motion, to
analyze and solve complex uid ow problems. It provides
valuable insights into the behavior of uids and is a funda-
mental tool in engineering and physics (from ref. 35 and 36).

vu*

vx
þ vv*

vy
¼ 0 (1)
6104 | Nanoscale Adv., 2023, 5, 6102–6114
2.3 Momentum conservation in the dimensional form

u*
vu*

vx
þ v*

vu*

vy
¼ l2

�
u*2

v2u*

vx2
þ v*2

v2u*

vy2
þ 2u*v*

v2u*

vxvy

�

þ y

�
v2u*

vy2

�
(2)

In a Maxwell uid ow, the behavior of the uid can be
described by a differential equation known as the Maxwell
model, which relates the shear stress (s) to the rate of change of
shear rate (du/dt) and the relaxation time (l2) of the uid.
2.4 Energy conservation in the dimensional form [using ref.
37–41]

u*
vT

vx
þ v*

vT

vy
¼ a

v2T

vy2
� 1

rCp

vqr

vy
þ n

Cp

�
vu*

vy

�2

þQ
0ðT � TNÞ

(3)

Heat generation on a at plate can profoundly affect the
performance and behavior of various systems. It is a critical
factor in applications across multiple industries, including
electronics cooling, aerospace and automotive engineering,
industrial processes, and energy generation.
2.5 Mass equation in dimensional form

u*
vC

vx
þ v*

vC

vy
¼ DB

v2C

vy2
(4)

Mass transfer over a horizontal plate is a fundamental chemical
engineering and uid dynamics phenomenon. It plays a crucial
role in various industrial processes and applications.
2.6 Boundary conditions of the at plate

Momentum slip occurs when there is a difference in the velocity
between the uid and the solid boundary. In Maxwell uid ow
over a horizontal plate, the momentum slip effect can modify
the velocity prole near the surface, leading to changes in the
boundary layer thickness and shear stress distribution. This has
signicant implications for drag reduction and control of uid
ow. Thermal slip refers to the difference in temperature at the
uid-solid interface, leading to heat transfer effects that affect
the boundary layer development [from ref. 42].

u* ¼ l1

�
vu*

vy

�
; v ¼ vw;T ¼ Tw þ b1

�
vT

vy

�
;C ¼ Cw at y ¼ 0

u* ¼ UN;T ¼ TN;C ¼ CN at y ¼ N

(5)

Here, the thermal slip length (b1) characterizes how the uid
temperature deviates from the temperature of the solid surface
as one moves away from the boundary. A more considerable
thermal slip length indicates a more signicant departure from
the solid surface temperature. In contrast, a smaller thermal
© 2023 The Author(s). Published by the Royal Society of Chemistry
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slip length implies that the uid temperature closely matches
the solid surface temperature. As with the velocity slip length,
the thermal slip length typically represents the distance over
which the temperature gradient in the uid inuences the heat
transfer behavior near the solid boundary. The suction of uid
at the boundary has a signicant inuence on the ow
dynamics. Suction denotes the removal of uid from the
boundary. In the context of Maxwell uids, the occurrence of
suction can alter the stress distribution near the at plate.

Let us introduce dimensionless quantities to convert PDEs
into ordinary differential equations (from ref. 43).

h ¼
�
UN

yx

�1
2

y;f ¼ C � CN

Cw � CN

;j ¼ ðyxUNÞ
1
2f ; q ¼ T � TN

Tw � TN

u* ¼ vj

vy
and v* ¼ �vj

vx

(6)

� fw ¼ � 2
UN

Re1=2; fw\0 represents injection (vw > 0) and fw >

0 represents suction (vw < 0).

� Sc ¼ n

D
represents the Schmith number.

� Rd ¼ 4s*TN
3

3kk*
represents radiation.

� Pr ¼ n

a
represents the Prandtl number.

� a ¼ k
ðrcpÞ represents thermal diffusivity.

� Q ¼ Q1

rcp
represents heat generation.

� M ¼ sB0
2

rUN
represents the magnetic eld.

� Ec ¼ UN
2

cpðTw � TNÞ represents the Eckart number.

� De ¼ lUN

x
represents the Deborah number.

� Velocity slip is a phenomenon that occurs when a uid
ows on a solid surface, such as a at plate, and the uid
velocity at the surface is different from the velocity of the solid
surface itself. This effect contrasts with the “no-slip” boundary
conditions, which assume that the uid velocity at the solid
surface is zero and the uid adheres to the surface. In the case
of a horizontal plate, if there is a velocity slip effect, the uid
particles near the solid surface do not adhere to the surface and
have a non-zero velocity component tangential to the surface.
This slip velocity is typically denoted as “l” and represents the
relative motion between the uid and the solid surface. Various
factors, including the nature of the surface, surface roughness,
and the presence of a thin layer of gas or other materials near
the surface can cause the slip velocity.

� Thermal slip, similar to velocity slip, is a phenomenon that
occurs when a uid ows on a solid surface, such as a at plate,
and the temperature of the uid at the surface differs from the
temperature of the solid surface itself. This effect is in contrast
to the “no-slip” thermal boundary conditions, which assume
that the uid temperature at the solid surface is equal to the
temperature of the surface. In the case of a at plate with
© 2023 The Author(s). Published by the Royal Society of Chemistry
a thermal slip effect, it means that the uid near the solid
surface does not instantly adjust to the temperature of the solid,
and there is a temperature difference between the uid and the
solid. This thermal slip is typically denoted as “b” and repre-
sents the difference in temperature between the uid and the
solid surface at the point of contact. The thermal slip effect can
be caused by various factors, including the solid surface's
thermal properties, a thin insulating layer, and the nature of the
uid-solid interaction.

PDEs oen involve numerous physical parameters, such as
viscosity, density, velocity, and length scales. Non-
depersonalization helps simplify these equations by express-
ing these parameters in terms of dimensionless numbers. This
decreases the number of parameters and makes the equations
more manageable. Using dimensionless quantities and simi-
larity variables, the PDEs turned into ODEs. ODEs are generally
easier to solve numerically than PDEs. Non-dimensional PDEs
can simplify the numerical solution process, reducing the
computational effort and resources required for simulations.
The use of non-dimensional quantities in converting PDEs to
ODEs is a valuable technique for simplifying complex problems,
making them more tractable, and providing valuable insights
into the behaviour of physical systems.
2.7 Momentum conservation in the dimensionless form

Maxwell uids nd applications in various elds, including
rheology, polymer science, and modeling certain types of
complex uids, such as certain suspensions and emulsions.
Understanding the behavior of Maxwell uids is essential for
designing and analyzing systems involving these materials.

f
0 00 � De

4

�
hf 02f 00 þ f 2f

0 0 0 þ ff
0
f 00
�
þ 1

2
ff 00 ¼ 0 (7)

2.8 Energy conservation in the dimensionless form

�
1þ 4

3
Rd

�
q00 þ PrEcf 002 þ Pr

2
f q

0 þ PrQq ¼ 0 (8)

2.9 Mass equation in dimensionless form

f00 þ 1

2
Sc
�
ff

0� ¼ 0 (9)

2.10 The appropriate equivalent dimensionless boundary
conditions are given here

f
0 ¼ lf 00; q ¼ 1þ bq

0
; f ¼ fw;f ¼ 1 at h ¼ 0

f
0 ¼ 1; q ¼ 0;f ¼ 0 at h ¼ N

(10)

The dimensionless suction parameter describes the uid's
mass ow rate at a solid surface. Slip conditions, on the other
hand, pertain to the behavior of uid near the solid–uid
interface, where the slip length characterizes the degree of
slippage. Both concepts are essential in various uid dynamics
and heat transfer applications.
Nanoscale Adv., 2023, 5, 6102–6114 | 6105

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3na00735a


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

3:
52

:0
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
The Nusselt and Sherwood numbers are crucial in analyzing
and designing systems involving heat transfer and mass trans-
fer, respectively. They provide insights into the efficiency of
these processes and are used to develop practical engineering
solutions in various industries, including aerospace, chemical
engineering, thermal management, and environmental
engineering.

By engaging the Fourier and Fick's laws, Cf, Nux & Shx

quantities are dened below.

Cf ¼ sw
rU2

; where sw ¼ m

�
vu

vy

�

Nux ¼ xqw

kðTw � TNÞ where heat flux qw ¼ �k
�
1þ 16s*TN

3

3k*k

�
vT

vy

Shx ¼ xjw

DðCw � CNÞ; mass flux jw ¼ �D vf

vy

(11)

3 Numerical method and its
validation

This section of the report presents the numerical solution
addressing the research problem. Due to the pronounced
nonlinearity inherent in the problem, our numerical approach
revolves around solving a set of interconnected ODEs that come
with intricate boundary conditions. Dealing with these highly
nonlinear boundary values represents a substantial analytical
challenge that should not be underestimated. To overcome this
hurdle and solve boundary value problems (BVPs) entailing
multiple boundary conditions for ordinary differential equations,
we employ BVP4C, a specialized solver meticulously designed for
this precise purpose. The choice between these methods depends
on the nature of the differential equation problem, whether it
involves boundary or initial value problems. BVP4C is a numerical
method used to solve boundary value problems associated with
ODEs. It is particularly useful when analytical solutions are not
readily available or when dealing with complex systems in science
and engineering. Researchers and engineers oen use soware
packages such as MATLAB to implement BVP4C and obtain
numerical solutions to their BVPs.

The substitutions are as follows:

f ¼ z1; f
0 ¼ z

0
1 ¼ z2; f

00 ¼ z
0
2 ¼ z3; f

0 00 ¼ z
0
3

q ¼ z4; q
0 ¼ z

0
4 ¼ z5; q

00 ¼ z
0
5 ¼ z5

f ¼ z6;f
0 ¼ z7:

z
0
3 ¼

�
�
0:5z1z3 � De

4
ðz1z2z3 þ hz2z2z3Þ

	
�
1� De

4
z1

�

z
0
5 ¼ �0:5Prz1z5 � PrEcz3z3 � PrQz4�

1þ 4

3
Rd

�

z
0
7 ¼ �½0:5Leðz1z7Þ�:
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3.1 Algorithm for the proposed method

Step 1: Dene the boundary value problem: dene the problem
by dening the differential equation(s), boundary conditions,
and additional parameters.

Step 2: Initialize guess for solution: start with an initial guess
for the solution to the boundary value problem.

Step 3: Numerical integration loop: this loop iteratively
renes the solution until it converges to the desired accuracy.

Step 4:
(a) Solve the ODE: use a numerical method such as bvp4c in

MATLAB to solve the ordinary differential equations associated
with the BVP.

(b) Check convergence: check whether the solution has
converged to the desired accuracy. If yes, exit the loop. If not,
proceed to the next step.

(c) If not converged, update guess: adjust the initial guess for
the solution based on the current solution and repeat the
integration loop.

Step 5: Output solution: once the solution has converged,
output the nal solution to the boundary value problem.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Validation of Cf for different values of K, M and fw

fw 0.0 0.2 0.5 0.7 0.5 0.5 0.5

M 1.5 1.5 1.5 1.5 1.0 1.2 1.5
K 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Existing work Hayat44 1.223676 1.412204 1.646600 1.765886 0.967329 1.278197 1.646600
Present 1.223675 1.141220 1.646599 1.765884 0.967328 1.278196 1.646599

Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

3:
52

:0
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3.2 Validation of the problem

Table 1 illustrates a remarkable resemblance between our
research ndings and those of Hayat et al.44 Aer conrming
our numerical method's validity, we will present the computa-
tional results for the Maxwell model applied to a at plate.

Table 1 represents the validation with existing work for the
computation method and we got very good matching values so
we have validated our code for this problem.
4 Results and discussion

This study examines the numerical representation of uid on
the Maxwell model in a double-diffusive boundary layer on
a horizontal plate. The investigation incorporates slip condi-
tions, encompassing momentum slip, thermal slip, and suction
parameters. Moreover, the study incorporates the effects of
radiation, heat generation, and mass transfer. By utilizing
appropriate similarity transformations, the governing PDEs
(pertaining to momentum, continuity, energy transport, and
mass transport) are transformed into ODEs. To solve this
system of equations in conjunction with suitable boundary
Table 2 Nusselt number values for various parameters with Pr = 6.8,
De = 0.1, and Sc = 2.0

fw Q Ec Rd b l Nux

1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.1 0.1 1 0.5 0 0.2339
1.0 0.1 0.1 1 0.5 0.3 0.2241
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.1 0.1 1 0.5 1 0.2066
1.0 0 0.1 1 0.5 0.5 0.2060
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.2 0.1 1 0.5 0.5 0.2223
1.0 0.3 0.1 1 0.5 0.5 0.2268
1.0 0.1 0.1 0 0.5 0.5 0.0628
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.1 0.1 2 0.5 0.5 0.3701
1.0 0.1 0.1 3 0.5 0.5 0.5344
1.0 0.1 0.1 1 0.3 0.5 0.2395
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.1 0.1 1 0.9 0.5 0.1599
1.0 0.1 0.1 1 1.2 0.5 0.1346
0 0.1 0.1 1 0.5 0.5 0.2445
0.5 0.1 0.1 1 0.5 0.5 0.1321
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.5 0.1 0.1 1 0.5 0.5 0.1818
1.0 0.1 0 1 0.5 0.5 0.2056
1.0 0.1 0.1 1 0.5 0.5 0.2117
1.0 0.1 0.2 1 0.5 0.5 0.2178
1.0 0.1 0.3 1 0.5 0.5 0.2239

© 2023 The Author(s). Published by the Royal Society of Chemistry
conditions, we used built-in “bvp4c” soware in MATLAB. A
comprehensive agreement between the numerical technique
and previously published ndings demonstrates its efficacy.
The outcomes are presented through graphical representations
and tables, showcasing parameters such as momentum slip,
temperature slip, local Nusselt number, Sherwood number, and
suction parameter. Maxwell uid ow across a horizontal plate
is a popular topic of computational research in the scientic
literature. Here, we have discussed the theoretical aspects of
this issue, including thermal slip, momentum slip, suction,
thermal radiation, Eckart number (Ec), and heat generation.
Unless otherwise stated, this study's default/unchanged
parameters are Pr = 6.8, Ec = 0.1, De = 0.1, Rd = 1, Q = 0.1,
l = 0.5, fw = 1.0, b = 0.5, and Sc = 2.0.

Tables 2 and 3 show the computational results of the
temperature gradient, Sherwood number and Nusselt number
for various physical variables. Table 2 reveals that Nux is boos-
ted with Rd,Q, and Ec while it is reduced when the values of l, b,
and fw increase. The Nusselt number Nux is a dimensionless
number that plays a crucial role in at plate boundary value
problems, particularly in the context of forced convection heat
transfer. The Nusselt number quanties the convective heat
transfer rate from a horizontal plate to a moving uid. It is used
to characterize heat transfer efficiency and is oen employed in
the analysis and design of heat exchangers, cooling systems,
and various other engineering applications.

Shx is shown in Table 3 for multiple values. A gradual
increment is observed with different values of l, fw and Sc. The
Sherwood number is dimensionless and provides information
about the mass transfer behavior near the at plate's surface. It
depends on factors such as the ow velocity, uid properties,
Table 3 Sherwood number values for various parameters

l fw Sc Shx

0.5 1.0 2 1.3205
0 1.0 2 1.2223
0.3 1.0 2 1.2890
0.5 1.0 2 1.3205
1 1.0 2 1.3731
0.5 0 2 0.4944
0.5 0.5 2 0.8875
0.5 1.0 2 1.3205
0.5 1.5 2 1.7759
0.5 1.0 2 1.3205
0.5 1.0 3 1.8305
0.5 1.0 5 2.8337
0.5 1.0 9 4.8273
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and the concentration difference between the uid and the
plate surface.

Engineers and scientists use correlations or experimental
data to determine the local mass transfer coefficient and
calculate the Sherwood number for specic ow conditions.
The Sherwood number is critical for predicting the mass
transfer rate and concentration distribution in forced convec-
tion mass transfer situations involving at plates. It is appli-
cable in various elds, including chemical engineering,
environmental engineering, and food processing, where mass
transfer processes play a vital role.
Fig. 3 Streamlines for the case l = 0, with fw = 1.0, Ec = 0.1, De = 0.1,
Q = 0.1, Pr = 6.8, Rd = 1, b = 0.5, and Sc = 2.0.
4.1 Fluid ow eld in the absence of slip conditions

Fig. 1–9 display the temperature prole, concentration prole
and stream line results for various values of b, l, fw, and Sc.
Fig. 1 illustrates the streamline under conditions without
suction parameters, while Fig. 2 showcases the same streamline
Fig. 1 Streamlines for the case fw= 0, with Pr= 6.8, Ec= 0.1, De= 0.1,
Rd = 1, Q = 0.1, l = 0.5, b = 0.5, and Sc = 2.0.

Fig. 2 Streamlines for the case fw = 1.0, with Pr = 6.8, Ec = 0.1, De =

0.1, Rd = 1, l = 0.5, Q = 0.1, b = 0.5, and Sc = 2.0.

6108 | Nanoscale Adv., 2023, 5, 6102–6114
with the inclusion of suction. Lastly, Fig. 3 provides insight into
the uid ow behavior in the absence of momentum slip. In
uid ow, the no-slip boundary condition is a fundamental
concept that describes the behavior of uid molecules at a solid
boundary or surface. When suction is equal to zero on a at
plate (meaning that there is no mass being extracted from the
uid at the plate's surface), the streamlines of the ow play
a signicant role in describing the behavior of the uid. With
suction equal to zero, there is no net mass transfer between the
uid and the at plate's surface. This implies that the uid
remains in contact with the plate, and there is no removal or
injection of uid material at the boundary. The absence of
suction means that the uid will closely adhere to the plate's
surface according to the no-slip boundary conditions. These
conditions dictate zero uid velocity at the plate's surface. As
a result, the uid follows the contours of the at plate, and
streamlines are shaped accordingly. A boundary layer forms
near the plate when a uid ows on a solid surface with no-slip
conditions. This boundary layer is a region where the velocity of
the uid changes signicantly from zero at the plate's surface to
the free-stream velocity away from the plate. The streamlines
within this boundary layer depict the gradual increase in
velocity from zero at the wall to the free-stream velocity. As one
moves away from the at plate (vertically upward, for example),
the streamlines start to resemble those of the free-stream ow.
The streamlines farther away from the plate will have a nearly
constant velocity, and the presence of the boundary layer will
lessen their inuence.
4.2 Temperature prole

� Observing the behavior of temperature proles, it becomes
evident that as the thermal slip conditions increase incremen-
tally, there is a noticeable reduction in temperature. Thermal
slip, in this context, means the heat exchange between the uid
and the thermal ow at the wall boundary, resulting in heat
loss. Fig. 4 elucidates the impact of increasing thermal slip
parameters on thermal distribution. It is apparent that thermal
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Temperature outline for growth of b for Ec= 0.1, De= 0.1, Pr=
6.8, Rd = 1, Q = 0.1, l = 0.5, fw = 1.0, and Sc = 2.0.

Fig. 5 Temperature outline for growth of fw for Pr = 6.8, Ec = 0.1, De
= 0.1, Q = 0.1, l = 0.5, Rd = 1, b = 0.5, and Sc = 2.0.

Fig. 6 Concentration outline for growth of l for Pr = 6.8, Ec = 0.1, De
= 0.1, Q = 0.1, f = 1.0, Rd = 1, b = 0.5, and Sc = 2.0.

Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

3:
52

:0
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
diffusion diminishes as the thermal slip conditions grow. This
phenomenon occurs due to the amplication of the thermal
gradient. Thermal slip conditions pertain to how temperature
behaves at the uid and solid interface. In the absence of
thermal slip (commonly referred to as no-slip conditions), the
temperature at the solid surface is typically assumed to be equal
to the solid surface temperature. However, when thermal slip is
present, the uid's temperature at the solid boundary may differ
from the solid surface temperature. Positive thermal slip allows
for the adjustment of energy transfer between the solid and the
uid, either enhancing or diminishing it, depending on the
temperature gradient. Analogous to the velocity boundary layer
in uid ow, a temperature boundary layer forms near the solid
surface. Within this layer, the uid's temperature undergoes
a rapid transition from the wall temperature (usually constant)
to the bulk temperature of the uid. The thickness of this
thermal boundary layer hinges on the thermal properties of the
uid and the intensity of the slip conditions. As thermal slip
conditions intensify, the slip velocity of uid particles at the
solid–uid interface increases. This slip velocity characterizes
the relative motion between the uid and the solid surface,
which can signicantly inuence heat transfer by altering
energy transport from the solid surface into the uid.
Increasing slip velocity can lead to a reduction in thermal
conduction at the solid–uid interface.

� In the conventional no-slip scenario, uid particles near
the wall have zero velocity, and heat transfer primarily occurs
through conduction. Nevertheless, thermal slip introduces
relative motion, which can impede this conduction. Conversely,
the slip conditions can enhance convective heat transfer within
the thermal boundary layer. The relative motion between the
uid and the solid surface promotes increased heat transport
through convection. As the slip conditions strengthen, this
convective heat transfer may surpass thermal conduction.
Consequently, these mechanisms contribute to deviations in
the temperature outline within the thermal boundary layer
compared to the expected prole under no-slip conditions. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
precise temperature distribution relies on the specic slip
conditions, uid properties, and ow parameters at play.

� The suction parameter (by considering fw = 0, 0.5, 1.0, 1.5)
inuence on the temperature outline is presented in Fig. 5; fw
leads to a fall-off in the temperature outline. Suction can also
induce mixing of uids at different temperatures, which can
lead to complex temperature proles and gradients near the
boundary. The temperature prole on a horizontal plate is
closely related to the thickness of the thermal boundary layer.
The thermal boundary layer is the region of the uid where the
temperature changes signicantly as it adjusts from the wall
temperature (usually a constant) to the bulk temperature of the
uid. The thinner velocity boundary layer with suction also
implies a thinner thermal boundary layer. Suction reduces the
thickness of the thermal boundary layer, which means less uid
is available to conduct heat from the solid surface. This can
result in a decrease in thermal conduction through the uid
near the plate. Despite the reduced thermal conduction, suction
w
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can enhance convective heat transfer. The thinner boundary
layer and higher uid velocity can lead to more efficient
convective heat transport. This effect can dominate over the
reduction in thermal conduction, mainly when the suction is
strong. The combined effect of reduced thermal conduction and
enhanced convective energy transfer leads to changes in the
overall temperature gradient near the at plate.

� In many cases, the temperature gradient becomes steeper
with suction because heat is transported away from the surface
more efficiently due to enhanced convection. Depending on the
specic suction conditions, suction can also lead to a more
uniform temperature prole across the at plate. This is
because it reduces the temperature difference between the
surface and the bulk uid, making the temperature more
consistent along the plate's length.
Fig. 7 Concentration outline for growth of Sc for Ec = 0.1, De = 0.1,
Rd = 1, Q = 0.1, Pr = 6.8, l = 0.5, fw = 1.0, and b = 0.5.
4.3 Concentration prole

� Fig. 6 presents the behaviour of the concentration eld by
considering l while the other parameter values remain xed.
The enhancing tendency of l leads to a decrease in the
concentration outline. Velocity slip conditions can lead to
enhanced mass transfer near the solid surface. The relative
motion between the uid and the surface can create a stirring or
mixing effect as the uid ows over the plate. This increased
mixing can enhance the transport of the solute to and from the
surface. Similar to the velocity boundary layer in uid ow,
a concentration boundary layer is near the solid surface. This
layer represents the region in which the concentration of the
solute changes rapidly from the surface value to the bulk value
of the uid. With velocity slip conditions, the boundary layer
thickness can be affected. The thinner the boundary layer, the
more rapid the changes in concentration. In addition to the
enhanced mixing, the relative motion between the uid and the
surface can increase the effective diffusion of the solute in the
boundary layer. This is because the solute molecules experience
more frequent collisions and interactions with the uid due to
the slip conditions, which can promote mass transport. The
balance between convection and diffusion becomes more
pronounced with slip conditions. Convection refers to the
transport of solute by the bulk uid ow, while diffusion is the
process by which solute molecules move randomly due to their
thermal motion. The presence of slip can alter this balance,
potentially favoring convection over diffusion.

� Fig. 7 represents the concentration prole under the
inuence of Sc. It is spotted that the concentration outline is
reducing to increase the value of Sc. When the Shmith number
is greater than 1, it means that thermal conduction (heat
transfer) is more efficient than molecular diffusion (mass
transfer). In this scenario, heat is transported more rapidly than
mass, leading to a situation where the temperature eld
changes more rapidly than the concentration eld. With Sc > 1,
the concentration prole tends to be more diffuse compared to
the temperature prole. This means that the concentration of
a solute or component in the uid diffuses more slowly than the
temperature changes. As a result, one may observe a broader
and more gradual transition in concentration.
6110 | Nanoscale Adv., 2023, 5, 6102–6114
� The suction parameter (by considering fw = 0, 0.5, 1.0, 1.5)
inuence on the concentration eld is presented in Fig. 8. fw
leads to an increase in the concentration eld and fall-off in the
solute eld. Suction refers to removing uid at the solid
boundary, and it can have several effects on the concentration
distribution, such as enhanced mass removal: as the suction
effect increases, more uid or solute is removed from the
vicinity of the solid boundary. This means that the concentra-
tion of the solute near the boundary reduces more rapidly. The
enhanced mass removal leads to a steeper concentration
gradient near the solid surface. Thinner boundary layer: the
suction effect can thin the boundary layer, which is the region
near the solid boundary where concentration gradients are
signicant. As more uid is removed, the boundary layer
becomes thinner, and the concentration within this region
decreases more rapidly. Increased mass transport: with
increasing suction, mass transport (i.e., the transfer of the
solute) from the bulk uid to the boundary occurs at a higher
rate. This results in more efficient solute removal from the solid
surface's vicinity. Reduced concentration levels and higher
suction levels can lead to reduced maximum concentration
levels near the boundary. This is because the suction effect
continuously removes solute from the uid adjacent to the solid
surface, preventing the accumulation of high concentrations.
Concentration boundary conditions: depending on the specic
problem and boundary conditions, the increased suction effect
may alter the concentration boundary conditions at the solid
surface. For example, in cases where the boundary conditions
are specied as a constant concentration or as a function of
time, the suction effect can inuence the rate at which these
conditions are approached.
4.4 Sherwood number prole

Fig. 9 and 10 depict the Sherwood number proles as the
suction effect, thermal slip conditions, and Schmidt number
are varied. The underlying physical mechanism driving these
variations involves mass transfer, uid dynamics, and heat
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Concentration outline for growth of fw for Pr= 6.8, Ec= 0.1, De
= 0.1, Q = 0.1, l = 0.5, b = 0.5, Rd = 1, and Sc = 2.0.
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transfer within a uid-solid boundary layer. The suction
parameter characterizes the strength of suction applied at the
interface between the solid and the uid. Suction, when
applied, draws the uid closer to the solid surface, consequently
modifying the velocity outline near the boundary. Suction
diminishes the uid velocity near the solid surface, which, in
turn, impacts the rates of mass and energy transfer. As the
suction parameter increases, the near-surface velocity decreases
even further. Suction boosts mass transfer by intensifying the
concentration gradient near the solid surface.

Consequently, this elevation in the concentration gradient
results in a higher Sherwood number, indicating more efficient
mass transfer. Suction also exerts an inuence on heat transfer.
The modied velocity prole and concentration gradient
inuence the thermal boundary layer, leading to alterations in
the temperature distribution near the solid surface. This, in
turn, affects the Sherwood number via the Schmidt number
Fig. 9 Sherwood number profile for the swelling value of the suction
effect against Sc.

© 2023 The Author(s). Published by the Royal Society of Chemistry
(Sc). Thermal slip conditions arise when a temperature differ-
ence exists between the uid and the solid surface at the
boundary. Thermal slip can modify the temperature gradient in
the vicinity of the solid surface. As the thermal slip parameter
increases, the temperature difference between the uid and the
solid surface becomes more pronounced. The Schmidt number
(Sc) establishes a relationship between momentum diffusivity
(kinematic viscosity) and mass diffusivity (the diffusivity of the
solute in the uid), playing a pivotal role in mass transfer.
Temperature changes, induced by thermal slip, can have
implications for Sc. The interplay between heat and mass
transfer is regulated by Sc. Variations in Sc, driven by thermal
slip, inuence the concentration prole and, consequently, the
Sherwood number. Sc is a dimensionless parameter that char-
acterizes the relative signicance of momentum transfer
(viscous effects) and mass transfer (diffusion effects) within
a uid. Higher Sc values imply slower mass transfer compared
to momentum transfer, and they typically lead to reduced
Sherwood numbers since they indicate less effective mass
transfer.

4.5 Strengths of this study

Incorporating Maxwell uids into the study allows for more
realistic modeling of complex uids that exhibit both viscous
and elastic behavior. These uids are encountered in various
practical applications, including polymer processing, biological
ows, and certain types of lubricants. This research can provide
valuable insights into the interplay between viscoelasticity
(represented by the Maxwell uid model) and slip effects on the
uid ow and heat transfer characteristics. Understanding how
these factors interact can lead to improved designs and control
strategies in applications involving such uids. The study of
Maxwell uid ow with slip conditions and suction is inherently
interdisciplinary, applying principles from uid mechanics,
rheology, heat transfer, and materials science. It can bridge
gaps between these elds and promote collaboration. This
research has applications in microuidics and nanouidics,
Fig. 10 Sherwood number profile for the cumulative value of the
suction effect against the thermal slip effect.

Nanoscale Adv., 2023, 5, 6102–6114 | 6111

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3na00735a


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

3:
52

:0
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
where slip conditions become more prominent due to the small
length scales involved. Understanding the behavior of complex
uids in these contexts is crucial for the design of microuidic
devices. Combining Maxwell uids with slip and suction
conditions can lead to the discovery of novel phenomena or
unexpected behavior in uid dynamics and heat transfer, which
may have practical implications or stimulate further research.
4.6 Limitations of the current study

The combined study of Maxwell uid ow with velocity slip,
thermal slip, and suction effects is theoretically and computa-
tionally complex. The mathematical equations governing such
systems can be challenging to solve analytically, and numerical
simulations may require signicant computational resources.
Analytical solutions for such complex systemsmay oen need to
be more readily available, and researchers may rely heavily on
numerical methods. This can make obtaining closed-form
expressions for key ow and energy transfer parameters diffi-
cult. The behavior of Maxwell uids and the effects of slip and
suction can be highly sensitive to parameters such as relaxation
time, slip lengths, and suction rate. Determining the most
inuential parameters and their values can be non-trivial.
Conducting experiments to validate theoretical and numerical
ndings in such complex systems can be challenging and
expensive, especially at the microscale or nanoscale. Results
obtained for specic combinations of parameters and boundary
conditions may not generalize easily to other systems, making it
necessary to carefully dene relevant parameter regimes.
5 Conclusions

This study examines the numerical representation of uid ow
following the Maxwell model in a double-diffusive boundary
layer on a horizontal plate. The investigation incorporates slip
conditions, encompassing momentum slip, thermal slip, and
suction parameters. Moreover, the study incorporates the
effects of radiation, energy generation, and mass transfer. The
governing PDEs (pertaining to momentum, continuity, energy
transport, and mass transport) are transformed into ODEs by
utilising appropriate similarity transformations. To solve this
system of equations in conjunction with suitable boundary
conditions, we employ the built-in “bvp4c” soware in MAT-
LAB. A comprehensive agreement between the numerical tech-
nique and previously published ndings demonstrates its
efficacy. The outcomes are presented through graphical repre-
sentations and tables, showcasing various parameters such as
momentum slip, temperature slip, local Nusselt number,
Sherwood number, and suction parameter. This investigation
allows us to draw the following conclusions:

� A streamline prole is provided for three different
scenarios: one with a no-slip effect, another with a slip effect,
and the third depicting a zero-velocity prole.

� The temperature prole diminishes as the thermal slip and
suction effects increase.

� The concentration prole decreases as the velocity slip,
Schmidt number, and suction effect increase.
6112 | Nanoscale Adv., 2023, 5, 6102–6114
� The Sherwood number prole increases with growing
values of the suction effect in contrast to the Schmidt number
and thermal slip conditions.

Nomenclature
Cf
© 2023 The A
Skin friction coefficient

Rd
 Radiation parameter

s*
 Stefan–Boltzmann constant

C
 Concentration of the uid

vw
 Dimensional suction effect

u* and v*
 Velocity of the uid

Cp
 Specic heat

De
 Deborah number

k
 Thermal conductivity

f
 Dimensionless stream function

q
 Non-dimensional temperature

s
 Fluid's electrical conductivity

fw
 Dimensionless suction parameter

(rcp)
 Heat capacity

Ec
 Eckart number

m
 Dynamic viscosity

h
 Similarity variable

r
 The uid density

Nux
 Nusselt number

Q1
 Heat generation

x
 Streamwise coordinate

qr
 Radiative heat ux

Pr
 Prandtl number

CN
 Concentration on the free stream

b1
 Dimensional thermal slip condition

T
 Temperature of the uid

l1
 Dimensional velocity slip condition

n
 Kinematic viscosity

TN
 Free stream temperature

f
 Dimensionless concentration

Tw
 Temperature on the plate

DB
 Mass diffusion

y
 Coordinate normal to the plate

l2
 Relaxation time

Cw
 Concentration on the plate

UN
 Free stream velocity

Sc
 Schmith number

l
 Dimensionless velocity slip condition

b
 Dimensionless temperature slip condition

fw
 Dimensionless suction effect

Shx
 Sherwood number

Re
 Reynold number
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