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Small-diameter vascular grafts (SDVGs) cannot meet current clinical demands owing to their suboptimal
long-term patency rate. Various materials have been employed to address this issue, including
nanomaterials (NMs), which have demonstrated exceptional capabilities and promising application

f\iz:gfe% %?;hi\fgfeu;tbi?gézs potentials. In this review, the utilization of NMs in different forms, including nanoparticles, nanofibers,
and nanofilms, in the SDVG field is discussed, and future perspectives for the development of NM-

DO 10.1039/d3na00666b loading SDVGs are highlighted. It is expected that this review will provide helpful information to scholars

Open Access Article. Published on 06 November 2023. Downloaded on 2/12/2026 10:47:18 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/nanoscale-advances

Introduction

The fast-developing era has witnessed the prevalence of
cardiovascular diseases (CVDs), mostly originating from
unhealthy lifestyles. CVDs have become the leading cause of
global mortality and morbidity, heavily burdening society and
patient families." A consensus has been reached that main-
taining a healthy lifestyle greatly benefits the prevention and
control of the onset and progression of CVDs, while appropriate
medical measures should be taken for people based on the
progressive stages of diseases, including drug medication,
interventional therapy, and vascular replacement.” In the
suffering populations, one that should be of special concern is
those who urgently need small-diameter vascular grafts (SDVGs)
with an inner diameter of less than or equal to 6 mm to save
their lives because this kind of graft on demand is still
considerably insufficient in quantity.’

Every year, more than 1 million people urgently need SDVG
surgeries globally to cure severe CVDs, such as coronary/carotid
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in the innovative interdiscipline of cardiovascular disease treatment and NM.

artery diseases, critical limb ischemia, and vascular trauma.*
The current gold standard for the treatment is grafting autolo-
gous vessels in which the great saphenous veins, internal
mammary arteries, and radial arteries are mostly used.*
However, over 30% of these people cannot obtain their arteries/
veins because of old age, existing diseases (e.g., diabetes mel-
litus), vascular injuries, secondary vascular acquisition, and
other reasons. In this context, pioneers have employed VGs as
substitutions for natural blood vessels. Unlike large diameter
VGs with an inner diameter larger than 6 mm used to replace
large vessels (e.g., aorta) prepared by materials, such as ePTFE
or PET, their small diameter counterparts with the same
materials tend to have stenosis or occlusion.** This is mainly
attributed to the fact that slow blood flow in small vessels makes
thrombogenic chemicals and cells more prone to aggregate on
the lumen. Additionally, SDVGs experience complex biochem-
ical and biomechanical environments under a blood flowing
physiological condition, further increasing their challenges in
maintaining long-term patency.

To date, substantial advances have been made in the devel-
opment of an eligible SDVG.* Nonetheless, the venue for success
is rather slushy, and only few have crossed pre-clinical stages to
enter clinical trials, yet none of them have hit the market so far.’
The main reasons are ascribed to thrombus formation, intimal
hyperplasia (IH), and mechanical mismatches.® Intensive
strategies have been adopted to resolve or mitigate these issues,
such as surface modification, cell coverage, and new substrate
material usage.” With the advancement of nanotechnology,
NMs have entered the horizons of SDVG researchers and have
exhibited enormous potential to improve SDVG performance.®
NMs are a set of materials with a scale ranging from one to
several hundred nanometers in at least one dimension. They
represent a cutting-edge direction of materials whose attractive
properties include a high surface-to-volume ratio, high
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adsorption, and high reactive/catalytic activity, basically stem-
ming from their ultra-small scale.” NMs with various forms in
shape, such as particles, fibers, and films, can be distinct in
derivations from the inorganically synthetic to the organically
synthetic and to the biological, such as AuNPs, PLGA NPs, and
EVs. Various NMs have enhanced the performance of SDVGs by
their beneficial functions,® which include improving EC adhe-
sion, regulating inflammation, mimicking vascular ECM, con-
trollably releasing vasoactive drugs, and refining mechanical
properties. Although the application of NMs in SDVGs is
generally underexplored, they have shown great promise in
boosting the development of SDVGs. In this review, we
summarize the state-of-the-art applications of NMs in SDVGs
and discuss future perspectives of this new field.

Application of nanomaterials in SDVGs

To date, various types of NMs have been employed to improve the
performance of SDVGs (Fig. 1 and Table 1).® Grossly classified by
the nano-scale dimensions that the materials possess, they
include nanoparticles (NPs), nanofibers, and nanofilms. NPs, also
called zero dimensional (0D) NMs, have three dimensions
(anterior-posterior, left-right, up-down directions) in a nano scale;
nanofibers, also called one dimensional (1D) NMs, have two
dimensions in a nano scale but the third in a micro/macro scale,
which typically form interconnected mats or matrices; nanofilms,
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also called two dimensional (2D) NMs, have only one dimension
in a nano scale yet the other two in micro/macro. In this section,
we summarize the progress of representative NMs that have been
applied to fabricate SDVGs (vascular patches with similar appli-
cation scenarios are also included).

Nanoparticles

NPs used in SDVGs can be synthetic or biological in origin and
are inorganic or organic in composition. The inorganically
synthetic ones include metallic NPs (e.g., AuNPs), metallic oxide
NPs (e.g., Fe;30, NPs, ZnO NPs, and BaTiO; NPs), and inorganic
nonmetal NPs (e.g. carbon nanotubes (CNTs)). The organically
synthetic ones mainly contain polymeric NPs (e.g., PLGA NPs
and poly(propylacrylic acid) NPs) and micelles (e.g:, t-lactic acid
oligomer (Lo)-grafted gelatin micelles). The biological ones
used in SDVGs are specifically referred to as EVs in this review.

Gold NPs

Gold NPs (AuNPs), usually existing stably in the form of
colloidal suspension in aqueous solutions, are a kind of noble
metallic NM that may be prepared using various methods,
including sodium citrate reduction, crystal seed growth, and
electrochemistry. Owing to their unique physicochemical
10,11

properties, they have been extensively used in biomedicine.
In tissue engineering (TE), AuNPs are typically incorporated
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Fig.1 NMs for SDVGs. The figure shows major examples of representative NMs employed in SDVGs and their beneficial functions. According to
the nano-scale dimensions that the materials possess, they can be categorized into NPs, nanofibers, and nanofilms. NPs have all three
dimensions in nano scales, called 0D NMs. Nanofibers have two dimensions in nano scales but the third in micro/macro called 1D NMs.
Nanofilms have only one dimension on a nano scale, yet the other two in micro/macro, called 2D NMs.
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into scaffold matrices to uprate scaffold performance. For VGs,
it has been reported that vascular patches made of decellular-
ized porcine aorta conjugated with mercaptoethylamine-
functionalized AuNPs showed fine patency in longitudinal
arteriotomy models of pigs. The AuNPs enhanced the tissue
integration and EC and SMC regeneration, as well as decreased
inflammation and scaffold degradation, compared with the
commercially available bovine pericardium material control
after the patches were implanted in carotis* or thoracic aorta*
from 2 to 6 months. This is partially because AuNPs hinder
collagenase binding sites.'™'*'* The possible disadvantage of
AuNPs in VGs may arise from their undetermined long-term
metabolism behavior and safe concentration range, which
needs to be determined. The utilization of AuNPs in VGs is in
a very early stage because important properties, such as anti-
bacteria, photothermal/electronic effect, and drug delivery of
AuNPs, are still unexploited. Furthermore, AuNP sizes, shapes
(e.g., nanospheres, nanorods, and nanostars), and surface
modifying groups highly affect their tissue reactions, which
should therefore be carefully evaluated in VG applications.

Fe;O4 NPs

Pure Fe;O, NPs, appearing as black powders, are complex ionic
crystals bonded by Fe**, Fe**, and O~ ions. Owing to their special
crystal structure, ultrasmall size, and the characteristic feature of
transition metal Fe, Fe;O, NPs are famous because of their
superparamagnetic properties and thus have been widely used in
magnetic control and imaging in biomedicine.'*** These advan-
tages have also shown benefits in the SDVG field. For instance,
human umbilical vein endothelial cells (HUVECSs) were incubated
with carboxydextran-coated Fe;0, NPs and then seeded on a pol-
ytetrafluorethylene (PTFE) VG lumen homogeneously under the
guidance of an annular magnetic field. In addition to the rapid-
ness of construction, cell arrangements of the cell-seeded VG
could be sensed non-invasively using magnetic resonance
imaging (MRI)."” In another study, vascular ECs, SMCs, and
fibroblasts (FBs) were separately incubated with Fe;O, NPs
encapsulated in cationic liposomes to form cell sheets on flat
magnets, and then the sheets were rolled layer-by-layer around
a cylindrical magnet to construct a cell distribution mimicking
multilayered VG.*® This method can rapidly and conveniently
prepare structurally mimetic VGs. In a third study, researchers
first established magnetic tissue spheroid units around 200 um in
diameter, each of which contained two coterminal domains: one
was cell aggregates assembled by one type of vascular cells (ECs,
SMCs, or FBs), while the other was collagen gel encapsulating
Fe;04 NPs.”* To rapidly complete a biomimetic VG, the magnetic
units first formed flat rectangle stripes under the guidance of flat
magnets, and the stripes were then wrapped layer by layer around
cylinder magnets. However, all the three VGs were proof of
concept models, and their in vivo performances had not been
validated. In addition, the long-term and in vivo safety of Fe;0,
NPs in these VGs were still questionable although a safe dose
range of 10-200 pug mL~" was identified by short-time cell tests
and measures; for example, separating cell and NP containing
domains were used to lower the risk of toxicity in the above cases.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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ZnO NPs

ZnO NPs are nanosized hexagonal crystals with white powders,
which are mainly fabricated using solid, liquid, or vapor phase
methods. ZnO NPs are considered a novel type of economic- and
biomedical friendly inorganic NM with broad application
potentials.?>** Researchers have fabricated ZnO NP-decorated
VGs rapidly using the electrospinning (ES) method when ZnO
NPs are dispersed into ES solutions constituted by a piezoelec-
tric polymer poly(vinylidene fluoridetrifluoroethylene) P(VDF-
TrFE).** Below 2% concentration, ZnO NP-decorated ES VGs
promote HUVEC proliferation in in vitro tests, and subcuta-
neous implantation further demonstrated that they increased
microvessel formation compared to undecorated ones. The
mechanism was attributed to ZnO NP-induced moderate H,O,
molecule release and piezoelectric properties (the ability to
transform energies between mechanical stress and electrical
potential) of P(VDF-TrFE). These results demonstrate the
biocompatibility and preliminary feasibility of ZnO ES VGs.
However, the in vivo performance of VGs in vascular replace-
ment models has not been tested. Moreover, the biochemical
activity and in vivo reaction of ZnO NPs are highly related to
their sizes, concentrations, and surface modifications, which
should therefore be carefully evaluated.

BaTiO; NPs

BaTiO; NPs, originating from a perovskite-like oxide-based
elastomeric ceramic, can be prepared using coprecipitation,
sol-gel, or emulsion methods. BaTiO; NPs are very promising
NMs in biomedical applications owing to their high biocom-
patibility, non-linear optical property, piezoelectric property,
drug loading capacity, and elasticity.>® Hence, BaTiO; NPs are
favorable for incorporating materials into VGs although
currently the application of these NPs is limited. Researchers
have doped glycol chitosan (GC)-coated BaTiO; NPs into VGs.
Porous VGs were fabricated by phase inversion spraying of
polyurethane (PU)/polydimethylsiloxane (PDMS) solutions
when the NPs were dissolved in spray solutions before being
doped into the microfibers that were sprayed out. Owing to the
elasticity of the NPs, the mechanical property of the VGs was
greatly refined.”® After NP doping, the burst strength of VGs
increased greatly from ~800 kPa to ~1100 kPa; the cyto-
compatibility with human fibroblasts was greatly improved, and
the VGs acquired piezoelectric properties. These in vitro tests
exhibited excellent potential for doped VGs, and further in vivo
tests were warranted. In addition, the powerful advantages of
BaTiO; NPs, such as their unique optical property and drug
loading ability, are still underused.

Carbon nanotubes

Single-walled carbon nanotubes (SWCNTs) are tubular nano-
sized graphite crystals formed by a single graphite sheet
curled around the central axis at a definitive spiral angle. Their
particular structure endows SWCNTs with outstanding
mechanical, thermal, electrical, and adsorptive properties,
making them a multifaceted material in biomedical
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applications.>”*® In a novel VG design, resveratrol (RSV), a star
natural small molecular drug, was conjugated to SWCNTs, and
the drug-carrying SWCNTs were then coated as irregular mesh
onto the surface of decellularized rat carotids (Fig. 2).° During
90 days of assessment in a rat common carotid artery replace-
ment model, the SWCNTs showed a well-controlled drug release
profile and potent resistance to physiological blood flow shear.
The released drug prohibited the proliferating state but stabi-
lized the contractile state of the SMCs to reduce IH formation
and sustain VG elasticity. In addition, SWCNTs engulfed by
macrophages together with resveratrol released inside cells
shifted the macrophage state from M1 pro-inflammatory to M2
anti-inflammatory. These overall benefits enhanced the VG
patency and regeneration compared to the group without
coating RSV-carrying SWCNTs, the group coated with SWCNTs
without RSV carrying, and the group carrying RSV but without
SWCNTs. However, as far as we know, the toxicity of SWCNTs to
cells and organisms remains an unresolved issue. Additionally,
valuable features of SWCNTs, including their mechanical,
thermal, and electrical properties, should be developed in VG
applications.
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PLGA NPs

PLGA NPs are nanoscale aggregates of PLGA polymers. They are
considered the most widely applied type of organic NPs in the
biomedical field and have been approved by the FDA owing to
their biocompatibility, biodegradability, non-immunogenicity,
and drug-loading ability.**** PLGA NPs have shown promise
in VGs. For instance, researchers covalently immobilized PLGA
NPs loaded with a model molecule, fluorescein isothiocyanate-
dextran (FD), on ePTFE VGs using wet chemistry.*> The mobi-
lization was blood flow resistant and promoted L1929 cell
adhesion and growth. This approach provided a model of drug
loading PLGA for improving VG patency. To propel the appli-
cation of the model, researchers further loaded microRNA-145
(miR-145) into PLGA NPs (Fig. 3), which were then coated on
the jugular veins of male Japanese white rabbits to construct
a new VG.*** The miR-145 enabled the alteration of the
phenotype of SMCs from proliferative states to contractile
states. After the VGs were implanted into the carotid arteries of
rabbits for 2 weeks, the controlled release of miR-145 from
PLGA NPs stabilized the SMC contractile phenotype and sup-
pressed SMC proliferation and inflammation, resulting in
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permission from ref. 33. Copyright 2019, Elsevier.

reduced IH formation. A follow-up mechanism study indicated
that these NPs could act on SMCs by regulating the CD40 and
NF-kB signals. Despite the large potentials of PLGA NPs in VGs,
relevant reports are still rare, and the in vivo implantation
period of the VGs should be further elongated. Scientists are
also working on improving PLGA NP drug loading efficiency and
reducing burst release and the influence of their degradation
products on in vivo circulation.

Poly(propylacrylic acid) NPs

Poly(propylacrylic acid) (PPAA) NPs are novel anionic polymer
NPs with pH-responsive features. They have superior biocom-
patibility, drug carrying ability, and, particularly, membrane
destabilizing ability at pH ~6.7, rendering them a quite useful
material in biomedicine.*® In VGs, researchers have fabricated
vasoactive drug-loading PPAA NPs by mixing PPAA homopoly-
mers and MAPK-activated protein kinase 2 inhibitor (MK2i)
peptides via electrostatic complexation.*® The external jugular
veins were then coated with PPAA NPs that delivered MK2i
peptides possessing anti-inflammatory, anti-migratory, and
anti-proliferating properties into vascular cells. When the VGs
were implanted into rabbit common carotid arteries for 28 days,
they showed high patency and potent IH suppression, increased
MK2i peptide cellular uptake, endosomal escape, and intracel-
lular stability induced by PPAA encapsulation. The mechanism
could be explained by MK2i-PPAA NPs depressing phosphory-
lation of the transcription factor cAMP element-binding
protein, the chaperone heat shock protein 27, and the gene
regulator heterogeneous nuclear ribonucleoprotein A0, trig-
gering signaling on the inhibition of inflammation and prolif-
eration.** However, the reduced EC coverage linked to MK2i-
PPAA NPs may be a hurdle in VG applications. Although PPAA
NPs have shown promise as an easy-fabricated drug-loading
environmentally responsive nano vehicle, they may cause

© 2023 The Author(s). Published by the Royal Society of Chemistry

undesirable hemolysis, their optimized concentration has not
been established, and their pH-responsive range can be
broadened by designing molecular structures and functional
groups to expand their applications.

Micelles

Micelles are nanoscale spheroids self-assembled by amphi-
philic block copolymers, with a hydrophobic core and hydro-
philic shell. They are excellent drug carriers that increase the
solubility of indissolvable drugs and well protect the inner
contents.’”*® The micelles have been widely used in other
biomedical fields but are still rarely reported in VGs.
Researchers have constructed a micelle-containing double-
layered vascular patch, whose outer layer comprises Thai silk
fibroin/gelatin, and inner layer comprises gelatin hydrogel
incorporating ri-lactic acid oligomer (Lo)-grafted gelatin
micelles loaded with simvastatin (SM). The controlledly
released SM played roles that included lowering blood lipids,
promoting the adhesion and proliferation of endothelial
progenitor cells (EPCs), and inhibiting the migration and
proliferation of SMCs. After the vascular patches were implan-
ted in rat carotid arteries for 2 weeks, they achieved complete
endothelialization and were well regenerated. However, the
long-term performance of the design in real tissue-engineered
VGs should be evaluated in the future. Additionally, the drug
and formulation-specific therapeutic effects should be evalu-
ated for each kind of micelle NP.

Extracellular vesicles

Extracellular vesicles (EVs) secreted by cells are nanoscale disk-
like vesicles containing complex RNAs and proteins, which are
widely distributed within the cell micro-environment and body
liquids. EVs are regarded to possess the same regulatory func-
tions as corresponding cells yet with off-the-shelf properties.*>**
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With the development of cellular therapy, accompanying EV
therapy has demonstrated great application potential. In
a recent study, heparin-modified ES polycaprolactone (PCL)
tubular scaffolds were decorated by human placental MSC-
derived EVs to construct VGs, which were then evaluated in
arat abdominal artery replacement model of hyperlipidemia for
3 months (Fig. 4A).*> The patency of the graft was great because
the MSC-derived EVs effectively inhibited thrombosis and
calcification, enhanced the regeneration of ECs and SMCs, and
switched the phenotype of macrophages from pro-
inflammatory M1 to anti-inflammatory M2. Further mecha-
nism studies illustrated that this partially contributed to the
indigenous presence of bioactive factors in EVs, such as miR-
145, miR-126, and VEGF. It is noteworthy that even in a high-
cholesterol pathological state, the MSC-derived EVs still
exhibited powerful regenerative capacities in VGs. More
recently, EVs derived from human adipose MSCs were loaded
into porous silk-based tubular scaffolds by vacuum seeding to

View Article Online
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establish a new VG (Fig. 4B).* After implantation in a rat aortic
replacement model for 8 weeks, high patency of the VGs was
observed. The EV-loading VGs showed higher endothelization
and smooth muscle regeneration but reduced macrophage
numbers compared to the non-loading ones. The merits of
these EVs for VGs include the basic properties of placental and
adipose MSCs, such as abundant sources, easy acquisition,
ultralow immunity, high para-secretion and immunomodula-
tion, as well as low ethical risk. However, long-term implanta-
tion should be performed continuously to accelerate the
translational process, and the detailed therapeutic mechanism
of EVs should be elucidated.

Nanofibers

Nanofibers are the second form of NMs used in VGs. The fibers
are usually interconnected to form 3D tubular matrices or 2D
films (which can then be rolled up to form 3D tubular
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structures), which are then used as scaffold materials for VGs.
There are three main kinds of widely used nanofiber interlaced
materials in VGs: decellularized tissue matrices,
spinning scaffolds, and bacterial cellulose scaffolds.

electro-

Decellularized tissue matrices

When tissues are decellularized, the remnant parts are their
extracellular matrix (ECM) mainly constituted by nano/micro-
scale extracellular protein fibers, which provide a very biomi-
metic (both constitutively and mechanically) substrate for cell
in-growth. Many decellularized tissues, such as blood vessels,
ureters, small intestinal submucosas, and amnions, have been
introduced into VG applications, and excellent reviews have
been proposed on this topic (see ref. 44-48). In the above-
mentioned VG examples in this review, some adopted decellu-
larized tissues, e.g., vascular patches by AuNP conjugated
decellularized porcine aorta*** and VGs by resveratrol-carrying
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SWCNT-coated rat decellularized carotid.* Here, we highlight
one more of the latest developments in interest. In this study,
researchers first subcutaneously implanted the ePTFE mandrel
into the abdominal wall of rats for 4 weeks, and fibrotic tissue
tubes were formed around the mandrel. The VGs were then
developed by decellularizing the fibrotic tubes with an anti-
thrombogenic heparin coating (Fig. 5A).* After evaluation in
a carotid artery replacement model of rats for 6 months and in
that of mini-pigs for 1 month, the researchers found that the
decellularization greatly improved the patency and regenerative
performance, compared to non-decellularized fibrotic tubes
made using the same method. Furthermore, the decellularized
autologous grafts exhibited an even higher patency rate
compared to the decellularized allogeneic fibrotic tubes, indi-
cating that a foreign body reaction still exists. The decellular-
ized tissue matrix-based VGs represent an easy-to-fabricate and
abundant-in-source kind of VG approach, showing off-the-shelf
and non-invasive features for allogeneic VGs and mildly
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invasive features for autologous ones. However, to further
improve the VG quality and fabrication for allogeneic/xenogenic
ones, measures such as removing immunogenic substances
and coating immuno-suppressive/regeneration promoting
molecules should be taken; meanwhile, for autologous ones,
the period for fibrotic tube formation should be reduced.

Electrospinning scaffolds

Electrospinning (ES) is an electrical field-controlled, useful
technology for fabricating ECM-like nano/micro-diameter fibers
with various synthetic or natural polymers. It is well known in
biomedical and other fields owing to its low cost, process
controllability, simple equipment, diversiform spinnable
substances, and scalability. By tuning the working conditions,
ES can well control the fiber size and orientation, scaffold
configuration (2D films or 3D geometry in designated shapes)
and surface thickness. ES substrates are typically versatile
scaffold materials in VGs, which can load drugs and control cell
behaviors.*>** There have been several examples of ES-based
VGs in the previous texts in this review, e.g., VGs by ZnO NP-
coated P(VDF-TrFE) ES conduits** and by human placental
MSC-derived EV-modified ES PCL conduits.*” Intensive and
comprehensive reviews on this topic have been published (see
ref. 52-55). Herein, we provide another latest example of
interest. The VG was fabricated by decorating a C-type natri-
uretic peptide (CNP), a vasodilator, on PCL ES tubular scaffolds
(Fig. 5B).*® The VG showed great blood compatibility in a rabbit
arterial venous (AV)-shunt model for 1.5 hours of the test. One
month post-implantation in a rat abdominal aorta replacement
model, compared to its counterpart without CNPs, the CNP
loaded with VGs showed significantly more EC coverage, NO
production, VEGF secretion, M2 type macrophage polarization,
contractile SMC transition, and ECM deposition, along with
a parallel yet also 100% patency rate. Therefore, the CNP
decoration further improved the regenerative capacity of the
VG, which may play an important role in long-term VG patency.
However, the in vivo test should be performed at an elongated
time. In addition, the slow degradation of PCL polymers may
cause the calcification and degeneration of vascular neotissues.
To achieve ideal VGs, it is a critical issue for ES-based VGs to
select the proper polymer material, construct the proper fiber
size and orientation, and decorate proper seeding cells and/or
coatings.

Bacterial nanocellulose scaffolds

Bacterial nanocellulose (BC) is another kind of nanofiber
material for VG applications. It is a natural polysaccharide
produced by several bacteria, such as Acetobacter xylinum and
Gluconacetobacter sucrofermentans, within a short period of
around 10 days.*” The nanofibrous networks of BC are similar to
those of ECM cells, thus providing superior biocompatibility.
BC can be conveniently fabricated into 2D films, hollow tubes,
and other 3D shapes. Numerous reviews on the application of
BCs in VGs have been presented (see ref. 58-61). Herein, we also
underline one of the latest examples of interest. The tubular BC
hydrogel was treated with 20% NaOH to construct a novel VG
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(Fig. 5C).** The treatment greatly increased the smoothness,
burst strength, and compliance of the VGs. Compared with
untreated BC VGs, the treated ones showed lessened platelet
adhesion and activation and promoted EC proliferation in vitro.
After the subcutaneous implantation of the VGs in a rat for 6
months, both the treated and untreated BC showed low
inflammation and good tissue growth, indicating their superior
biocompatibility. After 5 months of implantation in a rat
abdominal aorta replacement model, the treated BC VG showed
normal blood circulation and satisfactory patency. By treating
NaOH with different concentrations, the length, diameter, and
wall thickness of the VG could become tunable, which may fit
multiple applications. However, the long degradation term in
vivo may be a limitation of BC's application in VGs. Moreover,
more surface modification of BC could be attempted to improve
its performance in VGs.

Nano-films

Nanoscale films, the third type of NMs used in VGs, are a novel
but effective strategy to enhance the performance of VGs as well.
Nano-films can be formed by surface coating to construct
uniform nano-thick films (e.g., tantalum-coated films), or
surface patterning to construct films with designated nano-
scale geometrics (e.g., nanolamellar films). Reports on nano-
film bearing VGs are rare to date. Here, we provide two repre-
sentative cases.

Tantalum nanofilms

Tantalum (Ta) is an abundant lightweight metal with consid-
erable material strength, corrosion resistance, and biocompat-
ibility; thus, it is one of the major metals for biomedical use. Ta
and its alloys have played important roles in surface and
structural modification in current clinical devices, including
cardiovascular ones.®**® Recently, nano-thick Ta surface coat-
ings have been employed in VGs. Commercially available ePTFE
vascular scaffolds were coated with a nano-thick Ta layer via
a sputtering-based plasma immersion ion implantation tech-
nique within 1 min.*” The Ta coating was found to refine the
hydrophobicity of ePTFE, improve EC growth, and suppress
platelet adhesion and activation, thereby rendering the graft
more biocompatible and anti-thrombogenic. Assessing a canine
aortic replacement model for 4 weeks demonstrated thrombosis
suppression and rapid EC layer formation of the VG. Although
Ta films have shown great merits in VGs, they are mainly
limited by their low rigidity, abrasive resistance, and reactivity
with other metals.

Nanolamellar films

The second strategy for obtaining nanofilms is to design
nanoscale topographic cues for device surfaces. This strategy
does not need to introduce new materials to the devices but only
needs to fabricate the device surface using physical methods
without changing the properties of the materials. It has been
reported that the nano topographic lumen plays pivotal roles in
tuning cell fate, device integrity, and tissue remodeling fate.***
In VG application, researchers have fabricated a double-layered

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Biomimetic vascular
graft by freeze-cast

-
IR (FHIFRR

Fig. 6 Application of nanolamellar films in SDVGs. (A) Natural blood
vessel shows a ridge/groove nanotopography on the intimal surface.
(B) SDVG with a biomimetic structure is prepared by applying a freeze-
cast technique with lamellar nanotopography on the inner surface. (C)
VG is used to replace the injured vessel to promote fast endotheliali-
zation and to maintain long-term patency. Reprinted with permission
from ref. 70. Copyright 2019, American Chemical Society.

graft, whose inner layer was fabricated by freeze-casting silk
fibroin and gelatin solutions on a cylinder template with pre-
designed nano patterns to eventually form longitudinally
aligned high aspect ratio lamellar nanotopography on the
lumen, and whose outer layer was reinforced by ES PCL
(Fig. 6).” The nanolamellar surface, mimicking the groove-
valley topography of the native vascular inner layer, guided EC
alignment, inhibited platelet adhesion, and reduced blood flow
disturbance, thereby maintaining a high patency rate of the VG
after 3 months in a rabbit carotid artery replacement model. It is
noteworthy that in this VG, numerical simulation was success-
fully employed to predict the performance of its surface nano-
patterns. Therefore, more efficient nanopatterns can be
designed through computers. The major difficulty of this
strategy arises from precise manufacturing techniques.

Summary and outlook

The major efforts of SDVGs are to reverse the dilemma that
surgeons clearly know the gold treatment to cure diseases but
lack available grafts to save more lives. NMs have opened a new
door for enhancing the performance of vascular grafts although
the application of NMs in SDVGs is still in its infancy. As listed
in Table 1, NMs in the forms of nanoparticles, nanofibers,
nanofilms, or some of these in combination have been utilized
for SDVG patency improvement, regeneration promotion, rapid
construction, non-invasive imaging, and so forth. Each kind of
material has its advantages and disadvantages. Thus, it is

© 2023 The Author(s). Published by the Royal Society of Chemistry
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important to rationally use a specific material according to the
target goal. Because all these NMs have represented a certain
effectiveness in VGs, safety is the fundamental issue to be
considered in the VG application. In this context, the Ta
nanofilms, nanopatterns, and distinct nanofibers tested prac-
tically or experimentally perform well. For NPs, in general, the
safest ones are biologically derived EVs with the highest
biocompatibility; the safety of organically synthetic ones takes
second place, which should be further identified; and the safety
of inorganically synthetic ones is even lower, which should be
carefully evaluated for further applications, although
combining inorganic NPs and organic substrates demonstrates
a new direction that improves VG performance. High safety
means high translational potential. However, the effectiveness
of the NMs in VGs could be continuously improved by structural
redesign, surface modification, chemical treatment, a combi-
nation of various NMs, and so forth. Moreover, it is worth
noting that the aforementioned VGs include not only the
fabrication or refinement of newly designed synthetic VGs (the
major efforts in the SDVG field currently) but also the amelio-
ration of gold-standard and traditional material-based ones.

By scanning the huge NM pool, many NMs potentially
applicable to SDVGs are to be discovered. For example, silver
NPs were linked to porous PCL films, which showed potent
effects in inhibiting platelet adhesion and aggregation in vitro,
simultaneously retaining the inherent antimicrobial properties
of the NPs.”>7* An alternative nanomaterial, plasma-modified
TiO, nanotube coating, has been widely used in cardiovas-
cular stents and other biomedical devices. Researchers have
found that the coating can enhance endothelial coverage but
reduce platelet adhesion and unfavorable SMC propagation.
Interestingly, the coating also exhibited good anti-infective
capacity.” Although they have not been directly applied, NMs
have shown powerful potential in improving SDVG patency.” It
is noteworthy that owing to the shared targeting organ systems
and disease mechanisms with small diameter vascular diseases,
NMs used in the management of atherosclerosis and other
cardiovascular diseases (e.g.,, NMs in vascular or heart stents)
could enhance the utilization of NMs in SDVGs (see several
excellent reviews on this topic””*°).

In our opinion, there are several future studies on improving
NM-bearing SDVGs. First, as aforementioned, only very few NMs
have been tested in the SDVGs in the context of the exploding
development of thousands of NMs.”* An item that could be
immediately executed is the discovery of more currently available
NMs that can be used in SDVGs. Second, owing to the strong
designability of NMs, we can construct new NMs for SDVG based
on our particular goal. It is suggested that in the design, the target
should be considered systematically because the reasons for the
low patency are closely interconnected. Multi-cargo carrying and
precisely targeting NMs may be helpful. Third, the long-term and
systematic impact of NMs on SDVGs should be evaluated to obtain
more reliable conclusions to promote clinical translation. NM
functions, distributions, and toxicities are all essential parts of the
safety and efficacy of the NM-bearing VG. In the meantime,
intrinsic limitations on each material should be overcome with the
development of science and technology. Finally, we noticed that
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computer-based numerical stimulation has been applied in the
design and evaluation of the efficacy of NMs in nanolamallar
surface bearing VGs.” Therefore, NMs in conjugation with other
advanced technologies may significantly accelerate the develop-
ment of SDVGs, and the fabrication and application of NMs are
a collection of advanced technologies. Although the incorporation
of NMs into SDVGs may not be dominant, we believe that the
outstanding particularity and utilization potential of NMs will
illuminate the way ahead for achieving commercially available
SDVGs and directing the SDVG into a new era.

Abbreviations

CVD Cardiovascular disease

VG Vascular graft

SDVG Small diameter vascular graft

NP Nanoparticle

AuNP Gold nanoparticle

EC Endothelial cell

SMC Smooth muscle cell

HUVEC Human umbilical cord vascular EC

PTFE Polytetrafluorethylene

ePTFE Expanded polytetrafluorethylene

LbL Layer by layer

P(VDF-TrFE) Poly(vinylidene fluoridetrifluoroethylene)

ES Electrospinning

PU Polyurethane

PDMS Polydimethylsiloxane

RSV Resveratrol

SWCNT Single walled carbon nanotube

FD Fluorescein isothiocyanate-dextran

miR microRNA

PLGA Poly(lactic-co-glycolic acid)

PPAA Poly(propylacrylic acid);

MK2i MAPK-activated protein kinase 2 inhibitor
peptide

IH Intimal hyperplasia

SF Silk fibroin

SMvV Simvastatin

MSC Mesenchymal stem cell

EV Extracellular vesicle

CNP C-Type natriuretic peptide

PCL Polycaprolactone

AV Arterial venous

BC Bacterial nanocellulose

Ta Tantalum

0D/1D/2D/  zero/one/two/three dimensional, respectively

3D

Lo t-Lactic acid oligomer

TE Tissue engineering
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