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Here, the hydromagnetic entropy optimized flow of a hybrid (Pb + Fe,O3/C,HeO,) nanoliquid by a curved
stretchable surface is addressed. The Darcy—Forchheimer model is utilized for porous space. Lead (Pb) and
ferric oxide (Fe,Os) are considered the nanoparticles and ethylene glycol (C,HeO,) as the base liquid.
Thermal expression consists of dissipation and ohmic heating. Entropy generation is under consideration.
The Cattaneo—Christov heat flux impact is discussed. Non-dimensional partial expressions by adequate
transformations have been reduced to ordinary differential systems. The ND-solve technique is
implemented for numerical solutions of dimensionless systems. Graphical illustrations of velocity,
thermal field and entropy against influential variables for both nanoliquid (Pb/C,HeO,) and hybrid
nanoliquid (Pb + Fe,O3/C,HgO,) are presented. Graphical illustrations of velocity, thermal field and
entropy against sundry variables for both nanoliquid (Pb/C;HeO,) and hybrid nanoliquid (Pb + Fe,Os/
CoHeO,) are presented. Influences of sundry variables on the Nusselt number and drag force for both
nanoliquid (Pb/CyHgO,) and hybrid nanoliquid (Pb + Fe,O3/C,HgO,) are examined. A higher thermal
relaxation time tends to intensify the heat transport rate and temperature. An increment in the magnetic
variable leads to an enhancement of the entropy and thermal field. An improvement in liquid flow is seen
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DOI: 10.1039/d3na00453h for volume fraction variables. Velocity against the porosity variable and Forchheimer number is reduced.

rsc.li/nanoscale-advances The Brinkman number leads to maximization of entropy generation.

Open Access Article. Published on 08 August 2023. Downloaded on 10/25/2025 3:51:40 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

1. Introduction

During the past few decades, hybrid nano-fluids have become
popular among researchers, scientists and engineers due to
their superior heat transport properties. Hybrid nano-fluids are
suspensions of two or more nano-particles in the base fluid. The
heat conductive performance of convectional materials (like
blood, water, engine oil, ethylene glycol, etc.) can be enhanced
by inserting nano-particles (like silica, carbon nanotubes, silver
alumina, gold, lead, ferric oxide, etc.). Hybrid nano-fluids
possess higher thermal conductivity for heat transfer
phenomena such as those relevant to engines, vehicle radiators,
machining, biomedicine, warming procedure on buildings,
hybrid powered engines, pharmaceutical industries, paper
production and many others. The concept of heat transport
enhancement of the base liquid through addition of nano-
particles was initially given by Choi and Eastman et al.* Hassan
et al® examined the partial slip effect for the flow of hybrid
ferro-liquids. Radiation and porous space effects were
addressed. Chabani et al.* examined the electrically conducting
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hybrid (Ag-Al,03/H,0) nanomaterial flow inside a modified
trapezoidal permeable enclosure. Thermal transport analysis
for hybrid nanoliquids with suction/injection in a rotating
system was reported by Abdollahi et al® Cattaneo-Christov
analysis in the magnetohydrodynamic flow of ternary nano-
materials with nonlinear radiation was studied by Algawasmi
et al.® Few latest developments related to hybrid nano-fluid flow
under different geometric configurations are given in ref. 7-15.

Heat transfer is induced in view of temperature differences
and subsequent temperature changes and distribution in
different bodies. Heat transfer plays a significant role in
industries, and biomedical and engineering processes such as
those relevant to heat exchangers, air conditioning, refrigera-
tion, equipment power collectors, fuel cells, drug targeting,
microelectronics, heat conduction in tissues, etc. The mecha-
nism of heat transfer was initially given by Fourier.*® Fourier's
law through parabolic expression predicts the infinite speed of
heat waves. It is not acceptable physically. Therefore the
thermal relaxation time was taken into account by Cattaneo."”
For material invariant formulation to the Cattaneo's frame work
Christov*® introduced Oldroyd's upper convected derivative.
Razaq et al.*® explored the convective flow of the Reiner-Rivlin
fluid subject to Cattaneo-Christov fluxes and MHD. Radiation
impact for the magnetized flow of Prandtl nanoliquid with
Cattaneo-Christov fluxes theory was given by Salmi et al*
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Haneef et al.** analyzed heat transport for Oldroyd-B material
flow with Cattaneo-Christov fluxes. Random motion and ther-
mophoresis effects in magnetohydrodynamic Oldroyd-B nano-
liquid flow were studied by Hayat et al.** Latest articles for
Cattaneo-Christov heat and mass fluxes are mentioned in ref.
23-28.

Entropy minimization (EM) optimizes thermal system
performance by exploring associated irreversibility through
heat and mass transfer, Joule heating and liquid friction.
Entropy is a measure of uncertainty and disorderness of
a system and its surroundings. All natural processes are ther-
modynamically irreversible. Entropy is inversely proportional to
the temperature of a system. Entropy has a direct proportion to
the reversible change in heat. Entropy generation is the loss of
energy in thermodynamical systems due to diffusion processes,
temperature difference, electric resistance, fluid mixing,
chemical reaction, radiation and resistive forces. Applications
of entropy generation are found in electronic cooling systems,
geothermal reservoirs, thermal and nuclear reactors and heat
exchanger pumps. Entropy optimization in thermally convec-
tion flow was studied in Bejan.>**' Iftikhar et al.®* analyzed
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flow, entropy and temperature for both nanoliquid (Pb/C,HgO,)
and hybrid nanoliquid (Fe,O; + Pb/C,H¢O,) are explored.
Surface drag force and heat transport rate against emerging
variables for nanoliquid (Pb/C,H¢O,) and hybrid nanoliquid
(Fe,O3 + Pb/C,H0,) are numerically discussed.

2. Modeling

Two-dimensional magnetized flow of the hybrid (Fe,Oz; + Pb/
C,Hg0,) nanoliquid by the curved stretching surface is
addressed. Darcy-Forchheimer model analysis is carried out.
Lead (Pb) and ferric oxide (Fe,0Os) are used as nanoparticles and
ethylene glycol (C,HgO,) as the base liquid. Cattaneo-Christov
heat flux with ohmic heating and dissipation is under consid-
eration. Entropy analysis is carried out. The surface has
stretching velocity (i, = u,e”") with u, reference velocity. The
magnetic field of constant strength (B,) is applied. Fig. 1
comprises a physical model.*
The governing equations satisfy:***°

entropy gegeration for non-Newtonian biviscos%ty fluid in 9 (r+ R)) + Riu 0, (1)
a square cavity. Hayat et al.*® addressed the magnetized entropy ar ds
optimized flow of the Reiner-Rivlin material. Maiti et al.** re-
ported entropy generation analysis for time-dependent hybrid ! W = ! 6_p7 (2)
nanoliquid flow by shrinking a disk. Latest investigations for (r+R) P O
entropy analysis are highlighted in studies.*** ou WR du "
This communication discusses the magnetohydrodynamic i C+R o ER V=
Darcy-Forchheimer flow of a hybrid nanomaterial. The Catta-
neo-Christov heat relation is under consideration. Ferric oxide )
(Fe,03) and lead (Pb) are used as nanoparticles. Ethylene glycol o R P <a“ + ! u_ uz)
(C,Hg0,) is used as a conventional liquid. Joule heating and Puot 7+ R) prog \ O (r+R) 9 (r+R)
dissipation are considered in thermal relation. Entropy gener-
ation analysis is carried out. Governing nonlinear expressions Ot Bylu — Mt iu _ Fuz} 3)
are made dimensionless by implementation of suitable trans- Phnf Pt Kp ’
formations. ND-solve is utilized for numerical solutions. Liquid
aT uR dT Mhnf du u Ohaf 2 o Ohnf ) du , R du
ar (r+R) s (P€D) put (E i (r+ R)) - (pcp)hm‘BO o (pcl’)hnfBO (va I (r+R) a_g)
wvoT LT  vR dudT R 0T R T
VootV s e e o AUV e e — UV
o ar ar o (r+R) dr ds (r+ R) 0rds (r+R)* 0s
uR 9T 9v R \’0uoT uR \’0’T
(r+R) ar ds ((r+R)) 55 as T ((r-i—R)) 3
(4)
v%@+ v (6u>2+ uy @7 uy uR @aiu
9.5t ar a2 (r+R) \or (r+R)dr*  (r+R)* (r+R) drdrds
E(/’Cp)hnf ¥R du uR  dudu uR du
(r i RS 0rds (s 1 R} Ords  (r1 R) Os
kne (°T 1 9T
B (PCh) ot (m i +R E)
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In the above expressions (u,v) depict velocity components, upn¢
the dynamic viscosity, pnn¢ the density, (7,s) signify the Cartesian

coordinates, on,s the electrical conductivity, F<— C—\/Z_) the

P
inertia coefficient, k, the porous medium permeability coeffi-
cient, R the radius of curvature, (pcp)nnr the heat capacitance, Cy,
the drag force coefficient, L the reference length, T the
temperature, kpn¢ the thermal conductivity, ¢, the specific heat,
T the ambient temperature, dg the heat relaxation time, B, the
magnetic field strength, Ty, the wall temperature and p the
pressure.

rv

nanofluid flows

2.1. Thermophysical characteristics Fig. 1 Flow sketch.

Mathematical expressions for nanofluid and hybrid nano-

materials and numerical values of conventional fluid and

nanoparticles have been given through Tables 1 and 2.3**
Letting

s/Laf(g’ n) R Pro€ i af(‘g’ 77)

of (§,7)
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Table 1 Mathematical expressions for thermophysical characteristics®***

Properties Nanoliquid
Viscosity . SR
I
. " (g7
Density Pot = (1 — ¢1)ps + 1psa
Heat capacity (pp)ne = (1 = P1)(pcp)e + Pa(pCp)st
Electrical conductivity anr _ Ts1(1+2¢y) + 20¢(1 — ¢y)

Thermal conductivity

Properties
Viscosity

Density

Heat capacity
Electrical conductivity

Thermal conductivity

% Ta(l —¢1) +or(2+ 1)
@ _ ksl + 2kf - 2¢1(kf - ksl)
kf ksl + 2kf + ¢1(kf - ksl)

Hybrid nanoliquid
Mg
(1= (1—¢,)°
phne = (1 — 92 {(1 — P1)pe + P1psr} + Paps2
(pcp)hnf = (1 - ¢2){(1 - ¢1)(p6p)f + ¢1(pcp)sl} + ¢2(pcp)52

HMhnf =

Thnf _ Psa2(1 + 26) + 20us(1 — ¢5)
Onf 052(1 - ¢2)+ an(2+¢2)
khnf — ksZ + 2knf - 2¢2(knf - ksZ)
knf ksz + 2knf + ¢‘2 (knf - ksz)

Table 2 Thermophysical characteristics of ethylene glycol (C,HgO5), lead (Pb) and ferric oxide (Fe,0O3)%*%

Properties o (kg m™?) kWm™' K™ kg K c(@'m™
Ethylene glycol 1116.6 0.249 2382 1.07 x 1077
Lead (Pb) 11343 35 130 4.55 x 10°
Ferric oxide (Fe,0;) 5200 80.2 670 0.74 x 10°
Kt 1 49\  Ec f AN |4 <6f> ?
— =+ — Pr | + MEcPré ™ 2| =
ke (6772 (n+VEK) 017) A & (0 2 (n+VEKy) dn ot § on
2
VEK, ( .00 af a0 9 af 60) VEK
+APr——m——— | f—+ 26 - —— A0 ——2 = + AP A —é| —————— | (An— 4
3 m+vEK)\ an 9 an an  Z oz Bl Aun —§ (n+VEK) (A2 — A33) o
, 9
YO LY (L)
7 n an? 08 On on? an) an*
-8 Ee P Ay -2 VEK g7t ArEepre-a| 10T men SR
A, ( +VEK) o Gf ~ %M_zaf P
677 Ton am? ~ "o 62an
6f(g 0)=1,/(£,0) = g(z(g’ 0), 6(£,0) = 1, number and A( ik ) the porosity parameter. Here A,, A, 43,
Uo
of (10) Aiq, Ay, Azz and Ay, are expressed as
%(gv oo) = 07 0(57 OO) = 07 5/2 s/
p Ay =(1=¢)""(1-¢,)
0 .
Here K, ——R shows the material arameter,
1 2v¢L > p A2=(17¢2)((1*¢1) ¢1P51) +%
Py Pr , (11)

up® C .
Ec <: c OT > the Eckert number, Fr (: b L) theForchheimer
plo

VS
6Eu0

number, g (: —) the thermal relaxation time,

o L
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3. Interesting quantities

3.1. Surface drag force
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4. Entropy formulation

Mathematical expression is given by

One may write 2 2
_ L G_T Ho (Out u Mg i 2
Trs‘r:o EG(§7 "7) - T. zkhnf(ar) + ar + —V+ R + T. kpu
Cis = > (16)
Prlhy + Otaf p 2, 2
Here 1, wall shear stress is Ta
(22)
Tps = du _ Lu 17)
rs = Mhnf or (r + R) ) or
khnf Loa) (96 &f A
S, _ (1+4) —B A
Dimensionless version is a(&m) E n + A, & n? + (n+VEK,) dn
" 1, 2 2
CiRe,? = — (f )+ 4/ <0>) (18) +lmee (L) 4 Doty (L
1 1 A an oy an
(23)
Ty .
Here oy (: T—) represents the heat ratio parameter,
3.2. Nusselt number 2
L Br| = Hetho” the Brinkman number and Sg | = 2B6LTwve th
Considering Toks keuoTo
5qw
= Aw entropy rate.
Nu, (T —-To) (19) Py
and heat flux g., 5. Solutions methodology
qdw = _khnf (al) ) (20) . . . . . . ( ) .
ar /|, Considering the derivatives with respect to £ | i.e. E =0]in
we can express that eqn (7)-(10) we arrive at
2L Kt , A 2
““Nu,Re, 2 = -y 21 P=— (24)
Vo Nuske radCl (1) (n+ VEK))
in which Reg = %3 i dicates the local Reynolds number.
ve
/n 1 /2 1 / 4\/?1{1 \/gKl /
I+ - .y P+ nP
( W VEKY evek)? )\ vERY G vER)
K L 2VEK, K ) K, .
A, A VEK, - VEK, f2 VEK, S+ VEK, anz , (25)
(n+ VEK)) (n+VEK:) (n+VEK:) (n+VEK))
2 ohn
A Th ‘Mf - —/\f Ay A Frf”
k 1 1 ’
hnf /! 2_ = / Ohnf
— |0 + 7= | + PrE ff o —mf | + M EcPré!~ f
1«( (n+ VEK) > ( (n+ VKD )
\/— 3— A 26
+A3Pr( e <f0 — AGf ) + AsPrBAss — ﬁ—P 294 : (26)
\/—K1 Ohnf -5 ( 12 ;o
2 TR 2 (S o ) =
(77 +VE Kl) ot
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Elimination of pressure from eqn (22) and (23) yields
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5.1. Numerical approach
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Governing problems are solved by the ND-solve algorithm. The
Mathematica software is utilized to develop the computational
results. For this we converted the boundary value problem to the
initial value situation as follows:

}, (31)

f:yhf J’2,fl y37f y47fW*

0= y570 7.)}670 7y6
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6. Discussion

The influence of emerging variables on liquid flow, entropy rate
and temperature for both nanoliquid (Pb/C,HO,) and hybrid
nanoliquid (Fe,O; + Pb/C,H0,) is discussed. Here dotted lines
show nanoliquid (Pb/C,H¢O,) behaviors and solid lines char-
acterize the hybrid (Pb + Fe,03/C,H¢0,) nanoliquid character-
istics. Engineering quantities like the skin friction coefficient
and heat transport rate are discussed through tabulated forms.
Comparison of recent analysis with previous results in the
literature is constructed in Table 3. Here we discussed the

Table 3 Coefficient of skin friction comparison with Okechi et al.>®

K Okechi et al.*® Present results
5 1.4196 1.41963
10 1.3467 1.34675
20 1.3135 1.31354
30 1.3028 1.30281
')
.0
o8
! Pb/C2H602 !
R ; Pb+Fe203/CzH502 """""""
0.4l M=0.3, 06 0.9, 13 ,,,,,,,,,,,
, L g
0 1 2 3 4

Fig. 2 f(n) variation versus M.
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Fig. 3 f(n) variation versus A.
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Fig. 7 6(n) versus B.

Fig. 8 6(n) versus M.

comparison of the coefficient of skin friction versus a higher
approximation of the curvature variable with Okechi et al.*>* for
a limiting case (viscous fluid flow). Clearly a good consensus is
noticed.

6.1. Velocity

Fig. 2 illustrates the flow behavior against the magnetic variable
(M). An increment in the magnetic variable leads to

Fig. 9 6(n) versus Ec.
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Fig. 10 6(n) versus ¢;.

Fig. 11  6(n) versus ¢,.

intensification of the Lorentz force which declines the liquid
flow. The influence of (1) on (f(n)) is portrayed in Fig. 3. Higher
porosity corresponds to diminished velocity in both nanoliquid
(Pb/C,H0,) and hybrid (Pb + Fe,03/C,Hs0,) nanoliquid cases.
Fig. 4 shows the velocity impact against the Forchheimer
number (Fr). A reduction in liquid flow (f(n)) is noticed versus
the Forchheimer number for both nanoliquid (Pb/C,H¢O,) and
hybrid (Pb + Fe,03/C,H¢0,) nanomaterials. Fig. 5 and 6

Fig. 12 Ng(n) versus M.
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Fig. 14 Ng(n) versus ¢,.

elucidate the impact for flow versus nanoparticle volume frac-
tions (¢, and ¢,). It is noticed that there is an enhancement in
liquid flow versus higher nanoparticle volume fractions (¢,
and ¢,).

6.2. Thermal field

Fig. 7 presents the trend of temperature against the thermal
relaxation time variable (8). A higher estimation of thermal

. Pb/GH O, |

Fig. 15 Ng(n) versus ¢,.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Numerical results of the skin friction (Re;Y?Cy) coefficient

Resl/ZCfs
Pb +
M K, A Fr Pb/C,H40, Fe,03/C,HgO,
0.4 0.1 0.1 0.2 8.4631 19.9922
0.8 7.35445 17.5033
0.12 6.57457 15.7212
0.3 0.45 0.1 0.2 0.475582 1.04693
0.45 0.34613 0.754253
0.51 0.231708 0.496568
0.3 0.45 0.2 0.2 0.344601 0.738767
0.3 0.223838 0.453805
0.4 0.11172 0.188597
0.1 0.564833 1.20704
0.4 0.313042 0.748393
0.7 0.0991132 0.343877
Table 5 Computational values for Res Y?Nus
Res’” 2NuS
Pb +
I M Pr Ec Pb/C,H¢0, Fe,03/C,H0,
0.01 0.1 5.0 0.4 2.94351 3.10761
0.03 2.81501 2.44288
0.05 2.68726 2.09427
0.01 0.4 5.0 0.4 2.59787 2.34593
0.5 2.48648 1.82663
0.6 2.37692 1.59412
0.01 0.1 3.5 0.4 2.45597 2.38122
4.0 2.62835 2.52681
4.5 2.79038 2.6638
0.01 0.1 5.0 0.2 3.23399 3.85736
0.7 2.50778 1.71628
0.11 1.92682 0.280292

relaxation time corresponds to an increase of the thermal field.
Fig. 8 indicates the importance for (M) on 6(n). A larger
approximation of the magnetic variable intensifies the Lorentz
force which raises the resistance to flow. Therefore, the
temperature is increased. The influence of the Eckert number
on (6(n)) is depicted in Fig. 9. The outcome for the Eckert
number (Ec) leads to creation of an additional kinetic energy
and consequently the thermal field is improved. Characteristics
of nanoparticle volume fractions (¢; and ¢,) on the thermal
field are disclosed in Fig. 10 and 11. Clearly, higher nanoparticle
volume fractions (¢, and ¢,) enhance the thermal field for both
nanoliquid (Pb/C,HO,) and hybrid (Pb + Fe,03/C,Hg0,)
nanomaterials.

6.3. Entropy rate

Fig. 12 reveals the impact of the magnetic variable on Ng(n).
Increasing values of the magnetic variable enhance the resistive
force in the flow region which produces an additional energy in
the system and therefore entropy is maximized. Fig. 13 depicts
the importance of entropy for the Brinkman number. The

Nanoscale Adv, 2023, 5, 4819-4832 | 4829
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entropy rate rises versus a higher Brinkman number due to the
viscous force. Fig. 14 and 15 show entropy characteristics
against nanoparticle volume fractions (¢; and ¢,). A higher
estimation of volume fractions (¢; and ¢,) leads to augmenta-
tion of the entropy rate for both nanoliquid (Pb/C,H¢O,) and
hybrid (Pb + Fe,05/C,H¢0,) nanomaterials.

6.4. Physical quantities

Engineering quantities like the skin friction coefficient
(Res*Cg,) and heat transport rate (Re,”*?Nuy) for nanoliquid
(Pb/C,H60,) and hybrid (Pb + Fe,0;/C,H0,) nanomaterials are
discussed through tabulated forms.

6.4.1. SKkin friction. Table 4 highlights the characteristics of
the skin friction (Re,"*Cy) coefficient against sundry parame-
ters for both nanoliquid (Pb/C,H¢O,) and hybrid (Pb + Fe,0,/
C,H0,) nanomaterials. It is found that larger Forchheimer
number (Fr), porosity (1), material (K;) and magnetic (M)
parameters result in skin friction reduction.

6.4.2. Heat transport rate. Table 5 shows the heat transport
rate (Re, *Nuy) variation versus influential variables for both
nanoliquid (Pb/C,HeO,) and hybrid (Pb + Fe,03/C,Hg0,)
nanomaterials. Decay in the thermal transport rate is witnessed
for larger Eckert number (Ec), thermal relaxation time (8) and
magnetic (M) variables. An increment in the temperature
gradient is detected for the Prandtl number.

7. Closing remarks

Main findings are listed below.

e A higher magnetic parameter decays fluid flow whereas
temperature enhances.

e Velocity for the Forchheimer number and porosity
parameter is the same.

e A larger thermal
temperature.

e A larger estimation of nanoparticle volume fractions
corresponds to an amplified fluid flow and thermal field.

e Entropy shows increasing behavior due to the Brinkman
number.

e A Higher magnetic parameter leads to entropy rate
enhancement.

e Surface drag force shows decreasing behavior for For-
chheimer, porosity, material and magnetic parameters.

e The Prandtl number leads to Nusselt number
enhancement.

e Nusselt number improvement against thermal relaxation
time and magnetic parameters is ensured.

relaxation time variable raises
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