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ulation for Cattaneo–Christov
heat analysis of entropy optimized hybrid
nanomaterial flow

Aneeta Razaq, *a Tasawar Hayat,a Sohail A. Khan *a and Ahmed Alsaedi b

Here, the hydromagnetic entropy optimized flow of a hybrid (Pb + Fe2O3/C2H6O2) nanoliquid by a curved

stretchable surface is addressed. The Darcy–Forchheimer model is utilized for porous space. Lead (Pb) and

ferric oxide (Fe2O3) are considered the nanoparticles and ethylene glycol (C2H6O2) as the base liquid.

Thermal expression consists of dissipation and ohmic heating. Entropy generation is under consideration.

The Cattaneo–Christov heat flux impact is discussed. Non-dimensional partial expressions by adequate

transformations have been reduced to ordinary differential systems. The ND-solve technique is

implemented for numerical solutions of dimensionless systems. Graphical illustrations of velocity,

thermal field and entropy against influential variables for both nanoliquid (Pb/C2H6O2) and hybrid

nanoliquid (Pb + Fe2O3/C2H6O2) are presented. Graphical illustrations of velocity, thermal field and

entropy against sundry variables for both nanoliquid (Pb/C2H6O2) and hybrid nanoliquid (Pb + Fe2O3/

C2H6O2) are presented. Influences of sundry variables on the Nusselt number and drag force for both

nanoliquid (Pb/C2H6O2) and hybrid nanoliquid (Pb + Fe2O3/C2H6O2) are examined. A higher thermal

relaxation time tends to intensify the heat transport rate and temperature. An increment in the magnetic

variable leads to an enhancement of the entropy and thermal field. An improvement in liquid flow is seen

for volume fraction variables. Velocity against the porosity variable and Forchheimer number is reduced.

The Brinkman number leads to maximization of entropy generation.
1. Introduction

During the past few decades, hybrid nano-uids have become
popular among researchers, scientists and engineers due to
their superior heat transport properties. Hybrid nano-uids are
suspensions of two or more nano-particles in the base uid. The
heat conductive performance of convectional materials (like
blood, water, engine oil, ethylene glycol, etc.) can be enhanced
by inserting nano-particles (like silica, carbon nanotubes, silver
alumina, gold, lead, ferric oxide, etc.). Hybrid nano-uids
possess higher thermal conductivity for heat transfer
phenomena such as those relevant to engines, vehicle radiators,
machining, biomedicine, warming procedure on buildings,
hybrid powered engines, pharmaceutical industries, paper
production and many others. The concept of heat transport
enhancement of the base liquid through addition of nano-
particles was initially given by Choi and Eastman et al.1,2 Hassan
et al.3 examined the partial slip effect for the ow of hybrid
ferro-liquids. Radiation and porous space effects were
addressed. Chabani et al.4 examined the electrically conducting
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hybrid (Ag–Al2O3/H2O) nanomaterial ow inside a modied
trapezoidal permeable enclosure. Thermal transport analysis
for hybrid nanoliquids with suction/injection in a rotating
system was reported by Abdollahi et al.5 Cattaneo–Christov
analysis in the magnetohydrodynamic ow of ternary nano-
materials with nonlinear radiation was studied by Alqawasmi
et al.6 Few latest developments related to hybrid nano-uid ow
under different geometric congurations are given in ref. 7–15.

Heat transfer is induced in view of temperature differences
and subsequent temperature changes and distribution in
different bodies. Heat transfer plays a signicant role in
industries, and biomedical and engineering processes such as
those relevant to heat exchangers, air conditioning, refrigera-
tion, equipment power collectors, fuel cells, drug targeting,
microelectronics, heat conduction in tissues, etc. The mecha-
nism of heat transfer was initially given by Fourier.16 Fourier's
law through parabolic expression predicts the innite speed of
heat waves. It is not acceptable physically. Therefore the
thermal relaxation time was taken into account by Cattaneo.17

For material invariant formulation to the Cattaneo's frame work
Christov18 introduced Oldroyd's upper convected derivative.
Razaq et al.19 explored the convective ow of the Reiner–Rivlin
uid subject to Cattaneo–Christov uxes and MHD. Radiation
impact for the magnetized ow of Prandtl nanoliquid with
Cattaneo–Christov uxes theory was given by Salmi et al.20
Nanoscale Adv., 2023, 5, 4819–4832 | 4819
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Haneef et al.21 analyzed heat transport for Oldroyd-B material
ow with Cattaneo–Christov uxes. Random motion and ther-
mophoresis effects in magnetohydrodynamic Oldroyd-B nano-
liquid ow were studied by Hayat et al.22 Latest articles for
Cattaneo–Christov heat and mass uxes are mentioned in ref.
23–28.

Entropy minimization (EM) optimizes thermal system
performance by exploring associated irreversibility through
heat and mass transfer, Joule heating and liquid friction.
Entropy is a measure of uncertainty and disorderness of
a system and its surroundings. All natural processes are ther-
modynamically irreversible. Entropy is inversely proportional to
the temperature of a system. Entropy has a direct proportion to
the reversible change in heat. Entropy generation is the loss of
energy in thermodynamical systems due to diffusion processes,
temperature difference, electric resistance, uid mixing,
chemical reaction, radiation and resistive forces. Applications
of entropy generation are found in electronic cooling systems,
geothermal reservoirs, thermal and nuclear reactors and heat
exchanger pumps. Entropy optimization in thermally convec-
tion ow was studied in Bejan.29–31 Iikhar et al.32 analyzed
entropy generation for non-Newtonian biviscosity uid in
a square cavity. Hayat et al.33 addressed the magnetized entropy
optimized ow of the Reiner–Rivlin material. Maiti et al.34 re-
ported entropy generation analysis for time-dependent hybrid
nanoliquid ow by shrinking a disk. Latest investigations for
entropy analysis are highlighted in studies.35–42

This communication discusses the magnetohydrodynamic
Darcy–Forchheimer ow of a hybrid nanomaterial. The Catta-
neo–Christov heat relation is under consideration. Ferric oxide
(Fe2O3) and lead (Pb) are used as nanoparticles. Ethylene glycol
(C2H6O2) is used as a conventional liquid. Joule heating and
dissipation are considered in thermal relation. Entropy gener-
ation analysis is carried out. Governing nonlinear expressions
are made dimensionless by implementation of suitable trans-
formations. ND-solve is utilized for numerical solutions. Liquid
v
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ow, entropy and temperature for both nanoliquid (Pb/C2H6O2)
and hybrid nanoliquid (Fe2O3 + Pb/C2H6O2) are explored.
Surface drag force and heat transport rate against emerging
variables for nanoliquid (Pb/C2H6O2) and hybrid nanoliquid
(Fe2O3 + Pb/C2H6O2) are numerically discussed.
2. Modeling

Two-dimensional magnetized ow of the hybrid (Fe2O3 + Pb/
C2H6O2) nanoliquid by the curved stretching surface is
addressed. Darcy–Forchheimer model analysis is carried out.
Lead (Pb) and ferric oxide (Fe2O3) are used as nanoparticles and
ethylene glycol (C2H6O2) as the base liquid. Cattaneo–Christov
heat ux with ohmic heating and dissipation is under consid-
eration. Entropy analysis is carried out. The surface has
stretching velocity (uw = u0e

s/L) with u0 reference velocity. The
magnetic eld of constant strength (B0) is applied. Fig. 1
comprises a physical model.43

The governing equations satisfy:44–49
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with50–52

u ¼ uwðsÞ; v ¼ 0; T ¼ Tw ¼ TN þ T0e
As
2L; at r ¼ 0

u/0; T/TN; as r/N

9>=
>;: (5)

In the above expressions (u,v) depict velocity components, mhnf
the dynamic viscosity, rhnf the density, (r,s) signify the Cartesian

coordinates, shnf the electrical conductivity, F

 
¼ Cbffiffiffiffiffi

kp
p

!
the

inertia coefficient, kp the porous medium permeability coeffi-
cient, R the radius of curvature, (rcp)hnf the heat capacitance, Cb

the drag force coefficient, L the reference length, T the
temperature, khnf the thermal conductivity, cp the specic heat,
TN the ambient temperature, dE the heat relaxation time, B0 the
magnetic eld strength, Tw the wall temperature and p the
pressure.
Fig. 1 Flow sketch.
2.1. Thermophysical characteristics

Mathematical expressions for nanouid and hybrid nano-
materials and numerical values of conventional uid and
nanoparticles have been given through Tables 1 and 2.53,54
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Table 1 Mathematical expressions for thermophysical characteristics53,54

Properties Nanoliquid

Viscosity mnf ¼
mf

ð1� f1Þ5=2
Density rnf = (1 − f1)rf + f1rs1
Heat capacity (rcp)nf = (1 − f1)(rcp)f + f1(rcp)s1
Electrical conductivity snf

sf
¼

ss1ð1þ 2flÞ þ 2sfð1� flÞ
ss1ð1� f1Þ þ sfð2þ f1Þ

Thermal conductivity knf

kf
¼ ks1 þ 2kf � 2f1ðkf � ks1Þ

ks1 þ 2kf þ f1ðkf � ks1Þ
Properties Hybrid nanoliquid
Viscosity mhnf ¼

mf

ð1� f1Þ5=2ð1� f2Þ5=2
Density rhnf = (1 − f2){(1 − f1)rf + f1rs1} + f2rs2
Heat capacity (rcp)hnf = (1 − f2){(1 − f1)(rcp)f + f1(rcp)s1} + f2(rcp)s2
Electrical conductivity shnf

snf
¼

ss2ð1þ 2f2Þ þ 2snfð1� f2Þ
ss2ð1� f2Þþ snfð2þ f2Þ

Thermal conductivity khnf

knf
¼ ks2 þ 2knf � 2f2ðknf � ks2Þ

ks2 þ 2knf þ f2ðknf � ks2Þ

Table 2 Thermophysical characteristics of ethylene glycol (C2H6O2), lead (Pb) and ferric oxide (Fe2O3)53,54

Properties r (kg m−3) k (W m−1 K−1) cp (J k−1 g−1 K−1) s (U−1 m−1)

Ethylene glycol 1116.6 0.249 2382 1.07 × 10−7

Lead (Pb) 11 343 35 130 4.55 × 106

Ferric oxide (Fe2O3) 5200 80.2 670 0.74 × 106
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vf

vh
ðx; 0Þ ¼ 1; f ðx; 0Þ ¼ �x

vf
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ðx; 0Þ; qðx; 0Þ ¼ 1;

vf
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: (10)

Here K1
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shows the material parameter,
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the thermal relaxation time,
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the magnetic variable, Pr
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af

�
the Prandtl
4822 | Nanoscale Adv., 2023, 5, 4819–4832
number and l

�
¼ nfL

u0kp

�
the porosity parameter. Here A1, A2, A3,

A11, A22, A33 and A44 are expressed as
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3. Interesting quantities

3.1. Surface drag force

One may write

Cf ;s ¼ srsjr¼0

rfuw
2
: (16)

Here srs wall shear stress is

srs ¼ mhnf

�
vu

vr
� 1

ðrþ RÞ u
�
; (17)

Dimensionless version is

CfsRes
1=2 ¼ 1

A1

�
f

00 ð0Þ þ 1

K1

f
0 ð0Þ
�
: (18)
3.2. Nusselt number

Considering

Nus ¼ sqw

kfðTw � TNÞ ; (19)

and heat ux qw

qw ¼ �khnf
�
vT

vr

�����
r¼0

; (20)

we can express thatffiffiffiffiffiffi
2L

s

r
NusRes

�1=2 ¼ �khnf

kf
q
0 ð0Þ; (21)

in which Res ¼ uws
nf

indicates the local Reynolds number.
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4. Entropy formulation

Mathematical expression is given by

EGðx; hÞ ¼ 1

TN
2
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(22)
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Here a1

�
¼ T0

TN

�
represents the heat ratio parameter,

Br
�
¼ mfu0

2

T0kf

�
the Brinkman number and SG

�
¼ 2EGLTNnf

kfu0T0

�
the

entropy rate.

5. Solutions methodology

Considering the derivatives with respect to x

�
i:e:

vð$Þ
vx

¼ 0
�

in

eqn (7)–(10) we arrive at

P
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f
0 ðx; 0Þ ¼ 1; f ðx; 0Þ ¼ 0; qðx; 0Þ ¼ 1;

f
0 ðx;NÞ ¼ 0; qðx;NÞ ¼ 0
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; (27)
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Elimination of pressure from eqn (22) and (23) yields
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9>>>>>>>>>>>>>>>>>>=
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: (30)
5.1. Numerical approach

Governing problems are solved by the ND-solve algorithm. The
Mathematica soware is utilized to develop the computational
results. For this we converted the boundary value problem to the
initial value situation as follows:

f ¼ y1; f
0 ¼ y2; f

00 ¼ y3; f
000 ¼ y4; f

iv ¼ y
0
4

q ¼ y5; q
0 ¼ y6; q
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0
6

9=
;; (31)
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y1ð0Þ ¼ 0; y2ð0Þ ¼ 1; y5ð0Þ ¼ 0

y2ðNÞ ¼ 0; y5ðNÞ ¼ 0

)
(34)
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6. Discussion

The inuence of emerging variables on liquid ow, entropy rate
and temperature for both nanoliquid (Pb/C2H6O2) and hybrid
nanoliquid (Fe2O3 + Pb/C2H6O2) is discussed. Here dotted lines
show nanoliquid (Pb/C2H6O2) behaviors and solid lines char-
acterize the hybrid (Pb + Fe2O3/C2H6O2) nanoliquid character-
istics. Engineering quantities like the skin friction coefficient
and heat transport rate are discussed through tabulated forms.
Comparison of recent analysis with previous results in the
literature is constructed in Table 3. Here we discussed the
Table 3 Coefficient of skin friction comparison with Okechi et al.55

K1 Okechi et al.55 Present results

5 1.4196 1.41963
10 1.3467 1.34675
20 1.3135 1.31354
30 1.3028 1.30281

Fig. 2 f′(h) variation versus M.

Fig. 4 f′(h) variation versus Fr.

Fig. 3 f′(h) variation versus l.

Fig. 5 f′(h) variation versus f1.

Fig. 6 f′(h) variation versus f2.

© 2023 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2023, 5, 4819–4832 | 4827
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Fig. 7 q(h) versus b.

Fig. 8 q(h) versus M.

Fig. 10 q(h) versus f1.

Fig. 11 q(h) versus f2.
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comparison of the coefficient of skin friction versus a higher
approximation of the curvature variable with Okechi et al.55 for
a limiting case (viscous uid ow). Clearly a good consensus is
noticed.

6.1. Velocity

Fig. 2 illustrates the ow behavior against the magnetic variable
(M). An increment in the magnetic variable leads to
Fig. 9 q(h) versus Ec.

4828 | Nanoscale Adv., 2023, 5, 4819–4832
intensication of the Lorentz force which declines the liquid
ow. The inuence of (l) on (f′(h)) is portrayed in Fig. 3. Higher
porosity corresponds to diminished velocity in both nanoliquid
(Pb/C2H6O2) and hybrid (Pb + Fe2O3/C2H6O2) nanoliquid cases.
Fig. 4 shows the velocity impact against the Forchheimer
number (Fr). A reduction in liquid ow (f′(h)) is noticed versus
the Forchheimer number for both nanoliquid (Pb/C2H6O2) and
hybrid (Pb + Fe2O3/C2H6O2) nanomaterials. Fig. 5 and 6
Fig. 12 NG(h) versus M.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 NG(h) versus Br.

Fig. 14 NG(h) versus f1.

Table 4 Numerical results of the skin friction (Res
1/2Cfs) coefficient

M K1 l Fr

Res
1/2Cfs

Pb/C2H6O2

Pb +
Fe2O3/C2H6O2

0.4 0.1 0.1 0.2 8.4631 19.9922
0.8 7.35445 17.5033
0.12 6.57457 15.7212
0.3 0.45 0.1 0.2 0.475582 1.04693

0.45 0.34613 0.754253
0.51 0.231708 0.496568

0.3 0.45 0.2 0.2 0.344601 0.738767
0.3 0.223838 0.453805
0.4 0.11172 0.188597

0.1 0.564833 1.20704
0.4 0.313042 0.748393
0.7 0.0991132 0.343877

Table 5 Computational values for Res
−1/2Nus

b M Pr Ec

Res
−1/2Nus

Pb/C2H6O2

Pb +
Fe2O3/C2H6O2

0.01 0.1 5.0 0.4 2.94351 3.10761
0.03 2.81501 2.44288
0.05 2.68726 2.09427
0.01 0.4 5.0 0.4 2.59787 2.34593

0.5 2.48648 1.82663
0.6 2.37692 1.59412

0.01 0.1 3.5 0.4 2.45597 2.38122
4.0 2.62835 2.52681
4.5 2.79038 2.6638

0.01 0.1 5.0 0.2 3.23399 3.85736
0.7 2.50778 1.71628
0.11 1.92682 0.280292
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elucidate the impact for ow versus nanoparticle volume frac-
tions (f1 and f2). It is noticed that there is an enhancement in
liquid ow versus higher nanoparticle volume fractions (f1

and f2).
6.2. Thermal eld

Fig. 7 presents the trend of temperature against the thermal
relaxation time variable (b). A higher estimation of thermal
Fig. 15 NG(h) versus f2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
relaxation time corresponds to an increase of the thermal eld.
Fig. 8 indicates the importance for (M) on q(h). A larger
approximation of the magnetic variable intensies the Lorentz
force which raises the resistance to ow. Therefore, the
temperature is increased. The inuence of the Eckert number
on (q(h)) is depicted in Fig. 9. The outcome for the Eckert
number (Ec) leads to creation of an additional kinetic energy
and consequently the thermal eld is improved. Characteristics
of nanoparticle volume fractions (f1 and f2) on the thermal
eld are disclosed in Fig. 10 and 11. Clearly, higher nanoparticle
volume fractions (f1 and f2) enhance the thermal eld for both
nanoliquid (Pb/C2H6O2) and hybrid (Pb + Fe2O3/C2H6O2)
nanomaterials.
6.3. Entropy rate

Fig. 12 reveals the impact of the magnetic variable on NG(h).
Increasing values of the magnetic variable enhance the resistive
force in the ow region which produces an additional energy in
the system and therefore entropy is maximized. Fig. 13 depicts
the importance of entropy for the Brinkman number. The
Nanoscale Adv., 2023, 5, 4819–4832 | 4829
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entropy rate rises versus a higher Brinkman number due to the
viscous force. Fig. 14 and 15 show entropy characteristics
against nanoparticle volume fractions (f1 and f2). A higher
estimation of volume fractions (f1 and f2) leads to augmenta-
tion of the entropy rate for both nanoliquid (Pb/C2H6O2) and
hybrid (Pb + Fe2O3/C2H6O2) nanomaterials.
6.4. Physical quantities

Engineering quantities like the skin friction coefficient
(Res

1/2Cfs) and heat transport rate (Res
−1/2Nus) for nanoliquid

(Pb/C2H6O2) and hybrid (Pb + Fe2O3/C2H6O2) nanomaterials are
discussed through tabulated forms.

6.4.1. Skin friction. Table 4 highlights the characteristics of
the skin friction (Res

1/2Cfs) coefficient against sundry parame-
ters for both nanoliquid (Pb/C2H6O2) and hybrid (Pb + Fe2O3/
C2H6O2) nanomaterials. It is found that larger Forchheimer
number (Fr), porosity (l), material (K1) and magnetic (M)
parameters result in skin friction reduction.

6.4.2. Heat transport rate. Table 5 shows the heat transport
rate (Res

−1/2Nus) variation versus inuential variables for both
nanoliquid (Pb/C2H6O2) and hybrid (Pb + Fe2O3/C2H6O2)
nanomaterials. Decay in the thermal transport rate is witnessed
for larger Eckert number (Ec), thermal relaxation time (b) and
magnetic (M) variables. An increment in the temperature
gradient is detected for the Prandtl number.
7. Closing remarks

Main ndings are listed below.
� A higher magnetic parameter decays uid ow whereas

temperature enhances.
� Velocity for the Forchheimer number and porosity

parameter is the same.
� A larger thermal relaxation time variable raises

temperature.
� A larger estimation of nanoparticle volume fractions

corresponds to an amplied uid ow and thermal eld.
� Entropy shows increasing behavior due to the Brinkman

number.
� A Higher magnetic parameter leads to entropy rate

enhancement.
� Surface drag force shows decreasing behavior for For-

chheimer, porosity, material and magnetic parameters.
� The Prandtl number leads to Nusselt number

enhancement.
� Nusselt number improvement against thermal relaxation

time and magnetic parameters is ensured.
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