Open Access Article. Published on 18 October 2023. Downloaded on 2/5/2026 9:51:45 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale
Advances

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: Nanoscale Adv., 2023, 5, 6135

KHA model comprising MoS,; and CoFe,Os in
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Forchheimer flow with entropy and Cattaneo—
Christov heat fluxf
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Opjective: Nanoliquid flows are widely utilized in industrial, petroleum, engineering, and pharmaceutical

applications including electric cooling, drug delivery, nuclear reactor cooling, solar collectors, heat

exchangers, magnetohydrodynamic power generators, aerospace, porous media, thermal storage systems,

and many others. Darcy—Forchheimer magnetized hybrid nanoliquid subjected to a stretchable cylinder was

addressed, and the Cattaneo-Christov heat flux analysis was considered. Herein, disulfido (dithioxo)

molybdenum (MoS,) and cobalt ferrite (CoFe,O4) were considered as nanoparticles, and engine oil as

a conventional liquid. The thermal relationship of heat generation and radiation was discussed, and the

influence of the entropy rate was addressed. Methodology: Governing expressions were transformed into

dimensionless forms. Simulation by the ND-solve technique was implemented. Conclusions: Features for the

entropy rate, liquid flow, and temperature against emerging variables for nanoliquid (MoS,/engine oil) and

hybrid nanoliquid (MoS4 + CoFe,O4/engine oil) were explored. The numerical results of the coefficient of

skin friction and thermal transport rate for nanoliquid (MoSs/engine oil) and hybrid nanoliquid (MoS; +

CoFe,O4/engine oil) were examined. Reduction in velocity clearly occurred through a magnetic field,
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whereas the reverse impact held for the entropy rate. The thermal field and entropy rate against the

curvature parameter were enhanced. A decrease in liquid flow occurred for higher porosity variables. An

DOI: 10.1039/d3na00441d
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1. Introduction

Considerable research has been conducted on nanomaterials
due to their significance in pharmaceutical, industrial, chem-
ical, and engineering activities. Nanomaterial is basically
created by the insertion of small-size (1-100 nm) particles in
conventional liquid, which results in thermal conductivity
enhancement. Nanomaterials play a key role in heat-related
equipment, cooling and heating systems, radiators, nuclear
reactors, fuel chambers, space technology, and caloric control.
The initial investigations into nanofluids were conducted by
Choi' and Eastman et al?> The distributed ultrafine particles
efficiently strengthen the viscosity and thermal conductivity of
nanomaterial and enhance its competence in energy
exchange.** Thermal conductivity and viscosity may vary with
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enhancement in the entropy rate was witnessed for radiation and porosity parameters. Higher radiation and
thermal relaxation time variables resulted in enhancement of the thermal transport rate.

the temperature of the nanofluid mixture, nanoparticle size,
and volume fraction.

The thermal conductivity of metallic nanoparticles is higher
than that of conventional materials, such as water and bio-
particles with a lower density and thermal conductivity than
that of traditional heat transfer fluids (HTFs). Sivasankaran
et al.® addressed magnetohydrodynamic hybrid nanoliquid flow
between stretchable parallel plates. Heat transport in the elec-
tromagnetohydrodynamic flow of Casson nanoliquid consid-
ering the heat source/sink was explored by Hussain et al.® Mixed
convective flow of hybrid nanomaterial was explored by Patil
and Shankar.” Cicek et al® explored the convective flow of
hybrid nanofluid considering particle deposition inside
a square cavity. There have been numerous investigations that
have been conducted to explore nanofluid flow.*™*

A hybrid nanoliquid is the combination of two or more small
size metallic nanoparticles with different chemical character-
istics in conventional materials. Hybrid nanomaterials are
useful to augment the advantages of nanoliquid such as heat
transport transmission and enhancement processes. Because
hybrid nanomaterials are advantageous for thermal conduc-
tivity enhancement, they are widely used in nuclear reactor
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cooling processes, biomedical applications, solar energy, the
automotive industry, automobile generators, space technology,
and heat exchangers.

Thermal enhancement of convectional material by insertion
of single particles and hybrid nanoparticles was given in Jana
et al."* Bhatti et al.® discussed the magnetohydrodynamic flow
of hybrid nanomaterial by a circular non-Darcy surface. Wahid
et al.*® analyzed heat transfer in hybrid nanomaterial subject to
a Riga plate. Slip impacts in the convection stagnation point
flow of hybrid nanoliquid were reported by Zangooee et al.'’
Khan et al.'® explored entropy in a radiating flow of hybrid
nanoliquid through the Darcy-Forchheimer relation. Zainal
et al.* deliberated the influence of Arrhenius kinetics in hybrid
nanomaterial flow by a shrinking and stretching surface with
radiation. It should be noted that there have been few attempts
to study hybrid nanoliquid flow.>*°

Entropy generation is the measurement of energy wastage
during any thermal process. Entropy always increases in an
irreversible process, and therefore, entropy generation is
a positive quantity. Entropy generation is also a non-conserved
property. There is no existence of conservation of entropy.
Therefore, the entropy of the universe is continuously
increasing. Joule heating, fluid flow friction between solid
surfaces, molecular vibration, liquid viscosity, and diffusion are
sources that produce entropy generation. In fact, Bejan
discovered entropy optimization for convective flow with
thermal convection.*** Entropy for the radiative magnetized
flow of a hybrid nanoliquid due to a stretchable rotating disk is
presented in Khan et al.>* Kumawat et al.>* analyzed magnetized
entropy-optimized flow with variable viscosity. Nonlinear
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radiation in hybridized nanoliquid flow with a convectively
heated surface was explored by Ashwinkumar et al.>* Rajkumar
et al.*® examined Cattaneo-Christov flux in the radiative flow of
micropolar nanofluid with entropy optimization. Similar
studies on entropy have been conducted.**>

The main theme here is to communicate the Cattaneo-
Christov heat flux for the magnetohydrodynamic flow of hybrid
(MoS, + CoFe,0,/engine oil) nanoliquid towards a stretchable
cylinder. The Darcy-Forchheimer relation is used for porous
space. Disulfido (dithioxo) molybdenum (MoS,) and cobalt
ferrite (CoFe,0,4) are considered as nanoparticles, and engine
oil as a conventional fluid. Cattaneo-Christov heat flux was
deliberated, and radiation and heat generation were consid-
ered. Entropy optimization was also considered. Related equa-
tions were converted into dimensionless versions. The ND-solve
technique was implemented for solution of nonlinear non-
dimensional systems. Fluid flow, entropy rate, and tempera-
ture via the involved variables for nanoliquid (MoS,/engine oil)
and hybrid nanoliquid (MoS, + CoFe,O,/engine oil) were
graphically analyzed. The numerical results illustrating the
impacts of influential variables on physical quantities for
nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,/engine oil) are presented.

2. Formulation

The hydromagnetic flow of hybrid (MoS, + CoFe,0,/engine oil)
nanomaterial by stretchable porous cylinder was examined. The
Darcy-Forchheimer expression was used for porous space.
Cattaneo-Christov heat flux was carried out. Disulfido

MoS,/Engine oil

B, N

O

MoS, + CoFe,0,/Engine oil

Thermal boundary layer

Momentum boundary layer

i
il

j (., u’)

Fig. 1 Physical model.
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Table 1 Values of nanoparticles and base liquid®°—>3
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Physical property pr (kg m ™) (Cpe(O kg 'K or(Sm™1) kk(Wm 'K
Engine oil 884 1910 10" to2 x 107° 0.1410

MoS, 5060 397.21 2.09 x 10* 904.4

CoFe,0, 4907 700 5.51 x 10° 3.7

(dithioxo) molybdenum (MoS,) and cobalt ferrite (CoFe,O,)
were considered as nanoparticles, and engine oil as a conven-
tional material. Radiation and heat generation were present in
the energy equation, and entropy modeling was carried out. A
constant magnetic field (B,) perpendicular to the liquid flow

2.1. Thermophysical characteristics

The thermophysical characteristics were determined by Ham-
ilton-Crosser relations for the nanomaterial and hybrid nano-
material (Table 1).%°

. 3 ) ; 2.1.1. Viscosity
was applied. The radius of a cylinder was considered as (R), and i
f . .
stretching velocity (u = Uy = 1%3() (I shows characteristics ot = (1= for nanoliquid, (5)
length). The flow configuration is sketched in Fig. 1.
Under these considerations, the related expressions are:**-** = z_l;f 55 for hybrid nanoliquid, (6)
(1=¢)"(1=¢y)
a(rv)  A(ru) 0 (1)
ar ax
2.1.2. Density
ua“ Va” _ Mnor 62“+ 1 du ot Bo Hor 1 Fi
ax Or  pye \OP2 1 Or Prunt Pint Kp ’ ong = (1 — ¢1)pr + ¢1ps1 for nanoliquid, (7)
©) : -
Prnr = (1 — 2)[(1 — d1)pr + d1psi] + dapso for hybrid nanoliquid.
(8)
oT = 9T 1 160*T.° (19T &'T
T T LT (T 0Ty 0y g
dx or (pcp)hnf 3k r or  dr (/’CP)hnf
s u282T+u6u or v oT T L duer oy 6T+v262T
K ax? dx dx dx dr axor ar dx ar or ar? 6)
> 3
oL 160*T.C (w &T 8T v T v&T  &T
F (pep),e  3K* roxdr  dxarr 2 dr  r Or? ar
T T N 19T &°*T
*6EA <u(37+ VL) — & (7674,672)
(PCp) s \ X ar (PCp) g \r O OF
with 2.1.3. Electrical conductivity
—uyx) = 50,7 = - o+ (1= 1)y — (1= 1)y (01 — o .
U= uy(x) = E v=0,T=Ty,atr=R @ Tur _ Tsl + (= Dor — (n— Dby (Jf 7 1) for nanoliquids.
? ag Js1 + (l’l - l)af + ¢1 (Uf - asl)
u—0,T—>Ts,as r— o
9
in which (u,v) represent velocity components, unns the dynamic
viscosity, onne the electrical conductivity, (x,r) the cylindrical Tt _ T+ (= D)ow — (1= 1)¢, (0ur — 032) for hybrid
) Ch o ) Onf oo+ (n—1)on + ¢y (0nr — 052)
coordinates, F| = ﬁ the inertia coefficient, pn,s the nanoliquid. (10)
density, k, the porous space permeability, v,,¢ the kinematic
viscosity, C, the drag force coefficient, T the temperature, 2.1.4. Specific heat capacity
(Cp)nnt specific heat, Q, > 0 the heat generation coefficient, o*
ke e (pep)nr = (1 = d)(pep)r + Pi1(pcp)si for nanoliquid, (11)
Stefan Boltzmann constant, a¢| = m thermal diffusivity,
plp )t

k* mean absorption coefficient, ky,¢ the thermal conductivity, 0g
the thermal relaxation time, 7,, the wall temperature, u, the
reference velocity, and T, the ambient temperature.

© 2023 The Author(s). Published by the Royal Society of Chemistry

(pcp)hnt = (1 = ¢)[(1 — d1)(pcp)s + d1(pcp)si] + da(pep)so for hybrid
nanoliquid. (12)
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2.1.5. Thermal conductivity we have
Kap ksl+(n—1)kf—(”l—1)¢>1(kf—ksl) Lo aof of
= f 1 d 13 _E70 = 7_/ E70 :_E 57 570 =1
T s + (1= Dks + 1 (ki — ko) or nanoliquid, (13) 577( ) (€,0) 35( 0),6(¢,0) »
of '
— =0,0(6,0)=0
Kor _ K + (n = Dkug = (1= 1)y (kur — ks2) for hybrid o ) )
knf ks2 + (I’l - l)knf + ¢2 (knf - ksZ)
nanoliquid. (14) vl
In the above expressions, a( =\ g2 indicates the
0
Considering transformations
. o¢Bo’l .
curvature variable, M| = —— | the magnetic parameter,
Uops
Ufl . . Vr
Al = —— ) the porosity variable, Pr{ = — | the Prandtl
uokp of
x  fug (P —R o of
5*777]* E( 2R )77'[*”05%(&777)7
1 [oug vfuo of (15)
= TRf(€7 ) - gR 5(57 77), ’
T —-Ts _ UpX
0(&,m) o=
3 2 2 2
af ’f (4 s Ir of &°f
(1 “'20"’7)6 3 +2a017 A4, an +A1A2f6172 A1A256§6n n 4, 2565 an? )
, 16
af of 2 Ohnf af
—Aan—AlAzFrE(an) — A, 377 =0
Kt 90 a9 af 30 a9 af 90
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00 9f 00 30 of ’
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Ch One may write eqn (27) and (28) as
number, Fr| = —I the  Forchheimer number,
\/E lc Re 12 _ if"(O)
160%T,, > ogl Pt A,

) Rd( = 7*) the radiation parameter, @, (—) the , (26)
% ek “ Nu,Re, "/? = 7(@+ Rd) 6'(0)

5] A ke
pr thermal relaxation time variable, and Q( = QOZ) LAFAFE Yo
E Uo(pep)s where Rex( = L) shows the local Reynolds number.

§ Aq, A, and A; are ve
S5
o AF* —
[32]
© .
S o 90 af &% 50 20\ 4. Expression for entropy

g ZEaa—faa —5—5(1—5—20{7})6—faa S — 4o ﬁ—(l-}—Zan)fF
§ n 050n n 050’ n m Mathematically, entropy is expressed as

5 af 90 of &
2 aa—éé—#—(1+2an)ia—§a—7£ £ — ke @+160*TW3 T 2+Mhnf ou 2
S T T2\ k| 3k ) \or T. \or
3 (20) , (27)
E L OmtBo” 5 Mt )
< L T. ko T

2 A= (1= ¢ = 27 (21) ’

IS

IS _ Ps1 Ps2 .
8 A = (1-¢,) {(1 —¢) + ¢ p_} + ¢, o (22) The above expression can be reduced as

o f f
=
% No(n) = e (T Ra ) (1 + 20m) (24 2+Brg2(1+z V(01 2+1Br52 AN

o =N “MW\on) T4 o) T4 \on
3 (28)
= Ohnf 2 af :
g + MBr&* | —

8 af 67;
L
o
Ry
L2
®

" EGVflTw .
= pc oc, where N (: 7) characterizes the entropy rate,
F A5 =(1-¢,) {(1 —¢)+ ¢ (( pj);‘ + ¢, (( pc")sz (23) S\ keto(Tw — T Y

P/t P/f

3. Quantities under interest

(cc)

Skin friction coefficient

1
<ECfXRex1/2) and Nusselt number
(Nu,Re; /%) are

21y
Cfx = 02
Pritw (24)
Nu, = X
* kf(Tw - TOO)
Shear stress () and heat flux (g,,) satisfy
. (au)
w = Mhnf | 57
ar ) |._
x (25)

160*T.."\ (9T
3k* ar

qw = _(khnf +

r=R

f

/11

(k;;“f + Rd) (28 + (2am +1)8") + AsPrf6 + PrOd — BPr(f20" + £1'6)

Tw — T . .
a1<: %) the temperature difference variable, and

B -

2
Helo

————— | the Brinkman number.
kf(TW - Too)

5. Solution development

5.1. Local similar solution
9(-
To obtain a local similar solution, we suppose that (g—g) = 0and
a(-
denote 6(_77) by prime in eqn (16)-(18). We have
Qan + 1)f" +2af" — A\ Aof * + A Aoff” — A — Ay A, Fref”
_ Il g Mf =0 ’
af
(29)
) (30)

—8.Rd((2an + 1)f0" + 4af0") — BPrQF6 =0
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' af o of o 9’0 a0
/(0) =1,(0) =0,0(0) = 1 { (31) 2a§—f—q+§(2an+1)—f—Z—4af—2—(2an+l)f—3

. . 00 o’

5.2. Local non-similar solution —4015170712 — (2am + 1)5176773

To construct the local non-similar solution, we suppose that (36)

¥_,Of o Of Fp&f pw_ 86 _ o

02 P ozon o gt om0 o2 9e T ogam oy - .

80 #q 0 9q We take the derivative of eqn (32)-(34) with respect to “6” and
—— = — -3 = = in eqn (16)-(18). One obtains a(-) o & #Pp 9
g2~ Oan? 9E2  OF ing 2\ ime. hat 2. 9P 9P °4

S representing an by prime. Suppose tha 392" Ean’ 9EIm® O
#q &q og ¥g g

become zero. We obtain

9gdm” 9Ean>’ 98’ 0Edn’ 9Ean>

Ff &S i\’ ’f ap of &>
2 )—=+200—=— A4, — A1 Arf —= — A1 A — — + A1 A6 P—
(2an + )0173 + agy 2<6n> + 4, 2fan2 1428 an an + A14:¢ an

2
Y g (L o o Y
an an or 09

, )
(khnf + Rd> |:(2D‘77 + l)ﬂ + 2(1%:| _ A3Prgglq + A3Prf§j+ A3Pr§p%
n n

ke on? an n
of 90, 96
5 5) =0
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%(m) LS (5,0) = £p(5,0),0(2.0) = 1
af
o

(34)
(ga oo) :0’0(g7 oo) =0

In the above equations, 4;; and A,, are defined as

o 90 ., (0f\*dq ., Of dp I\’ L9f 96dp ]
2 e (5) srea mralG) —Ea
. a0
)Efp—
n

9f d af a & 9
e F ey Syt epalt -

o
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an + 1)p" 4+ 20p" — 24, A5f'p + A Aopf” + A\ Aofp” — A Asp'f’ — A, ArEp”

+ A1 Aypf" + A\ AEpp” — /\P/ - 1‘111‘12Frf'2 - 2A1A2Fr§f/p/ — A4,

f

+A45Pipl’ + AsPripq + PrOg — AsPrf As; + RAB Aus ’

Ohnf ;o )
o MP =0 (37)

ki n p / /
( /‘; Ly Rd) [(2am + 1)g" + 2aq] — AsPtf'q — AsPrép'q + AsPipd + AsPrfy

+PrOB,(af +Eqp' —pb' —fd —p¥ —Epq) =0,

(39)

In the above equation, As; and A4, are expressed as

A33 =

s = Zaf/ql + ZaEp/q/ + (2an + l)f/q" + (2an + I)Eplq" — 8apl" — (2am + 1)pd
4= ! " "
—4afq’ — (2an +1)fq" — 4afpq” — (2am + V)pf™" — (2an + 1)épp

6. Discussion

Fluid flow, temperature, and entropy rate for sundry parameters
regarding nanoliquid (MoS,/engine oil) and hybrid nanoliquid
(MoS, + CoFe,0,4/engine oil) are presented. In these graphs, the
solid lines denote the nanoliquid impact, and the dashed lines
represent hybrid nanoliquid behavior. The numerical results for
coefficient of skin friction (Cg) and the thermal transport rate
(Nu,) for nanoliquid (MoS,/engine oil) and hybrid nanoliquid
(MoS, + CoFe,0,4/engine oil) were examined.

6.1. Velocity

Fig. 2 shows the variation in the curvature variable for liquid
flow. A larger approximation of curvature («) variable leads to
a decreased radius of curvature, which shrinks the region of the
cylinder in contact with liquid. Consequently, resistance
decreases, which hence boosts fluid flow. Fig. 3 indicates the
impact of Forchheimer number on velocity. An augmentation in
the Forchheimer number corresponds to a decrease in the
liquid flow for nanoliquid (MoS,/engine oil) and hybrid nano-
liquid (MoS, + CoFe,0O,4/engine oil). Fig. 4 depicts the influence
of the magnetic effect on liquid flow (f'(1)). A physically higher
magnetic field leads to resistance to liquid flow, and as a result,
velocity decreases. Fig. 5 exhibits the outcomes of the porosity

© 2023 The Author(s). Published by the Royal Society of Chemistry

TEPL AP g+ Ep g g -2 —Efp'q —Epp'd — faf" — 3epaf” + 12
—Efqp” — Epap” + 209’0 + 26pp'0' + Afp0" + ff'q + 4Ep*0" + 26fpq + Ep*q"

variable for velocity (f'(n)). The flow was enhanced by a higher
approximation of the porosity parameter.

6.2. Temperature

Fig. 6 indicates the temperature variation for thermal relaxation
time parameter (8;). An increase in the thermal field occurs

(40)

/11

(41)

versus the higher thermal relaxation time (8,) parameter. The
behavior of (6(n)) versus a higher radiation variable is shown in
Fig. 7. Physically higher radiation leads to an additional energy

f'(n)
N EU NN SO U B
I ﬂ _M0S4ZEngine ;oil _____ _______ ﬂ
0 6> M0S4+C(£Fe2 04/Engine oil

|

A 5

Fig. 2 f'(n) variation versus «.
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4 X

Fig. 3 f'(n) variation versus Fr.

f'()
1.0

0.8/
0.6/
0.4

0.2/

Fig. 4 f'(n) variation versus M.

in the system, which increases the thermal field. Fig. 8 displays
outcomes of the curvature («) variable for temperature.
Temperature enhances versus a higher curvature parameter.
Fig. 9 shows the Prandtl (Pr) number impact for (6(n)). Physi-
cally, (Pr) decreases the thermal diffusivity, and therefore, the
temperature decreases. Fig. 10 illustrates the outcomes of heat
generation for a thermal field. An increase in temperature
against heat generation is possible.
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6.3. Entropy rate

Fig. 11 depicts the behavior of entropy against a higher
magnetic field. A physically higher magnetic force leads to an
increasing resistive force, which gives rise to greater energy in
the system, and thus, the entropy rate increases. Fig. 12 shows
the variation of the porosity (1) variable against the entropy rate.
An increase in the entropy production occurs against a larger
approximation of the porosity parameter. Fig. 13 displays the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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radiation variation for the entropy rate. Physically higher radi-
ation leads to increasing thermal emission, which creates extra
energy in a thermal system. As a consequence, the entropy rate
increases. Fig. 14 elucidates the impact of curvature on the
entropy rate. The entropy production is enhanced for the
curvature variable.
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6.4. Physical quantities
The numerical  results for  coefficient of  skin

- 1 _
friction <5Cfoex1/ 2) and thermal transport rate (Nu,Re; *'?) for

nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,/engine oil) have been sketched in Tables 2 and 3.
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Fig. 11 Ng(n) variation versus M.

Fig. 12 Ng(n) variation versus A.

6.4.1. Coefficient of skin friction. Surface drag force

1 . . . . . .
(ECfXRexl/ 2) for influential variables is examined in Table 2.

Higher magnetic variables lead to intensification of the skin
friction coefficient for nanomaterial (MoS,/engine oil) and
hybrid nanomaterial (MoS, + CoFe,0,/engine oil). Clearly, for
a larger porosity variable and Forchheimer number, the surface
drag force improved.
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6.4.2. Nusselt number. Physical features of emerging vari-
ables of the Nusselt number (NuxRe;m) were constructed in
Table 3. An increase in the heat transport rate (Nu,Rey %) occurs
through radiation and thermal relaxation time parameters.
Higher estimation of heat generation variables intensifies the
heat transport rate (Nu,Re; *’?) for nanoliquid (MoS,/engine oil)
and hybrid nanoliquid (MoS, + CoFe,O,/engine oil).
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. 1
Table 2 Numerical values of surface drag force <£Cfoexl/2>

1

EC&RqJ”
MoS,/engine MosS, +
Fr M A oil CoFe,0,/engine oil
0.2 0.5 0.3 1.23154 1.65829
0.6 2.32562 3.09652
1.0 3.09845 3.95624
0.5 1.0 0.3 2.56234 3.56329
2.0 3.69532 4.032654
3.0 4.65892 5.01985
0.2 0.5 0.5 0.96523 1.85746
1.0 1.75632 2.89635
1.5 2.65295 3.56982

—1/2:

Table 3 Thermal transport rate (Nu,Re, <) variation against emerging

parameters
Nu,Re; /2
MoS,/engine MoS, +
Rd B¢ Q oil CoFe,0,/engine oil
1.5 0.5 1.0 3.42352 3.89653
2.0 4.12956 5.03256
2.5 5.45638 6.36524
1.0 1.0 1.0 2.86593 3.78654
1.5 3.58647 4.25369
2.0 4.96583 5.65389
1.0 0.5 1.5 2.54892 3.96585
2.5 3.95862 4.65895
3.5 4.96852 5.87562

7. Concluding remarks

The main results are listed below.

e The fluid flow variation for porosity and curvature variables
is reversed.

e The velocity field decayed for a magnetic field, while the
opposite holds for the entropy rate and temperature.

e The Forchheimer number results in velocity decrease.

e The curvature parameter variation for entropy and
temperature for nanoliquid (MoS,/engine oil) and hybrid
nanoliquid (MoS, + CoFe,0,/engine oil) was the same.

e An enhancement of the temperature and entropy rate
against radiation was observed.

o The thermal field decays for a higher Prandtl number in
nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,4/engine oil).

o A higher thermal relaxation time enhances the temperature
in nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,/engine oil).

e Porosity parameter variation increases the entropy rate for
nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,/engine oil).

o A higher magnetic field intensifies the surface drag force
for nanoliquid (MoS,/engine oil) and hybrid nanoliquid (MoS, +
CoFe,0,/engine oil).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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e A larger estimation of the Forchheimer number and
porosity variable leads to coefficient of skin friction enhance-
ment for nanomaterial (MoS,/engine oil) and hybrid nano-
material (MoS, + CoFe,0O,/engine oil).

e A higher radiation variable results in thermal transport rate
enhancement for nanoliquid (MoS,/engine oil) and hybrid
nanoliquid (MoS, + CoFe,0,/engine oil).

e A higher thermal relaxation time variable improves the
heat transport rate for nanoliquid (MoS,/engine oil) and hybrid
nanoliquid (MoS, + CoFe,0O,/engine oil).

e The Nusselt number intensifies for higher heat generation.

e The skin friction coefficient for hybrid nanomaterial (MoS,
+ CoFe,0,4/engine oil) was more than that of nanoliquid (MoS,/
engine oil).

e The thermal transport rate was more dominant for hybrid
nanoliquid (MoS, + CoFe,0O4/engine oil) than for nanoliquid
(MoS,/engine oil).
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