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prising MoS4 and CoFe2O3 in
engine oil invoking non-similar Darcy–
Forchheimer flow with entropy and Cattaneo–
Christov heat flux†

Sohail A. Khan, *a T. Hayata and A. Alsaedi b

Objective: Nanoliquid flows are widely utilized in industrial, petroleum, engineering, and pharmaceutical

applications including electric cooling, drug delivery, nuclear reactor cooling, solar collectors, heat

exchangers, magnetohydrodynamic power generators, aerospace, porous media, thermal storage systems,

and many others. Darcy–Forchheimer magnetized hybrid nanoliquid subjected to a stretchable cylinder was

addressed, and the Cattaneo–Christov heat flux analysis was considered. Herein, disulfido (dithioxo)

molybdenum (MoS4) and cobalt ferrite (CoFe2O4) were considered as nanoparticles, and engine oil as

a conventional liquid. The thermal relationship of heat generation and radiation was discussed, and the

influence of the entropy rate was addressed. Methodology: Governing expressions were transformed into

dimensionless forms. Simulation by the ND-solve technique was implemented. Conclusions: Features for the

entropy rate, liquid flow, and temperature against emerging variables for nanoliquid (MoS4/engine oil) and

hybrid nanoliquid (MoS4 + CoFe2O4/engine oil) were explored. The numerical results of the coefficient of

skin friction and thermal transport rate for nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +

CoFe2O4/engine oil) were examined. Reduction in velocity clearly occurred through a magnetic field,

whereas the reverse impact held for the entropy rate. The thermal field and entropy rate against the

curvature parameter were enhanced. A decrease in liquid flow occurred for higher porosity variables. An

enhancement in the entropy rate was witnessed for radiation and porosity parameters. Higher radiation and

thermal relaxation time variables resulted in enhancement of the thermal transport rate.
1. Introduction

Considerable research has been conducted on nanomaterials
due to their signicance in pharmaceutical, industrial, chem-
ical, and engineering activities. Nanomaterial is basically
created by the insertion of small-size (1–100 nm) particles in
conventional liquid, which results in thermal conductivity
enhancement. Nanomaterials play a key role in heat-related
equipment, cooling and heating systems, radiators, nuclear
reactors, fuel chambers, space technology, and caloric control.
The initial investigations into nanouids were conducted by
Choi1 and Eastman et al.2 The distributed ultrane particles
efficiently strengthen the viscosity and thermal conductivity of
nanomaterial and enhance its competence in energy
exchange.3,4 Thermal conductivity and viscosity may vary with
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the temperature of the nanouid mixture, nanoparticle size,
and volume fraction.

The thermal conductivity of metallic nanoparticles is higher
than that of conventional materials, such as water and bio-
particles with a lower density and thermal conductivity than
that of traditional heat transfer uids (HTFs). Sivasankaran
et al.5 addressed magnetohydrodynamic hybrid nanoliquid ow
between stretchable parallel plates. Heat transport in the elec-
tromagnetohydrodynamic ow of Casson nanoliquid consid-
ering the heat source/sink was explored by Hussain et al.6 Mixed
convective ow of hybrid nanomaterial was explored by Patil
and Shankar.7 Çiçek et al.8 explored the convective ow of
hybrid nanouid considering particle deposition inside
a square cavity. There have been numerous investigations that
have been conducted to explore nanouid ow.9–13

A hybrid nanoliquid is the combination of two or more small
size metallic nanoparticles with different chemical character-
istics in conventional materials. Hybrid nanomaterials are
useful to augment the advantages of nanoliquid such as heat
transport transmission and enhancement processes. Because
hybrid nanomaterials are advantageous for thermal conduc-
tivity enhancement, they are widely used in nuclear reactor
Nanoscale Adv., 2023, 5, 6135–6147 | 6135
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cooling processes, biomedical applications, solar energy, the
automotive industry, automobile generators, space technology,
and heat exchangers.

Thermal enhancement of convectional material by insertion
of single particles and hybrid nanoparticles was given in Jana
et al.14 Bhatti et al.15 discussed the magnetohydrodynamic ow
of hybrid nanomaterial by a circular non-Darcy surface. Wahid
et al.16 analyzed heat transfer in hybrid nanomaterial subject to
a Riga plate. Slip impacts in the convection stagnation point
ow of hybrid nanoliquid were reported by Zangooee et al.17

Khan et al.18 explored entropy in a radiating ow of hybrid
nanoliquid through the Darcy–Forchheimer relation. Zainal
et al.19 deliberated the inuence of Arrhenius kinetics in hybrid
nanomaterial ow by a shrinking and stretching surface with
radiation. It should be noted that there have been few attempts
to study hybrid nanoliquid ow.20–30

Entropy generation is the measurement of energy wastage
during any thermal process. Entropy always increases in an
irreversible process, and therefore, entropy generation is
a positive quantity. Entropy generation is also a non-conserved
property. There is no existence of conservation of entropy.
Therefore, the entropy of the universe is continuously
increasing. Joule heating, uid ow friction between solid
surfaces, molecular vibration, liquid viscosity, and diffusion are
sources that produce entropy generation. In fact, Bejan
discovered entropy optimization for convective ow with
thermal convection.31,32 Entropy for the radiative magnetized
ow of a hybrid nanoliquid due to a stretchable rotating disk is
presented in Khan et al.33 Kumawat et al.34 analyzed magnetized
entropy-optimized ow with variable viscosity. Nonlinear
Fig. 1 Physical model.
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radiation in hybridized nanoliquid ow with a convectively
heated surface was explored by Ashwinkumar et al.35 Rajkumar
et al.36 examined Cattaneo–Christov ux in the radiative ow of
micropolar nanouid with entropy optimization. Similar
studies on entropy have been conducted.37–42

The main theme here is to communicate the Cattaneo–
Christov heat ux for the magnetohydrodynamic ow of hybrid
(MoS4 + CoFe2O4/engine oil) nanoliquid towards a stretchable
cylinder. The Darcy–Forchheimer relation is used for porous
space. Disuldo (dithioxo) molybdenum (MoS4) and cobalt
ferrite (CoFe2O4) are considered as nanoparticles, and engine
oil as a conventional uid. Cattaneo–Christov heat ux was
deliberated, and radiation and heat generation were consid-
ered. Entropy optimization was also considered. Related equa-
tions were converted into dimensionless versions. The ND-solve
technique was implemented for solution of nonlinear non-
dimensional systems. Fluid ow, entropy rate, and tempera-
ture via the involved variables for nanoliquid (MoS4/engine oil)
and hybrid nanoliquid (MoS4 + CoFe2O4/engine oil) were
graphically analyzed. The numerical results illustrating the
impacts of inuential variables on physical quantities for
nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil) are presented.
2. Formulation

The hydromagnetic ow of hybrid (MoS4 + CoFe2O4/engine oil)
nanomaterial by stretchable porous cylinder was examined. The
Darcy–Forchheimer expression was used for porous space.
Cattaneo–Christov heat ux was carried out. Disuldo
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Values of nanoparticles and base liquid50–53

Physical property rf (kg m−3) (Cp)f (J kg
−1 K−1) sf (S m−1) kf (W m−1 K−1)

Engine oil 884 1910 10−11 to 2 × 10−9 0.1410
MoS4 5060 397.21 2.09 × 104 904.4
CoFe2O4 4907 700 5.51 × 109 3.7
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(dithioxo) molybdenum (MoS4) and cobalt ferrite (CoFe2O4)
were considered as nanoparticles, and engine oil as a conven-
tional material. Radiation and heat generation were present in
the energy equation, and entropy modeling was carried out. A
constant magnetic eld (B0) perpendicular to the liquid ow
was applied. The radius of a cylinder was considered as (R), and

stretching velocity
�
u ¼ uw ¼ u0x

l

�
(l shows characteristics

length). The ow conguration is sketched in Fig. 1.
Under these considerations, the related expressions are:43–48

vðrvÞ
vr

þ vðruÞ
vx

¼ 0; (1)

u
vu

vx
þ v

vu

vr
¼ mhnf

rhnf

�
v2u

vr2
þ 1

r

vu

vr

�
� shnfB0

2

rhnf
u� mhnf

rhnf

1

kp
u� Fu2;

(2)
u
vT

vx
þ v

vT

vr
� 1�

rcp
�
hnf

16s*TN
3

3k*

�
1

r

vT

vr
þ v2T

vr2

�
� Q0�

rcp
�
hnf

ðT � TNÞ

þ dE

�
u2

v2T

vx2
þ u

vu

vx

vT

vx
þ u

vv

vx

vT

vr
þ 2uv

v2T

vxvr
þ v

vu

vr

vT

vx
þ v

vv

vr

vT

vr
þ v2

v2T

vr2

�

�dE
1�

rcp
�
hnf

16s*TN
3

3k*

�
u

r

v2T

vxvr
þ u

v3T

vxvr2
� v

r2
vT

vr
þ v

r

v2T

vr2
þ v

v3T

vr3

�

�dE
Q0�

rcp
�
hnf

�
u
vT

vx
þ v

vT

vr

�
¼ khnf�

rcp
�
hnf

�
1

r

vT

vr
þ v2T

vr2

�

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

; (3)
with

u ¼ uwðxÞ ¼ u0x

l
; v ¼ 0;T ¼ Tw; at r ¼ R

u/0;T/TN; as r/N

9=
;; (4)

in which (u,v) represent velocity components, mhnf the dynamic
viscosity, shnf the electrical conductivity, (x,r) the cylindrical

coordinates, F

 
¼ Cbffiffiffiffiffi

kp
p

!
the inertia coefficient, rhnf the

density, kp the porous space permeability, vhnf the kinematic
viscosity, Cb the drag force coefficient, T the temperature,
(Cp)hnf specic heat, Q0 > 0 the heat generation coefficient, s*

Stefan Boltzmann constant, af

 
¼ kf

ðrcpÞf

!
thermal diffusivity,

k*mean absorption coefficient, khnf the thermal conductivity, dE
the thermal relaxation time, Tw the wall temperature, u0 the
reference velocity, and TN the ambient temperature.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2.1. Thermophysical characteristics

The thermophysical characteristics were determined by Ham-
ilton–Crosser relations for the nanomaterial and hybrid nano-
material (Table 1).49

2.1.1. Viscosity

mnf ¼
mf

ð1� f1Þ2:5
for nanoliquid; (5)

mhnf ¼
mf

ð1� f1Þ2:5ð1� f2Þ2:5
for hybrid nanoliquid; (6)

2.1.2. Density

rnf = (1 − f1)rf + f1rs1 for nanoliquid, (7)

rhnf = (1 − f2)[(1 − f1)rf + f1rs1] + f2rs2 for hybrid nanoliquid.

(8)
2.1.3. Electrical conductivity

snf

sf

¼ ss1 þ ðn� 1Þsf � ðn� 1Þf1

�
sf � ss1

�
ss1 þ ðn� 1Þsf þ f1

�
sf � ss1

� for nanoliquids:

(9)

shnf

snf

¼ ss2 þ ðn� 1Þsnf � ðn� 1Þf2

�
snf � ss2

�
ss2 þ ðn� 1Þsnf þ f2

�
snf � ss2

� for hybrid

nanoliquid: (10)

2.1.4. Specic heat capacity

(rcp)nf = (1 − f1)(rcp)f + f1(rcp)s1 for nanoliquid, (11)

(rcp)hnf= (1− f2)[(1− f1)(rcp)f + f1(rcp)s1] + f2(rcp)s2 for hybrid

nanoliquid. (12)
Nanoscale Adv., 2023, 5, 6135–6147 | 6137
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2.1.5. Thermal conductivity

knf

kf
¼ ks1 þ ðn� 1Þkf � ðn� 1Þf1

�
kf � ks1

�
ks1 þ ðn� 1Þkf þ f1

�
kf � ks1

� for nanoliquid; (13)

khnf

knf
¼ ks2 þ ðn� 1Þknf � ðn� 1Þf2

�
knf � ks2

�
ks2 þ ðn� 1Þknf þ f2

�
knf � ks2

� for hybrid

nanoliquid: (14)

Considering transformations
x ¼ x

l
; h ¼

ffiffiffiffiffi
u0

lvf

r �
r2 � R2

2R

�
; u ¼ u0x

vf

vh
ðx; hÞ;

v ¼ �1

r

ffiffiffiffiffiffiffiffi
vfu0

l

r
Rf ðx; hÞ � 1

r

ffiffiffiffiffiffiffiffi
vfu0

l

r
xR

vf

vx
ðx; hÞ;

qðx; hÞ ¼ T � TN

Tw � TN

; uw ¼ u0x

l
;

9>>>>>>>>>=
>>>>>>>>>;
; (15)

9
� �
A* ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2x vf
vx

vf

vh

vq

vh
þ x2

�
vf

vh

�2
v2q

vx2
þ x2

v

v

�2f x vf
vh

v2q

vxvh
� 2x2

vf

vh

vf

vx

v2q

vxvh
� f

�
�

a

ð1þ 2ahÞ
�
xf

vf

vx

vq

vh
þ f x

vq

vh

v2

vxv

�
�

a

ð1þ 2ahÞ
�
f x

vf

vx

vq

vh
þ x2

vf

vx

vq

vh

þ2

�
a

ð1þ 2ahÞ
�
f x

vf

vx

vq

vh
þ 2f x

vf

vx

v

v

þ
�

a

ð1þ 2ahÞ
�
x2
�
vf

vx

�2
vq

vh

ð1þ 2ahÞ v
3f

vh3
þ 2a

v2f

vh2
� A1A2

vf

vh

2

þ A1A

�l vf
vh

� A1A2Frx

�
vf

vh

�2

� A1

shnf

sf

M
vf

vh
¼ 0

�
khnf

kf
þRd

��
ð1þ 2ahÞ v

2q

vh2
þ 2a

vq

vh

�
� A3Prx

v

v

�A3PrbtA*þ btRdA**þ PrbtQ

�
x
vq

vx

vf

vh
� f

vq

vh
�

with

6138 | Nanoscale Adv., 2023, 5, 6135–6147
we have

vf

vh
ðx; 0Þ ¼ 1; f ðx; 0Þ ¼ �x vf

vx
ðx; 0Þ; qðx; 0Þ ¼ 1

vf

vh
ðx;NÞ ¼ 0; qðx;NÞ ¼ 0

9>>>=
>>>;
: (18)

In the above expressions, a

�
¼

ffiffiffiffiffiffiffiffiffiffi
vf l
u0R2

s !
indicates the

curvature variable, M

 
¼ sfB0

2l
U0rf

!
the magnetic parameter,

l

�
¼ vf l

u0kp

�
the porosity variable, Pr

�
¼ vf

af

�
the Prandtl
f

h

v2f

vxvh

vq

vx
þ x

�
vf

vh

�2
vq

vx
� x2

vf

vh

vq

vh

v2f

vx2

x
vq

vx

v2f

vh2
� x2

vf

vx

vq

vx

v2f

vh2

f

h
�
�

a

ð1þ 2ahÞ
�
x2

vq

vh

�
vf

vx

�2

v2f

vhvx
þ f 2

v2q

vh2
þ x

vf

vh

vq

vh

vf

vx
þ f

vf

vh

vq

vh

2q

h2
þ x2

�
vf

vx

�2
v2q

vh2

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (19)

2f
v2f

vh2
� A1A2x

v2f

vxvh

vf

vh
þ A1A2x

vf

vx

v2f

vh2

>>>>=
>>>>;
; (16)

f

h

vq

vx
þ A3Prf ðx; hÞ vq

vh
þ A3Prx

vf

vx

vq

vh
þ PrQq

x
vq

vh

vf

vx

�
¼ 0

9>>>=
>>>;
; (17)
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number, Fr

 
¼ Cbffiffiffiffiffi

kp
p l

!
the Forchheimer number,

Rd
�

¼ 16s*TN
3

3k*kf

�
the radiation parameter, bt

�
dEl
u0

�
the

thermal relaxation time variable, and Q

 
¼ Q0l

uoðrcpÞf

!
. A*, A**,

A1, A2 and A3 are

A** ¼
0
BBBB@
2xa

vf

vh

v2q

vxvh
þ xð1þ 2ahÞ vf

vh

v3q

vxvh2
� 4af

v2q

vh2
�ð1þ 2ahÞf v

3q

vh3

�4ax vf
vx

v2q

vh2
� ð1þ 2ahÞx vf

vx

v3f

vh3

1
CCCCA

(20)

A1 = (1 − f1)
2.5(1 − f2)

2.5 (21)

A2 ¼ ð1� f2Þ
	
ð1� f1Þ þ f1

rs1

rf



þ f2

rs2

rf
(22)
NGðhÞ ¼ a1

�
khnf

kf
þRd

�
ð1þ 2ahÞ

�
vq

vh

�2

þ Br

A1

x2ð1þ 2ahÞ
�
v2f

vh2

�2

þ lBr

A1

x2
�
vf

vh

�2

þshnf

sf

MBrx2
�
vf

vh

�2

9>>>>=
>>>>;
; (28)
A3 ¼ ð1� f2Þ
"
ð1� f1Þ þ f1

�
rcp
�
s1�

rcp
�
f

#
þ f2

�
rcp
�
s2�

rcp
�
f

(23)

3. Quantities under interest

Skin friction coefficient
�
1
2
CfxRex1=2

�
and Nusselt number

(NuxRe
−1/2
x ) are

Cfx ¼ 2sw
rfuw

2

Nux ¼ xqw

kfðTw � TNÞ

9>>>=
>>>;
: (24)

Shear stress (sw) and heat ux (qw) satisfy

sw ¼ mhnf

�
vu

vr

�����
r¼R

qw ¼ �
�
khnf þ 16s*TN

3

3k*

��
vT

vr

�����
r¼R

9>>>=
>>>;

(25)

� �

khnf

kf
þRd

�
2aq

0 þ ð2ahþ 1Þq00�þ A3

�btRd
�ð2ahþ 1Þf q0 00 þ 4a

© 2023 The Author(s). Published by the Royal Society of Chemistry
One may write eqn (27) and (28) as

1

2
CfxRex

1=2 ¼ 1

A1

f 00ð0Þ

NuxRex
�1=2 ¼ �

�
khnf

kf
þ Rd

�
q
0ð0Þ

9>>>=
>>>;
; (26)

where Rex

�
¼ uwx

vf

�
shows the local Reynolds number.
4. Expression for entropy

Mathematically, entropy is expressed as

EG ¼ kf

TN
2

�
khnf

kf
þ 16s*TN

3

3k*kf

��
vT

vr

�2

þ mhnf

TN

�
vu

vr

�2

þshnfB0
2

TN

u2 þ mhnf

kpTN

u2

9>>>>=
>>>>;
: (27)

The above expression can be reduced as
where NG

�
¼ EGvf lTN

kfu0ðTw � TNÞ
�

characterizes the entropy rate,

a1

�
¼ ðTw � TNÞ

TN

�
the temperature difference variable, and

Br
�

¼ mfu0
2

kfðTw � TNÞ
�

the Brinkman number.
5. Solution development
5.1. Local similar solution

To obtain a local similar solution, we suppose that
vð$Þ
vx

¼ 0 and

denote
vð$Þ
vh

by prime in eqn (16)–(18). We have

ð2ahþ 1Þf 0 0 0 þ 2af 00 � A1A2f
02 þ A1A2ff

00 � lf
0 � A1A2Frxf

02

�shnf

sf

A1Mf
0 ¼ 0

9>=
>;;

(29)
Prf q
0 þ PrQq� btPr

�
f 2q00 þ ff

0
q
0�

f q00
�� btPrQFq

0 ¼ 0

9>=
>;; (30)
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f
0ð0Þ ¼ 1; f ð0Þ ¼ 0; qð0Þ ¼ 1

0

)
: (31)
f ðNÞ ¼ 0; qðNÞ ¼ 0

5.2. Local non-similar solution

To construct the local non-similar solution, we suppose that
vf
vx

¼ p,
v2f
vxvh

¼ vp
vh

,
v3f

vxvh2
¼ v2p

vh2
,
v2f
vx2

¼ vp
vx
,
vq

vx
¼ q,

v2q

vxvh
¼ vq

vh
,

v3q

vxvh2
¼ v2q

vh2
,
v2q

vx2
¼ vq

vx
in eqn (16)–(18). One obtains
ð2ahþ 1Þ v
3f

vh3
þ 2a

v2f

vh2
� A1A2

�
vf

vh

�2

þ A1A2f
v2f

vh2
� A1A2x

vp

vh

vf

vh
þ A1A2xP

v2f

vh2

�l vf
vh

� A1A2Fr

�
vf

vh

�2

� A1

shnf

sf

M
vf

vh
¼ 0

9>>>>=
>>>>;
; (32)

�
khnf

kf
þRd

�	
ð2ahþ 1Þ v

2q

vh2
þ 2a

vq

vh



� A3Prx

vf

vh
qþ A3Prf

vq

vh
þ A3Prxp

vq

vh

þPrQq� A3PrbtA11 þ btRdA22 þ PrbtQ

�
xq

vf

vh
� f

vq

vh
� xp

vq

vh

�
¼ 0

9>>>=
>>>;
; (33)
vf

vh
ðx; 0Þ ¼ 1; f ðx; 0Þ ¼ �xpðx; 0Þ; qðx; 0Þ ¼ 1

vf

vh
ðx;NÞ ¼ 0; qðx;NÞ ¼ 0

9>>>=
>>>;
: (34)

In the above equations, A11 and A22 are dened as
A11 ¼

2
666666666666666666664

�2xP vf

vh

vq

vh
þ x2

�
vf

vh

�2
vq

vx
þ x

�2xf vf
vh

vq

vh
� 2x2p

vf

vh

vq

vh
� xfq

v

v

þxf
vq

vh

vp

vh
�
�

a

ð2ahþ 1Þ
�
x2p2

v

v

þf 2
v2q

vh2
þ xp

vf

vh

vq

vh
þ f

vf

vh

vq

vh

þx2p2
v2q

vh2
þ
�
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A22 ¼

2
66664
2ax

vf

vh

vq

vh
þ xð2ahþ 1Þ vf

vh

v2q

vh2
� 4af

v2q

vh2
�ð2ahþ 1Þf v

3q

vh3

�4axp v
2q

vh2
� ð2ahþ 1Þxp v

3f

vh3

3
77775

(36)

We take the derivative of eqn (32)–(34) with respect to “x” and

representing
vð$Þ
vh

by prime. Suppose that
vp
vx
,
v2p
vxvh

,
v3p
vxvh2

,
vq
vx
,

v2q
vxvh

,
v3q
vxvh2

,
vg
vx
,
v2g
vxvh

,
v3g
vxvh2

become zero. We obtain
2q
vf

vh

vp

vh
þ xq

�
vf

vh

�2

� x2
vf

vh

vq

vh

vp

vx

2f

h2
� x2pq

v2f

vh2
�
�

a

ð2ahþ 1Þ
�
xfp

vq

vh

q

h
�
�

a

ð2ahþ 1Þ
�
xfp

vq

vh
þ x2p

vq

vh

vp

vh

þ 2

�
a

ð2ahþ 1Þ
�
xfp

vq

vh
þ 2xfp

v2q

vh2

a

ð2ahþ 1Þ
�
x2p2

vq

vh

3
777777777777777777775

; (35)
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ð2ahþ 1Þp0 00 þ 2ap00 � 2A1A2f
0
p
0 þ A1A2pf

00 þ A1A2fp
00 � A1A2p

0
f
0 � A1A2xp

02

þA1A2pf
00 þ A1A2xpp

00 � lp
0 � A1A2Frf

02 � 2A1A2Frxf
0
p
0 � A1

shnf

sf

MP
0 ¼ 0

9>>=
>>;;

(37)

�
khnf

kf
þRd

��ð2ahþ 1Þq00 þ 2aq
0
� A3Prf

0
q� A3Prxp

0
qþ A3Prpq

0 þ A3Prfq
0

þA3Prpq
0 þ A3Prxpq

0 þ PrQq� A3PrbtA33 þRdbtA44

þPrQbt

�
qf

0 þ xqp
0 � pq

0 � fq
0 � pq

0 � xpq
0� ¼ 0;

9>>>>>=
>>>>>;
; (38)
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p
0ðx; 0Þ ¼ 0; pðx; 0Þ ¼ 0; qðx; 0Þ ¼ 0

p
0ðx;NÞ ¼ 0; qðx;NÞ ¼ 0

)
: (39)

In the above equation, A33 and A44 are expressed as
A33 ¼
"
�7xPf 0q0 þ 4xf

0
p
0
qþ x2p02qþ f 02q� 2fp

0
q
0 � xfp

0
q
0 � x2pp

0
q
0 � fqf 00 � 3xpqf 00 þ f 2q00

�xfqp00 � x2pqp00 þ 2fp
0
q
0 þ 2xpp

0
q
0 þ 4fpq00 þ ff

0
q
0 þ 4xp2q00 þ 2xfpq00 þ x2p2q00

3
5 (40)

A44 ¼
"
2af

0
q
0 þ 2axp

0
q
0 þ ð2ahþ 1Þf 0q00 þ ð2ahþ 1Þxp0q00 � 8apq00 � ð2ahþ 1Þpq0 00

�4afq00 � ð2ahþ 1Þfq00 0 � 4axpq00 � ð2ahþ 1Þpf 0 00 � ð2ahþ 1Þxpp000

3
5 (41)
6. Discussion

Fluid ow, temperature, and entropy rate for sundry parameters
regarding nanoliquid (MoS4/engine oil) and hybrid nanoliquid
(MoS4 + CoFe2O4/engine oil) are presented. In these graphs, the
solid lines denote the nanoliquid impact, and the dashed lines
represent hybrid nanoliquid behavior. The numerical results for
coefficient of skin friction (Cfx) and the thermal transport rate
(Nux) for nanoliquid (MoS4/engine oil) and hybrid nanoliquid
(MoS4 + CoFe2O4/engine oil) were examined.
Fig. 2 f ′(h) variation versus a.
6.1. Velocity

Fig. 2 shows the variation in the curvature variable for liquid
ow. A larger approximation of curvature (a) variable leads to
a decreased radius of curvature, which shrinks the region of the
cylinder in contact with liquid. Consequently, resistance
decreases, which hence boosts uid ow. Fig. 3 indicates the
impact of Forchheimer number on velocity. An augmentation in
the Forchheimer number corresponds to a decrease in the
liquid ow for nanoliquid (MoS4/engine oil) and hybrid nano-
liquid (MoS4 + CoFe2O4/engine oil). Fig. 4 depicts the inuence
of the magnetic effect on liquid ow (f ′(h)). A physically higher
magnetic eld leads to resistance to liquid ow, and as a result,
velocity decreases. Fig. 5 exhibits the outcomes of the porosity
© 2023 The Author(s). Published by the Royal Society of Chemistry
variable for velocity (f ′(h)). The ow was enhanced by a higher
approximation of the porosity parameter.
6.2. Temperature

Fig. 6 indicates the temperature variation for thermal relaxation
time parameter (bt). An increase in the thermal eld occurs
versus the higher thermal relaxation time (bt) parameter. The
behavior of (q(h)) versus a higher radiation variable is shown in
Fig. 7. Physically higher radiation leads to an additional energy
Nanoscale Adv., 2023, 5, 6135–6147 | 6141
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Fig. 3 f ′(h) variation versus Fr.

Fig. 4 f ′(h) variation versus M.

Fig. 5 f ′(h) variation versus l.

Fig. 6 q(h) variation versus bt.
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in the system, which increases the thermal eld. Fig. 8 displays
outcomes of the curvature (a) variable for temperature.
Temperature enhances versus a higher curvature parameter.
Fig. 9 shows the Prandtl (Pr) number impact for (q(h)). Physi-
cally, (Pr) decreases the thermal diffusivity, and therefore, the
temperature decreases. Fig. 10 illustrates the outcomes of heat
generation for a thermal eld. An increase in temperature
against heat generation is possible.
6142 | Nanoscale Adv., 2023, 5, 6135–6147
6.3. Entropy rate

Fig. 11 depicts the behavior of entropy against a higher
magnetic eld. A physically higher magnetic force leads to an
increasing resistive force, which gives rise to greater energy in
the system, and thus, the entropy rate increases. Fig. 12 shows
the variation of the porosity (l) variable against the entropy rate.
An increase in the entropy production occurs against a larger
approximation of the porosity parameter. Fig. 13 displays the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 q(h) variation versus Rd.

Fig. 8 q(h) variation versus a.

Fig. 9 q(h) variation versus Pr.

Fig. 10 q(h) variation versus Q.
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radiation variation for the entropy rate. Physically higher radi-
ation leads to increasing thermal emission, which creates extra
energy in a thermal system. As a consequence, the entropy rate
increases. Fig. 14 elucidates the impact of curvature on the
entropy rate. The entropy production is enhanced for the
curvature variable.
© 2023 The Author(s). Published by the Royal Society of Chemistry
6.4. Physical quantities

The numerical results for coefficient of skin

friction
�
1
2
CfxRex1=2

�
and thermal transport rate (NuxRe

−1/2
x ) for

nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil) have been sketched in Tables 2 and 3.
Nanoscale Adv., 2023, 5, 6135–6147 | 6143
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Fig. 11 NG(h) variation versus M.

Fig. 12 NG(h) variation versus l.

Fig. 13 NG(h) variation versus Rd.

Fig. 14 NG(h) variation versus a.
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6.4.1. Coefficient of skin friction. Surface drag force�
1
2
CfxRex1=2

�
for inuential variables is examined in Table 2.

Higher magnetic variables lead to intensication of the skin
friction coefficient for nanomaterial (MoS4/engine oil) and
hybrid nanomaterial (MoS4 + CoFe2O4/engine oil). Clearly, for
a larger porosity variable and Forchheimer number, the surface
drag force improved.
6144 | Nanoscale Adv., 2023, 5, 6135–6147
6.4.2. Nusselt number. Physical features of emerging vari-
ables of the Nusselt number (NuxRe

−1/2
x ) were constructed in

Table 3. An increase in the heat transport rate (NuxRe
−1/2
x ) occurs

through radiation and thermal relaxation time parameters.
Higher estimation of heat generation variables intensies the
heat transport rate (NuxRe

−1/2
x ) for nanoliquid (MoS4/engine oil)

and hybrid nanoliquid (MoS4 + CoFe2O4/engine oil).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Numerical values of surface drag force

�
1
2
CfxRex1=2

�

1

2
CfxRex

1=2

Fr M l

MoS4/engine
oil

MoS4 +
CoFe2O4/engine oil

0.2 0.5 0.3 1.23154 1.65829
0.6 2.32562 3.09652
1.0 3.09845 3.95624
0.5 1.0 0.3 2.56234 3.56329

2.0 3.69532 4.032654
3.0 4.65892 5.01985

0.2 0.5 0.5 0.96523 1.85746
1.0 1.75632 2.89635
1.5 2.65295 3.56982

Table 3 Thermal transport rate (NuxRe
−1/2
x ) variation against emerging

parameters

NuxRe
−1/2
x

Rd bt Q
MoS4/engine
oil

MoS4 +
CoFe2O4/engine oil

1.5 0.5 1.0 3.42352 3.89653
2.0 4.12956 5.03256
2.5 5.45638 6.36524
1.0 1.0 1.0 2.86593 3.78654

1.5 3.58647 4.25369
2.0 4.96583 5.65389

1.0 0.5 1.5 2.54892 3.96585
2.5 3.95862 4.65895
3.5 4.96852 5.87562
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7. Concluding remarks

The main results are listed below.
� The uid ow variation for porosity and curvature variables

is reversed.
� The velocity eld decayed for a magnetic eld, while the

opposite holds for the entropy rate and temperature.
� The Forchheimer number results in velocity decrease.
� The curvature parameter variation for entropy and

temperature for nanoliquid (MoS4/engine oil) and hybrid
nanoliquid (MoS4 + CoFe2O4/engine oil) was the same.

� An enhancement of the temperature and entropy rate
against radiation was observed.

� The thermal eld decays for a higher Prandtl number in
nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil).

� A higher thermal relaxation time enhances the temperature
in nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil).

� Porosity parameter variation increases the entropy rate for
nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil).

� A higher magnetic eld intensies the surface drag force
for nanoliquid (MoS4/engine oil) and hybrid nanoliquid (MoS4 +
CoFe2O4/engine oil).
© 2023 The Author(s). Published by the Royal Society of Chemistry
� A larger estimation of the Forchheimer number and
porosity variable leads to coefficient of skin friction enhance-
ment for nanomaterial (MoS4/engine oil) and hybrid nano-
material (MoS4 + CoFe2O4/engine oil).

� A higher radiation variable results in thermal transport rate
enhancement for nanoliquid (MoS4/engine oil) and hybrid
nanoliquid (MoS4 + CoFe2O4/engine oil).

� A higher thermal relaxation time variable improves the
heat transport rate for nanoliquid (MoS4/engine oil) and hybrid
nanoliquid (MoS4 + CoFe2O4/engine oil).

� The Nusselt number intensies for higher heat generation.
� The skin friction coefficient for hybrid nanomaterial (MoS4

+ CoFe2O4/engine oil) was more than that of nanoliquid (MoS4/
engine oil).

� The thermal transport rate was more dominant for hybrid
nanoliquid (MoS4 + CoFe2O4/engine oil) than for nanoliquid
(MoS4/engine oil).
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