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on in bioconvection
hydromagnetic flow with gyrotactic motile
microorganisms

Sohail A. Khan, *a T. Hayata and A. Alsaedi b

Here, the magnetohydrodynamic bioconvective flow of a non-Newtonian nanomaterial over a stretched

sheet is scrutinized. The characteristics of convective conditions are analyzed. Irreversibility analysis in

the presence of gyrotactic micro-organisms is discussed. Energy expression is assisted with thermal

radiation, heat generation and ohmic heating. Buongiorno's model is employed to discuss the

characteristics of the nanoliquid through thermophoresis and random diffusions. Nonlinear expressions

of the given model are transformed through adequate transformations. The obtained expressions have

been computed by the Newton built in-shooting technique. Results of influential variables for velocity,

concentration, microorganism field, temperature and entropy rate are graphically studied. Clearly,

velocity reduction is witnessed for the bioconvection Rayleigh number and magnetic variable. A higher

heat generation variable leads to augmentation of temperature. An increase in the magnetic variable

results in entropy and temperature enhancement. A higher Peclet number results in microorganism field

reduction. Temperature distribution rises for radiation and the thermal Biot number. A higher solutal Biot

number intensifies the concentration. The entropy rate for radiation and diffusion variables is enhanced.
1 Introduction

Recently, nanotechnology has gained much consideration
amongst researchers and investigators. It is due to its involve-
ment in chemical processes, microelectronics, engineering,
hybrid powered engines and biological processes. Nano-
materials are basically homogeneous colloidal suspensions of
nano-size (1–10 nm) particles in an ordinary liquid which
enhances the thermal conductivity of conventional liquids.1,2

Nanouids have specic characteristics that make them more
applicable materials. Nanomaterials have innovative charac-
teristics about heat transfer enhancement. Buongiorno3 gave
a theoretical model for heat transport rate enhancement of
conventional liquids. He highlighted that only random and
thermophoresis diffusions are main mechanisms for thermal
transportation enhancement. Nanomaterials are very signi-
cant in improving the thermal productivity of hybrid power
engines, electronic devices, nuclear system chillers, domestic
refrigerators and many others. Shahzad et al.4 analyzed the
bioconvection convectively heated micropolar nanomaterial
ow between two rotating disks. The mixed convective magne-
tohydrodynamic ow of a viscoelastic nanomaterial with heat
generation was discussed byWaqas et al.5 Anjum et al.6 explored
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activation energy in the bioconvective MHD ow of a modied
Eyring–Powell nanomaterial. Mabood et al.7 reported chemi-
cally reactive micropolar nanoliquid ow considering thermal
radiation. Numerical analysis of hydromagnetic unsteady
nanomaterial ow towards an irregular stretched sheet was re-
ported by Kalpana et al.8 Thermal analysis for the hydromag-
netic ow of a nanomaterial subject to entropy was addressed in
Riaz et al.9 Further investigations about nanomaterial ow are
highlighted through ref. 10–17.

In recent years the bioconvection phenomenon in nano-
materials along motile microorganisms has attracted much
attention from researchers. It is because of its signicance in
tremendous engineering, pharmaceutical and biological
processes in elds such as biofuel, biomedicine, fertilizer,
biotechnology, bio-microsystem and enzyme biosensor. Bio-
convection occurs due to up swimming of microorganisms.
Commonly the density of microorganisms is heavier than the
base uid and therefore it raises unsteady upper surface density
stratication.18,19 Bio convection is extensively used in environ-
mental science, conversion in engineering, bio-microsystems,
biological processes with microbial-upgraded oil recovery
systems, enzyme biosensors, mass transport and bioengi-
neering in biotechnology and the ecosystem. Prime utilization
of this mechanism is to enhance the capacity of appropriate
fraternization and mass transfer. Bio convection refers to
macroscopic movement of liquid induced by a density gradient
organized by an alternating oating system based on motile
microbes. Thermal radiation impact in a bioconvective
Nanoscale Adv., 2023, 5, 4863–4872 | 4863
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Fig. 1 Flow configuration.

Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/8

/2
02

6 
4:

38
:2

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
ferromagnetic Williamson material subject to dissipation was
studied by Kada et al.20 Majeed et al.21 highlighted the features
of gyrotactic microorganisms in magnetized time-dependent
nanoliquid ow. Waqas et al.22 scrutinized thermo and solutal
stratication impacts in Casson nanomaterial ow with
convective boundary conditions. Azam et al.23 examined acti-
vation in the bioconvection ow of a cross nanoliquid subject to
gyrotactic microorganisms. Some interesting explorations of
bioconvective ow can be seen in Ref. 24–32.

Motivation of current analysis is to address the bioconvective
ow of the Reiner–Rivlin nanoliquid. Gyrotactic microorgan-
isms in the presence of convective conditions are discussed.
The characteristics of thermophoresis and random diffusions
are analyzed. Energy expression consists of radiation, heat
generation and ohmic heating. Irreversibility analysis along
with chemical reaction is analyzed. The Newton built in-
shooting technique (ND-solve) is employed to develop
4864 | Nanoscale Adv., 2023, 5, 4863–4872
numerical solutions of the considered model. Graphical anal-
ysis illustrating the inuence of liquid ow, concentration,
microorganism eld, temperature and entropy rate is orga-
nized. Main results are listed in conclusion.
2 Formulation

Here the ow of the bioconvection Reiner–Rivlin nanomaterial
past a stretched boundary is examined. Convective conditions
along with chemical reaction are analyzed. Thermophoresis,
random diffusion and involvement of motile microorganisms
are considered. Inuences of radiation, magnetic eld and heat
generation are considered. Physical impact for the entropy rate
is explored. A uniformmagnetic eld of strength (B0) is applied.
The surface is stretched with velocity (uw = ax) subject to rate
constant (a > 0). Fig. 1 consists of ow conguration.33

Under the above assumptions, the related equations are:34–38

vu

vx
þ vv

vy
¼ 0; (1)
u
vC

vx
þ v

vC

vy
¼ DB

v2C

vy2
þ DCDT

TN

v2T
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� krðC � CNÞ; (4)
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with the boundary condition:36–38

u ¼ uwðxÞ ¼ ax; v ¼ 0; � kf
vT

vy
¼ hfðTw � TÞ;

�DB

vC

vy
¼ hwðCw � CÞ; �Dm

vN

vy
¼ hnðNw �NÞ at y ¼ 0

u/0; T/TN;C/CN; N/NN as y/N

9>>>>>>=
>>>>>>;
:

(6)
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In the above expressions (u,v) denote the velocity components,
nf the kinematic viscosity, mc the cross viscosity, g* the gravity,
(x,y) characterize Cartesian coordinates, b* the thermal expan-
sion coefficient, rp the particle density, rm the microorganism
density, g* the average volume of microorganisms, hf the heat
transfer rate, B0 the magnetic eld strength, mf the dynamic
viscosity, rf the liquid density, b the chemotaxis constant, sf the
electrical conductivity, hw the mass transfer rate, T the
temperature, DB the Brownian diffusion coefficient, Wc the cell
swimming speed, Q0 > 0 the heat generation coefficient, Tw the

wall temperature, s the ratio of heat capacitance, af ¼
 

kf
ðrcpÞf

!

the thermal diffusivity, (cp)f the specic heat, TN the ambient
temperature, s* the Stefan–Boltzmann constant, DT the ther-
mophoresis coefficient, kf the thermal conductivity, hn the
microorganism transfer rate, k* the mean absorption coeffi-
cient, C the concentration, DC the concentration difference, Cw

the wall concentration, kr the reaction rate, CN the ambient
concentration, N the motile microorganisms, Nw the wall motile
microorganisms, Dm the microorganism diffusion coefficient
and NN the wall motile microorganisms.

Letting l as the reference length and transformations:38

one has
u ¼ ax
vf ðx; hÞ

vh
; v ¼ � ffiffiffiffiffiffiffi

anf
p �
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© 2023 The Author(s). Published by the Royal Society of Chemistry
v2c

vh2
þ Lbf

vc

vh
� Lbx

vf

vh

vc

vx
þ Lbx

vf

vx

vc

vh

�Pe
�
U
v2f

vh2
þ vc

vh

vf

vh
þ c

v2f

vh2

�
¼ 0

9>>>>=
>>>>;
; (11)

vf ðx; 0Þ
vh

¼ 1; f ðx; 0Þ ¼ �xvf ðx; 0Þ
vx

;
vq

vh
ðx; 0Þ ¼ �b1ð1� qðx; 0ÞÞ

v4

vh
ðx; 0Þ ¼ �b2ð1� fðx; 0ÞÞ; vc

vh
ðx; 0Þ ¼ �b3ð1� cðx; 0ÞÞ

vf

vh
ðx; NÞ ¼ 0; qðx;NÞ ¼ 0; fðx;NÞ ¼ 0; cðx;NÞ ¼ 0

9>>>>>>>>=
>>>>>>>>;

(12)

In the above equations M
�
¼ sfB02

arf

�
represents the magnetic

variable, b*1

�
¼ ðrp�rf ÞðCw�CNÞ

rf ð1�CNÞðTw�TNÞb*
�

the buoyancy ratio variable,

l
�
¼ gb*ð1�CNÞðTw�TNÞ

a2l

�
the mixed convection variable, K

�
¼ mca

nfrf

�

the material variable, b*2
�
¼ ðrm�rf ÞðNw�NNÞg*

rf ð1�CNÞðTw�TNÞb*
�
the bioconvection

Rayleigh number, Nb
�
¼ sDBðCw�CNÞ

DCnf

�
the Brownian motion
variable, b1

 
¼ hf
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ffiffiffi
a
nf

p
!

the thermal Biot number, Pr
�
¼ nf

af

�
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Prandtl number, Sc
�
¼ nf

DB
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�
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the radiation variable, b2
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a
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p
!
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Nanoscale Adv., 2023, 5, 4863–4872 | 4865

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3na00338h


Table 1 Thermal transport rate comparison with Kaswan et al.46

Pr Kaswan et al.46 Present results

0.07 0.065539 0.065536
0.7 0.164035 0.164039
1.0 0.418237 0.418235
2.0 0.826737 0.826738
7.0 1.804291 1.804295
20.0 3.256791 3.256797
70.0 6.346675 6.346679
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Biot number, Q
�
¼ Q0

aðrcpÞ
�

the heat generation parameter,

Nt
�
¼ sDTðTw�TNÞ

TNnf

�
the thermophoresis variable, b3

 
¼ hn

Dn

ffiffiffi
a
nf

p
!

the microorganism Biot number, Lb
�
¼ nf

Dm

�
the bioconvective

Lewis number, g
�
¼ kr

a

�
the reaction variable, U

�
¼ NN

ðNw�NNÞ
�
the

microorganisms concentration difference factor and Pe
�
¼ bWc

Dm

�
the Peclet number.

3 Entropy generation

In mathematical form one can express that:39–45

NG ¼ kf

TN
2

 
1þ 16s*TN

3

3k*kf

!�
vT

vy

�2

þ sf B0
2

TN

u2 þ RDB
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�
vT

vy

vC

vy

�

þ RDB

CN

�
vC

vy

�2

:

(13)

Non-dimensional form is

SG ¼ a1ð1þRdÞq02 þMBrx2f 02 þ Lq
0
f
0 þ L

a2

a1

f02; (14)

in which R indicates the real gas constant, SG
�
¼ NGnfTN

kfaðTw�TNÞ
�
the

entropy rate, a1

�
¼ ðTw�TNÞ

TN

�
the temperature difference vari-

able, Br
�
¼ mf ðalÞ2

kf ðTw�TNÞ
�
the Brinkman number, a2

�
¼ ðCw�CNÞ

CN

�
the

concentration difference variable and L
�
¼ RDBðCw�CNÞ

kf

�
the

diffusion variable.

4 Solution methodology

We consider vð$Þ
vx

¼ 0 and denoting vð$Þ
vh

by prime in eqn (8)–(12).

We can express that

f
0 00 þ ff 00 � f 02 þ 2K

�
f 002 þ f

0
f
0 0 0��Mf

0 þ l

x

�
q� b*

1f� b*
2c
�

¼ 0;

(15)

ð1þRdÞq00 þ Prf q
0 þMPrEcx2f 02 þ PrNbq

0
f
0 þ PrNtq02 þ PrQq

¼ 0;

(16)

f00 þ Scff
0 þ Nt

Nb
q00 � Scgf ¼ 0; (17)

c00 þ Lbfc
0 � Pe

�
Uf00 þ cf00 þ c

0
f
0� ¼ 0; (18)
4866 | Nanoscale Adv., 2023, 5, 4863–4872
f
0ð0Þ ¼ 1; f ð0Þ ¼ 0; q

0ð0Þ ¼ �b1ð1� qð0ÞÞ;
f
0ð0Þ ¼ �b2ð1� fð0ÞÞ; c

0ð0Þ ¼ �b3ð1� cð0ÞÞ
f
0ðNÞ ¼ 0; qðNÞ ¼ 0; fðNÞ ¼ 0; cðNÞ ¼ 0

9>>=
>>;: (19)
4.1 Numerical scheme

The ND-solve technique computes the analysis. The Mathema-
tica soware is employed to get the numerical solution. For this
we set

f ¼ y*1; f
0 ¼ y*2; f 00 ¼ y*3; f

0 00 ¼ y0*3
q ¼ y*4; q

0 ¼ y*5; q00 ¼ y0*5
f ¼ y*6; f

0 ¼ y*7; f00 ¼ y0*7
c ¼ y*8; c

0 ¼ y*9; c00 ¼ y0*9

9>>>>>>>=
>>>>>>>;
; (20)

y0*3 ¼ y*2 � y*1y
*
2 � 2K

�
y3

*2 � y*2y
0*
3

�
�My*2

�l
x

�
y*4 � b*

1y
*
6 � b*

2y
*
8

�
9>>=
>>;; (21)

y0*5 ¼
�Pr

ð1þRdÞ


y*1y

*
5 þMEcx2y2

*2 þNby*5y
*
5 þNty5

*2 þQy*4
��

;

(22)

y0*7 ¼ �Scy*1y*7 �
Nt

Nb
y0*5 þ Scgy*6; (23)

y0*9 ¼ �Lby*1y*9 � Pe
�
Uy0*7 þ y*8y

0*
7 þ y*7y

*
9

�
(24)

with

y*1ð0Þ ¼ 0; y*2ð0Þ ¼ 1; y*5ð0Þ ¼ �b1

�
1� y*4ð0Þ

�
y*7ð0Þ ¼ �b2

�
1� y*6ð0Þ

�
; y*9ð0Þ ¼ �b3

�
1� y*8ð0Þ

�
y*2ðNÞ ¼ 0; y*4ðNÞ ¼ 0; y*6ðNÞ ¼ 0; y*8ðNÞ ¼ 0

9>>>=
>>>;
: (25)
5 Results validation

A comparative study of the present investigation with Kaswan
et al.46 is constructed in Table 1 in a limiting sense. From Table
© 2023 The Author(s). Published by the Royal Society of Chemistry
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1 it is clearly detected that results here are in excellent
agreement.
6 Graphical analysis

In this section, the physical description of emerging variables is
organized.
Fig. 4 f′(h) variation versus b*1.
6.1 Velocity

Fig. 2 displays the behavior of the magnetic variable for velocity.
Physically the magnetic eld enhances the Lorentz force which
induces a resistance in the liquid ow region and the velocity
declines. Fig. 3 shows the impact of the material variable on
(f′(h)). Increasing values of the material variable lead to viscous
force reduction which intensies the velocity. Fig. 4 displays the
outcomes of the buoyancy ratio variable for velocity. Here
reduction in velocity occurs for the buoyancy ratio variable.
Fig. 5 elucidates the impact of the bioconvection Rayleigh
number. A larger approximation of the bioconvection Rayleigh
number (b*2) corresponds to a decline in liquid ow (f′(h)).
Fig. 3 f′(h) variation versus K.

Fig. 2 f′(h) variation versus M.

Fig. 5 f′(h) variation versus b*2.

© 2023 The Author(s). Published by the Royal Society of Chemistry
6.2 Temperature

The feature of temperature distribution for the magnetic eld is
illustrated in Fig. 6. A higher magnetic eld increases the
Fig. 6 q(h) variation versus M.
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Fig. 7 q(h) versus b1.

Fig. 8 q(h) versus Rd.

Fig. 10 q(h) versus Nb.

Fig. 11 f(h) versus Nt.
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Lorentz force which produces disturbance in the ow region
and consequently the kinetic energy of the system is increased.
Therefore thermal distribution is intensied. Fig. 7 shows the
Fig. 9 q(h) versus Nt.

4868 | Nanoscale Adv., 2023, 5, 4863–4872
outcomes of (b1) on temperature. An enhancement in thermal
distribution occurs for a higher thermal Biot number. Results of
radiation for temperature are portrayed in Fig. 8. As anticipated,
Fig. 12 f(h) versus Sc.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 f(h) versus b2.

Fig. 14 f(h) versus Nb.

Fig. 16 c(h) versus b3.

Fig. 17 c(h) versus Pe.
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higher radiation impact intensied the thermal eld. Fig. 9 and
10 display (Nt) and (Nb) variations for temperature. A larger
approximation of (Nt) corresponds to augmentation of the
Fig. 15 c(h) versus Lb.

© 2023 The Author(s). Published by the Royal Society of Chemistry
temperature. Additionally, it is seen through Fig. 10 that
temperature improves with a higher random motion (Nb)
variable.
Fig. 18 SG(h) versus M.
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Fig. 19 SG(h) versus L. Fig. 21 SG(h) versus Rd.
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6.3 Concentration

Fig. 11 illustrates the impact of (Nt) on concentration. An
increment in concentration occurs through a higher thermo-
phoresis variable. The feature of concentration (f(h)) for (Sc) is
depicted in Fig. 12. Here due to an increase in (Sc), the
concentration decays due to reduction in mass diffusivity.
Fig. 13 displays the variation of (b2) for concentration. Clearly,
the concentration boosts up for a higher solutal Biot number.
Additionally, it is evident through Fig. 14 that concentration
decays with a random motion variable.
6.4 Microorganism eld

Fig. 15 exhibits the result of the bioconvection Lewis number on
(c(h)). Clearly, microorganism eld degradation is detected
against a higher bioconvection Lewis number (Lb). The inu-
ence of (b3) on the microorganism eld (c(h)) is shown in
Fig. 16. A higher estimation of (b3) leads to augmentation of the
microorganism (c(h)) eld. The graphical feature of (c(h)) versus
the Peclet number is portrayed in Fig. 17. A clearly decreasing
Fig. 20 SG(h) versus Br.

4870 | Nanoscale Adv., 2023, 5, 4863–4872
trend of microorganisms (c(h)) is witnessed for a higher Peclet
(Pe) number.
6.5 Entropy production

Fig. 18 shows the entropy variation against the magnetic vari-
able. With an increase in the magnetic eld the Lorentz force
causes more resistance in the ow region. As a result, the
internal energy of the system increases and consequently the
entropy rate is augmented. Fig. 19 displays the impact of the
diffusion parameter (L) on (SG(h)). Here entropy rises against
the diffusion variable. Effects of (Br) on the entropy rate are
given in Fig. 20. An increment in entropy generation is found for
a larger Brinkman number due to a larger kinetic energy. Fig. 21
elucidates the outcomes of the radiation parameter (Rd) for
(SG(h)). The entropy rate against radiation is enhanced.
7 Closing remarks

Here the magnetized bioconvective ow of the Reiner–Rivlin
nanomaterial by convective conditions is examined. Entropy
analysis in the presence of chemical reaction is addressed.
Gyrotactic micro-organisms are taken into account. Key points
of recent analysis are given below.

� Reduction occurs in liquid ow for the magnetic eld and
bioconvection Rayleigh number.

� Velocity improves for higher values of the material variable
while the reverse impact holds for the buoyancy ratio variable.

� Temperature enhancement is noted for thermophoresis
and radiation variables.

� An increase in temperature distribution and entropy rate is
witnessed for the magnetic eld.

� Higher random motion leads to temperature
enhancement.

� A larger approximation of the thermal Biot number
intensies the temperature distribution.

� The reverse trend holds for concentration against random
motion and thermophoresis variables.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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� A decline in concentration occurs for a higher Schmidt
number.

� Concentration increases for a higher solutal Biot number.
� Reduction in microorganisms occurs versus the Peclet

number.
�Microorganism eld decays against a higher bioconvection

Lewis number.
� Entropy rate has similar behavior against radiation and

diffusion variables.
� Entropy rate increases versus a larger Brinkman number.
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