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Here, the magnetohydrodynamic bioconvective flow of a non-Newtonian nanomaterial over a stretched
sheet is scrutinized. The characteristics of convective conditions are analyzed. Irreversibility analysis in
the presence of gyrotactic micro-organisms is discussed. Energy expression is assisted with thermal
radiation, heat generation and ohmic heating. Buongiorno's model is employed to discuss the
characteristics of the nanoliquid through thermophoresis and random diffusions. Nonlinear expressions
of the given model are transformed through adequate transformations. The obtained expressions have
been computed by the Newton built in-shooting technique. Results of influential variables for velocity,
concentration, microorganism field, temperature and entropy rate are graphically studied. Clearly,

velocity reduction is witnessed for the bioconvection Rayleigh number and magnetic variable. A higher
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Open Access Article. Published on 08 August 2023. Downloaded on 8/1/2025 2:58:30 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

rsc.li/nanoscale-advances

1 Introduction

Recently, nanotechnology has gained much consideration
amongst researchers and investigators. It is due to its involve-
ment in chemical processes, microelectronics, engineering,
hybrid powered engines and biological processes. Nano-
materials are basically homogeneous colloidal suspensions of
nano-size (1-10 nm) particles in an ordinary liquid which
enhances the thermal conductivity of conventional liquids.™*
Nanofluids have specific characteristics that make them more
applicable materials. Nanomaterials have innovative charac-
teristics about heat transfer enhancement. Buongiorno® gave
a theoretical model for heat transport rate enhancement of
conventional liquids. He highlighted that only random and
thermophoresis diffusions are main mechanisms for thermal
transportation enhancement. Nanomaterials are very signifi-
cant in improving the thermal productivity of hybrid power
engines, electronic devices, nuclear system chillers, domestic
refrigerators and many others. Shahzad et al* analyzed the
bioconvection convectively heated micropolar nanomaterial
flow between two rotating disks. The mixed convective magne-
tohydrodynamic flow of a viscoelastic nanomaterial with heat
generation was discussed by Waqas et al.> Anjum et al.® explored
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number intensifies the concentration. The entropy rate for radiation and diffusion variables is enhanced.

activation energy in the bioconvective MHD flow of a modified
Eyring-Powell nanomaterial. Mabood et al.” reported chemi-
cally reactive micropolar nanoliquid flow considering thermal
radiation. Numerical analysis of hydromagnetic unsteady
nanomaterial flow towards an irregular stretched sheet was re-
ported by Kalpana et al.®* Thermal analysis for the hydromag-
netic flow of a nanomaterial subject to entropy was addressed in
Riaz et al.® Further investigations about nanomaterial flow are
highlighted through ref. 10-17.

In recent years the bioconvection phenomenon in nano-
materials along motile microorganisms has attracted much
attention from researchers. It is because of its significance in
tremendous engineering, pharmaceutical and biological
processes in fields such as biofuel, biomedicine, fertilizer,
biotechnology, bio-microsystem and enzyme biosensor. Bio-
convection occurs due to up swimming of microorganisms.
Commonly the density of microorganisms is heavier than the
base fluid and therefore it raises unsteady upper surface density
stratification."™" Bio convection is extensively used in environ-
mental science, conversion in engineering, bio-microsystems,
biological processes with microbial-upgraded oil recovery
systems, enzyme biosensors, mass transport and bioengi-
neering in biotechnology and the ecosystem. Prime utilization
of this mechanism is to enhance the capacity of appropriate
fraternization and mass transfer. Bio convection refers to
macroscopic movement of liquid induced by a density gradient
organized by an alternating floating system based on motile
microbes. Thermal radiation impact in a bioconvective
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numerical solutions of the considered model. Graphical anal-
ysis illustrating the influence of liquid flow, concentration,
microorganism field, temperature and entropy rate is orga-
nized. Main results are listed in conclusion.

2 Formulation

Here the flow of the bioconvection Reiner-Rivlin nanomaterial
past a stretched boundary is examined. Convective conditions
along with chemical reaction are analyzed. Thermophoresis,
random diffusion and involvement of motile microorganisms
are considered. Influences of radiation, magnetic field and heat
generation are considered. Physical impact for the entropy rate
is explored. A uniform magnetic field of strength (B,) is applied.
The surface is stretched with velocity (u, = ax) subject to rate
constant (a > 0). Fig. 1 consists of flow configuration.*
Under the above assumptions, the related equations are:***
du Jv
+

0By
u

Pt 7 (2)

eri (pr(1 = C)g"B (T = Tw) =g (py — pr) (C = Cos) — &Y (pm — pr) (N = N))

oT 9T ke T  160°T.° T  arBy , Dy T dC Dy (0T’
Ut Vo = A+ —+ W+t =t —

dx dy (/ocp)r ay 3k (pcp)[ dy (,ocp)r AC 3y dy T \ 0y 6
+ & r_T,)

(pep);

ferromagnetic Williamson material subject to dissipation was
studied by Kada et al.*® Majeed et al.** highlighted the features
of gyrotactic microorganisms in magnetized time-dependent
nanoliquid flow. Waqas et al.*? scrutinized thermo and solutal
stratification impacts in Casson nanomaterial flow with
convective boundary conditions. Azam et al.*® examined acti-
vation in the bioconvection flow of a cross nanoliquid subject to
gyrotactic microorganisms. Some interesting explorations of
bioconvective flow can be seen in Ref. 24-32.

Motivation of current analysis is to address the bioconvective
flow of the Reiner-Rivlin nanoliquid. Gyrotactic microorgan-
isms in the presence of convective conditions are discussed.
The characteristics of thermophoresis and random diffusions
are analyzed. Energy expression consists of radiation, heat
generation and ohmic heating. Irreversibility analysis along
with chemical reaction is analyzed. The Newton built in-
shooting technique (ND-solve) is employed to develop
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In the above expressions (u,v) denote the velocity components,
¢ the kinematic viscosity, u. the cross viscosity, g* the gravity,
(x,y) characterize Cartesian coordinates, 8* the thermal expan-
sion coefficient, p, the particle density, p,, the microorganism
density, y* the average volume of microorganisms, & the heat
transfer rate, B, the magnetic field strength, us the dynamic
viscosity, pr the liquid density, b the chemotaxis constant, g the
electrical conductivity, A, the mass transfer rate, T the
temperature, Dg the Brownian diffusion coefficient, W, the cell
swimming speed, Q, > 0 the heat generation coefficient, T, the

. . k
wall temperature, 7 the ratio of heat capacitance, oy = (ﬁ)
pep

the thermal diffusivity, (c,)¢ the specific heat, T, the ambient
temperature, ¢* the Stefan-Boltzmann constant, Dy the ther-
mophoresis coefficient, k; the thermal conductivity, 4, the
microorganism transfer rate, k* the mean absorption coeffi-
cient, C the concentration, AC the concentration difference, C,,
the wall concentration, k. the reaction rate, C. the ambient
concentration, N the motile microorganisms, N, the wall motile
microorganisms, D, the microorganism diffusion coefficient
and N. the wall motile microorganisms.
Letting / as the reference length and transformations:**

one has
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Prandtl number, Sc(=i> the Schmidt number,

Dy

Rd( = 16”2T°°3) the radiation variable, 3, ( =

Iy
3EE ) the solutal

D/t
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Biot number, Q(z > the heat generation parameter,

T Vg Dy %

Nt< = M) the thermophoresis variable, (; ( E— >

the microorganism Biot number, Lb( = I’,’—:ﬂ) the bioconvective
Lewis number, 7y (: %) the reaction variable, .Q( = m%"m) the

microorganisms concentration difference factor and Pe( = %)
m

the Peclet number.

3 Entropy generation

In mathematical form one can express that:**-*
ke 160"T.>\ (dT\*> o/Bs> ,  RDg (9T 4C
Ng = 1+ ——= (== 2 J9T 9C
N Tﬁ( M7 ><8y) Tt \a e

RDg (0C\?
+ =22 (=) .
Co \ 0y

(13)

Non-dimensional form is

Sg = a;(1+Rd)#> + MBref? + Lo ¢ + L%qy{ (14)
1

in which R indicates the real gas constant, SG< = %) the

entropy rate, a1< = %) the temperature difference vari-

pe(al)®
ke (T —Te )

able, Br( = the Brinkman number, «, = G=Cx)) the
( ) (=)

Co

concentration difference variable and L(:W) the

diffusion variable.

4 Solution methodology

We consider %) = 0 and denoting %) by prime in eqn (8)—(12).

We can express that

I

Sl = 2K () - Mp
=0,

A * *
H ('9 - B¢ - ﬁzx)
(15)

(14 Rd)6" + Prf6 + MPrEE*f”” + PrNbf' ¢’ + PrNt¢’”> + PrQg
= 0’

(16)
¢" +Scf ¢ + Nty e $=0 (17)
Nb ’Y - Y
X'+ Lbfx — Pe(Q¢" + x¢" +x'¢) =0, (18)
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F(0) =1, £(0)=0, ¢(0) =6 (1 - 6(0)),
9'(0) = —6(1 = ¢(0), X' (0) = —B5(1 = x(0)) o (19)
S(®) =0, 0(e0) =0, (o) =0, x()=0

4.1 Numerical scheme

The ND-solve technique computes the analysis. The Mathema-
tica software is employed to get the numerical solution. For this
we set

f=w, =y =y f=y
0:)}:7 0,:)/;, 6N:y’5

* ’ * 7" 7% ’ (2‘0)
¢:y67 ¢ :y77 ¢ :y7
X=0g X =o X' =V
1% * * ok *) E *
V3=V =V *2K<J’3 *y2y3> - My,
Loe e e » @
AE()Q —Bs— ﬂzys)
V= P [V1ys + MECE*y,™ + Nbysys + Ntps™ + 0y, ]
5 (1 + Rd) 15 575 4 )
(22)
l* * * Nt ,* *
Vg =Seyy; — s +8enys (23)
V5 = —Lbyiys = Pe(Q0] + /5 + 3533 (29)
with
¥1(0) =0, »3(0) =1, ¥3(0) = B, (1 — y4(0))
17(0) = =85 (1 = »4(0)), ¥5(0) = —B5(1 — 5(0)) (25)
Yy(2) =0, yi(0) =0, y(®) =0, yg()=0

5 Results validation

A comparative study of the present investigation with Kaswan
et al.*® is constructed in Table 1 in a limiting sense. From Table

Table 1 Thermal transport rate comparison with Kaswan et al.*®

Pr Kaswan et al.*® Present results
0.07 0.065539 0.065536
0.7 0.164035 0.164039
1.0 0.418237 0.418235
2.0 0.826737 0.826738
7.0 1.804291 1.804295
20.0 3.256791 3.256797
70.0 6.346675 6.346679

© 2023 The Author(s). Published by the Royal Society of Chemistry
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1 it is clearly detected that results here are in excellent
agreement.

6 Graphical analysis

In this section, the physical description of emerging variables is
organized.

6.1 Velocity

Fig. 2 displays the behavior of the magnetic variable for velocity.
Physically the magnetic field enhances the Lorentz force which
induces a resistance in the liquid flow region and the velocity
declines. Fig. 3 shows the impact of the material variable on
(f(n)). Increasing values of the material variable lead to viscous
force reduction which intensifies the velocity. Fig. 4 displays the
outcomes of the buoyancy ratio variable for velocity. Here
reduction in velocity occurs for the buoyancy ratio variable.
Fig. 5 elucidates the impact of the bioconvection Rayleigh
number. A larger approximation of the bioconvection Rayleigh
number (3,) corresponds to a decline in liquid flow (f{(n)).

Fig. 3 f(n) variation versus K.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 f(n) variation versus 8.

6.2 Temperature

The feature of temperature distribution for the magnetic field is
illustrated in Fig. 6. A higher magnetic field increases the

o)

0.15

0.10

0.05F--\

Fig. 6 6(n) variation versus M.
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Lorentz force which produces disturbance in the flow region outcomes of (8;) on temperature. An enhancement in thermal
and consequently the kinetic energy of the system is increased. distribution occurs for a higher thermal Biot number. Results of
Therefore thermal distribution is intensified. Fig. 7 shows the radiation for temperature are portrayed in Fig. 8. As anticipated,

o(n) ¢(71)
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Fig. 9 6(n) versus Nt. Fig. 12 ¢(n) versus Sc.
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Fig. 13 ¢(n) versus (s.
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Fig. 14 ¢(n) versus Nb.

higher radiation impact intensified the thermal field. Fig. 9 and
10 display (Nt) and (Nb) variations for temperature. A larger
approximation of (Nt) corresponds to augmentation of the
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Fig. 15 x(n) versus Lb.
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temperature. Additionally, it is seen through Fig. 10 that

temperature improves with a higher

variable.

random motion (Nb)
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Fig. 18 Sg(n) versus M.
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Fig. 19 Sg(n) versus L.

6.3 Concentration

Fig. 11 illustrates the impact of (N¢) on concentration. An
increment in concentration occurs through a higher thermo-
phoresis variable. The feature of concentration (¢(n)) for (Sc) is
depicted in Fig. 12. Here due to an increase in (Sc), the
concentration decays due to reduction in mass diffusivity.
Fig. 13 displays the variation of (8,) for concentration. Clearly,
the concentration boosts up for a higher solutal Biot number.
Additionally, it is evident through Fig. 14 that concentration
decays with a random motion variable.

6.4 Microorganism field

Fig. 15 exhibits the result of the bioconvection Lewis number on
(x(m)). Clearly, microorganism field degradation is detected
against a higher bioconvection Lewis number (Lb). The influ-
ence of (83) on the microorganism field (x(n)) is shown in
Fig. 16. A higher estimation of (8;) leads to augmentation of the
microorganism (x(n)) field. The graphical feature of (x(n)) versus
the Peclet number is portrayed in Fig. 17. A clearly decreasing

Nl

1.5

1.0

0.5

Fig. 20 Sg(n) versus Br.
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Fig. 21 Sg(n) versus Rd.

trend of microorganisms (x(n)) is witnessed for a higher Peclet
(Pe) number.

6.5 Entropy production

Fig. 18 shows the entropy variation against the magnetic vari-
able. With an increase in the magnetic field the Lorentz force
causes more resistance in the flow region. As a result, the
internal energy of the system increases and consequently the
entropy rate is augmented. Fig. 19 displays the impact of the
diffusion parameter (L) on (Sg(n)). Here entropy rises against
the diffusion variable. Effects of (Br) on the entropy rate are
given in Fig. 20. An increment in entropy generation is found for
a larger Brinkman number due to a larger kinetic energy. Fig. 21
elucidates the outcomes of the radiation parameter (Rd) for
(Sc(m))- The entropy rate against radiation is enhanced.

7 Closing remarks

Here the magnetized bioconvective flow of the Reiner-Rivlin
nanomaterial by convective conditions is examined. Entropy
analysis in the presence of chemical reaction is addressed.
Gyrotactic micro-organisms are taken into account. Key points
of recent analysis are given below.

e Reduction occurs in liquid flow for the magnetic field and
bioconvection Rayleigh number.

¢ Velocity improves for higher values of the material variable
while the reverse impact holds for the buoyancy ratio variable.

e Temperature enhancement is noted for thermophoresis
and radiation variables.

e An increase in temperature distribution and entropy rate is
witnessed for the magnetic field.

e Higher random motion
enhancement.

e A larger approximation of the thermal Biot number
intensifies the temperature distribution.

e The reverse trend holds for concentration against random
motion and thermophoresis variables.

leads to temperature

© 2023 The Author(s). Published by the Royal Society of Chemistry
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e A decline in concentration occurs for a higher Schmidt
number.

e Concentration increases for a higher solutal Biot number.

e Reduction in microorganisms occurs versus the Peclet
number.

e Microorganism field decays against a higher bioconvection
Lewis number.

e Entropy rate has similar behavior against radiation and
diffusion variables.

e Entropy rate increases versus a larger Brinkman number.
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