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Zinc oxide nanoparticles, with a hexagonal flake structure, are of significant interest across a range of
applications including photocatalysis and biomedicine. Simonkolleite (Zns(OH)gCl,-H,O), a layered
double hydroxide, is a precursor for ZnO. Most simonkolleite synthesis routes require precise pH
adjustment of Zn-containing salts in alkaline solution, and still produce some undesired morphologies
along with the hexagonal one. Additionally, liquid-phase synthesis routes, based on conventional
solvents, are environmentally burdensome. Herein aqueous liquid, betaine hydrochloride
(betaine-HCI), solutions are used to directly oxidise metallic Zn, producing pure simonkolleite nano/
Imaging (scanning electron

jonic

microcrystals (X-ray diffraction analysis, thermogravimetric analysis).
microscopy) showed regular and uniform hexagonal simonkolleite flakes. Morphological control, as
a function of reaction conditions (betaine-HCl concentration, reaction time, and reaction temperature),

was achieved. Different growth mechanisms were observed as a function of the concentration of

Received 20th February 2023 . . e . L .
Accepted 23rd February 2023 betaine-HCl solution, both traditional classical growth of individual crystals and non-traditional growth
patterns; the latter included examples of Ostwald ripening and oriented attachment. After calcination,

DOI: 10.1039/d3na00108¢ simonkolleite's transformation into ZnO retains its hexagonal skeleton; this produces a nano/micro-ZnQ
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Introduction

The use of zinc oxide (ZnO) as an additive crosses a diverse
range of applications, including skincare,' photocatalysis,?
electronics,® and biomedicine.* Some applications require
tightly controlled ZnO, whilst others do not currently have the
same high specification requirements. The use of highly-
specified ZnO is for applications where specific functionalities
of ZnO® are achieved, these function are linked to particular
structural features (including at the nanoscale). Thus, the
development of ZnO micro and nanomaterials has been of
significant interest;®* more applications may benefit as the both
the structure-property relationships are better understood and
the ability to achieve these structures is improved. A wide
breadth of ZnO morphologies have been reported, using various
synthetic approaches, including rod,” spherical,® needle-like,’
nanodisk,' and more complex assembled structures.'>*> Some
of the synthetic routes look to intermediates to produce addi-
tional morphologies. Li*® reported nanosheets of ZnO formed
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with a relatively uniform shape and size through a convenient reaction route.

using simonkolleite as an intermediate; this pathway could
serve to synthesise (thin) hexagonal nano and micro disks, on
a large scale.

Simonkolleite (Zns(OH)gCl,-H,0) is a layered double
hydroxide (LDH) which was first reported by Schmetzer et al.**
(Fig. 1). The crystal comprises a stack, along the c-axis, of flat
layers; these layers are composed of octahedron oxyhydrogen
complexes centered on zinc (light grey) and tetrahedrons of the
Zn0;Cl complex (dark grey). The structure is completed with
water molecules between layers'*'® and CI atoms preferentially
directed into the same interlayer space.

Interest in simonkolleite itself stems from several desirable
properties. The layered structure has excellent potential as
a cation exchange material,"” is popular as a filler for nano-
composites,'® has been employed as a drug carrier in systems
requiring slow-release, and is appealing as a catalyst or
sieve.””

Synthesis of simonkolleite has been reported, including by
Li," via precipitation in an ammonia solution, using ZnCl, as
the zinc source. Subsequent calcination of the simonkolleite
produced both sheet-like and spindle-like ZnO structures, with
a thickness of about 40 nm. Nanosheet ZnO has been confirmed
to have good activity as a photocatalyst. However, this process
lacks key environmental and sustainability credentials, which
severely detracts from its potential in future deployment; the
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Fig. 1 The layered double hydroxide crystal structure of simonkolleite.*>¢° Zinc containing octahedron and tetrahedrons are shown (light and
dark grey, respectively) with the interlayer spacing containing water. N. b. H atoms are not shown.

concerns include: (1) the volatility and corrosiveness of
ammonia, (2) the precise pH control reportedly required, and
(3) the unsustainable and environmentally-damaging waste
stream produced. To improve the sustainability of this method,
Aida* reports the use of hibiscus flower extract. However, this
change is incremental and does not address the high concen-
tration of ZnCl, required as a reactant. Other conventional
synthetic methods, such as using sodium hydroxide to carry out
precipitation, neither provide good morphological control of
the products nor a greener chemistry.**>¢

Betaine hydrochloride (betaine-HCI) is in the family of
choline carboxylate ionic liquids (Fig. 2). It is composed of
a hydrophilic carboxylic tail with a hydrophobic quaternary
ammonium salt head. Its amphoteric structure leads to specific
aggregation behaviours in the liquid phase, distinguishing it
from conventional solvents or salts. It has been suggested that
the hydrogen bonding of betaine-HCI cation and water mole-
cules can serve as a mechanism to link two or more molecules;
this then serves as a basis for the formation of aggregates.””*
The self-assembly behaviour of betaine-HCl molecules may
affect crystal growth; thus, it has the potential to be used to

_\ﬁ’ cf®
/
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Fig. 2 The molecular structure of betaine

(betaine-HCI).

hydrochloride

2438 | Nanoscale Adv., 2023, 5, 2437-2452

adjust, and possibly control, crystal structure.” Furthermore,
betaine-HCI can be synthesised from biomass in a sustainable
and economical way.** Compared with conventional solvents or
other ionic liquids, such as imidazolium-based ionic liquids,
betaine-HCI has lower toxicity and is easily degraded without
significant environmental impact.**-** It has been employed in
the metal industry, e.g. rare-earth metal recovery** and metal
complex synthesis.***® Our previous work have demonstrated
betaine-HCI can dissolve Zn, and has been reported to undergo
complexation.’”?®* The implications, therefore, include the
possibility of inducing the precipitation of simonkolleite with
a specific nano/micro structure.*

Currently, to the best of our knowledge, simonkolleite
synthesis routes employing conventional solvents rely on
precise pH adjustment to prevent competing reactions (in turn,
resulting in the formation of other zinc complexes like
Zn(OH),)."* In previous work, an alternative method was
developed to produce simonkolleite from zinc using aqueous
solutions of 1-butyl-3-methyl-imidazolium chloride.*® Ionic
liquid 1-butyl-3-methyl-imidazolium chloride is employed to
catalytically oxidise metal Zn. However, the reaction pathway to
simonkolleite is both slow and goes through multiple inter-
mediate species. The consequence of this is both a variety of
products (including Zn(OH),, for example) and the yield of
simonkolleite is relatively low. It exposed that conventional
ionic solutions is difficult to control the morphology of the zinc
product, by virtue of the solvent alone without adding addi-
tional reagents.

Betaine-HCl can oxidise metal zinc directly, offering an
alternative to 1-butyl-3-methyl-imidazolium chloride, inducing
a high concentration of Zn>* ions. However, its differences from
1-butyl-3-methyl-imidazolium chloride present an opportunity

© 2023 The Author(s). Published by the Royal Society of Chemistry
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to reduce, and potentially all-together avoid, the formation of
most competing products or the presence of polymorphism.
Meanwhile, it is also different from conventional acids like HCI
to form hydrogen and stop at ZnCl,.** Without manual pH
adjusting, Zn in betaine hydrochloride solution, can stably
produce high-purity, regular hexagonal sheet-like simonkol-
leite, which outperforms conventional acids. Thus, this
economical green ionic liquid, betaine-HCI, presents excellent
potential in synthesising simonkolleite nano/microparticles,
which can be subsequently calcined into ZnO nanosheets.
Meanwhile, the expected waste stream is deacidified betaine,
which is easy to be reused by acidification.***

Herein, this work is based on the utilisation of recycled scrap
metal Zn to synthesise shape-controllable simonkolleite crys-
tals. The conventional acid and additives are replaced by
betaine hydrochloride, as an environmentally-benign solvent to
produce simonkolleite through the direct oxidation of a solid Zn
metal substrate. Adopting mild and environmentally friendly
betaine acid minimised the potential risk to operators and the
environment. Simultaneously, this process also eliminates the
need to adjust the pH of the solution. It developed a ‘one-pot’
method, which simplified the complexity of the operation as
much as possible, to achieve precise regulation of the
morphology of simonkolleite. Whilst there are sustainability
benefits to removing this salt, in fact, its addition through the
solid metal is grounded in more fundamental reasoning. The
slow release of zinc ions into the liquid phase is achieved by the
moderate reaction rate of betaine-HCl with zinc. The zinc
concentration in the liquid phase is essentially being managed,
with a view towards maintaining a favourable concentration
range for the formation of well-controlled simonkolleite crys-
tals. This ingenious solvent utilisation method has potential in
the crystallisation industry. The products were characterised by
X-ray diffraction (XRD), thermogravimetric analysis (TGA), and
scanning electron microscopy (SEM) to verify the purity of the
product simonkolleite and the feasibility of converting it into
flaky ZnO. Using this pathway, relatively pure simonkolleite
with flaky hexagonal nanocrystals can be obtained. This study
mainly investigated the morphological effects of betaine-HCI
concentration, reaction time, and reaction temperature on the
simonkolleite formed. Additionally, it also obtained ZnO

Table 1 Simonkolleite synthetic ingredients list
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Nanoscale Advances

nanoparticles by calcination experiments to verify the feasibility
of producing flaky hexagonal ZnO.

Experimental methods

This experiment used metal zinc (Zn grains, 20-35 mesh,
99.8%, Sigma-Aldrich) as the Zn source. Other reagents
included betaine-HCl (betaine hydrochloride, PCR reagent,
>99.9%, Sigma-Aldrich), methanol (anhydrous, 9, 9.8%, Sigma-
Aldrich) and deionised water. All reagents were used as supplied
(i.e. without any further purification or treatment).

Synthesis of simonkolleite

Room temperature leaching synthesis. The matrix of
conditions used in the synthesis of simonkolleite are in Table 1.
The concentration of the aqueous betaine-HCI solution was
selected as 10 and 40% of the mass fraction (2.8 and 10.5% mol
fraction); the former is referred to as ‘high’ water case and the
latter is referred to as the ‘low’ water case. For both solution
concentrations, reactions were run for 1, 3, 5, 7, and 15 days. In
each case, the 15 mL of betaine - HCI solution was mixed with 3 g
of Zn grains in a flask. The flasks were placed in a shaking
incubator (SciQuip, Incu-Shake series) at 200 rpm and 40 °C.

High-temperature hydrothermal synthesis. A complemen-
tary experiment was studied at an elevated temperature of 160 ©
C for 24 hours to observe the relative formation of simonkol-
leite. The conditions (noted in Table 1) were at the ‘low’ water
concentration (i.e. 40% mass fraction of betaine-HCI) with 2 g
of Zn grains and 10 mL solution in a 50 mL autoclave.

Separation, washing and drying of products. After the reac-
tion had reached the specified time, the mixture was stirred
sufficiently such that the powder remained suspended in the
liquid phase. The product was separated by a combination of
settling and washing steps (Fig. 3). The suspension was sepa-
rated from the solid phase into a falcon tube, unreacted zinc
grains remained at the bottom of the reactor. The suspension
contained a large quantity of white precipitate at the bottom of
the tube by standing overnight. The supernatant was removed
by pipette manually. The residual solid sample was added to
10 mL of deionised water to prepare for further washing.
Centrifugation (VWR Mega Star 3.0) was employed at 1000 rpm

Betaine-HCI

Serial number concentration/mass% Mass of solution/g

Mass of Zn grains/g

Reaction temperature/°C Reaction time/days

1 10 15 3
2

3

4

5

6 40

7

8

9

10

11 40 10 2

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Experimental process flow schematic diagram.

for 3 minutes, where the parameters were selected based on the
properties of both the simonkolleite and solution. These steps
were repeated until no solid product was retrieved, and a final
methanol wash step was used. The precipitate was dried in the
fume hood and weighed once dry.

Characterisation. The composition and crystal structure of
the products were characterised by X-ray Diffraction (XRD,
Bruker D2 Phaser, 30 kV, 16 mA). The product morphologies
were observed by Scanning Electron Microscopy (SEM, JSM-
6010LA InTouchScope, 20 kV). Due to the hexagonal shape,
and packing, of the particles, the side lengths of hexagons were
used to quantify particle size. Analysis included regularity of
hexagons; large sample sizes were used (n = 200) to ensure good
representation of the population. Herein, the particle size refers
to the side length of a single hexagon unless stated otherwise.

The products also were characterised by thermogravimetric
analysis (TGA 4000, PerkinElmer, Inc.). For each sample, ca.
15 mg was transferred into a crucible. A N, gas environment
with a flow rate of 20 mL min~" was used. The sample was
heated from 30 °C to 800 °C at a rate of 1 °C min " and held for
30 minutes. Subsequently, the sample, now calcined, was

cooled to room temperature at 5 °C min ™.

Results and discussion

Three variables involved in the synthesis process of simonkol-
leite were considered: betaine-HCl concentration, reaction
time, and reaction temperature. Two betaine-HCl concentra-
tions were probed (‘low’ and ‘high’ water content) as a function
of time (up to 15 days) at 40 °C; a separate case investigated the
effect of elevated temperature (160 °C).

To illustrate key features of the product characterisation,
a case study (10% betaine-HCI solution for ten days) is pre-
sented in detail below. Subsequently, a discussion of the
morphological control of simonkolleite particles (size and

2440 | Nanoscale Adv,, 2023, 5, 2437-2452
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thickness), as a function of varying reaction conditions (betai-
ne-HCl concentration, reaction time, and reaction temperature)
is presented.

Product characterisation

The product from 10% of betaine-HCI after a 10 day reaction
period is used as the exemplar herein to illustrate the charac-
terisation undertaken. As previously described, the solid
product was recovered through washing steps; subsequent
analysis was executed to obtain information on composition
and morphology of the solid particles using XRD, SEM, and
TGA.

For the separated product, a white powder, has XRD peaks
strongly consistent with simonkolleite (Zns(OH)sCl,-H,0)
(Fig. 4), suggesting the synthesised product has relatively high
purity. The product has a strong peak where 26 is ca. 11°, cor-
responding to the [0,0,1] crystal plane of simonkolleite.'*** The
intensity of the peak attributed to the [0,0,1] plane implies that
the end-face is, by far, the dominant face exposed by the crystal.
Moreover, it indicates that the growth along the c-axis is
inhibited. Taken together this describes the crystals presenting
as flat, rather than elongated rods.

The synthesised simonkolleite was imaged (Fig. 5a) using
SEM. These images are consistent and regular hexagonal flake
morphology is observed, which is consistent with the typical
crystal form of simonkolleite and in good agreement with the
analysis of the XRD diffraction pattern obtained. The clean,
sharp edges of the crystals are notable and provide strong
evidence that product is fully crystalline; this is also consistent
with XRD where peaks show good definition. Neither technique
gives indication of amorphous material.

The length of one edge of an individual hexagonally shaped
crystal was selected as a metric to quantify particle size. The
regularity of hexagon side lengths was assessed and found that
the edge length variance of three sides for one crystal was, on

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The XRD patterns of the JCPDS standard peak of simonkolleite
(COD 9004683) (bottom diffraction pattern shown in red) and the
synthesised product recovered from 10% of betaine-HCl after a 10 day
reaction period (top diffraction pattern shown in black).

average for n = 200, <0.01 pm, the effective limit of measure-
ment accuracy and confidence. As such, hexagons measured
could be considered regular hexagons within the measurement
limit. The distribution of side lengths for n = 200 was in the
range between 0.5 pm and 5.5 pm. Due to the clustering of
crystals, the thickness cannot be measured reliably; one can
only assuredly state that the thickness of a single crystal is <0.5
pum. The presence of clustering and/or sticking will be discussed
in later sections. The product characterisation by thermogravi-
metric analysis (TGA), consistent with previously reported
studies for simonkolleite,* is discussed in a later section.

Effects of reaction conditions on the morphology

Crystal morphologies are often closely linked to functional
properties, providing significant importance in understanding
how specific morphologies are achieved. The crystal morphol-
ogies of simonkolleite are influenced by the synthesis condi-
concentration,

tions, including betaine-HCI reaction

temperature, and reaction time.

Fig. 5

View Article Online
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Betaine-HCI concentration. Regardless of the betaine-HCI
solution concentration (10 versus 40%), hexagonally shaped
crystals were formed. However, significant distinctions in the
size was observed when comparing those synthesised in 10% of
betaine-HCl, as compared to 40%, both after seven days (Fig. 6).
In the 10% betaine-HCI, the distribution has a mean of ca. 2.3
pm and median of ca. 2.0 pm; 90% of the crystals measured fall
in the range of 1.0 to 4.0 pm with a long tail making up the
remainder (Fig. 6¢). As previously noted, quantification of the
crystal thickness is subject to inaccuracies. However, qualita-
tively it is apparent that larger hexagonal crystals (side length
ca. 4.0 um) appear to have thicknesses reaching 2 pm. But the
majority of small crystals (side length ca. 2.0 pm) appear to have
a thickness of <0.5 pm.

The wide distribution in the 10% betaine-HCI case can be
attributed to two different non-classical crystal growth mecha-
nisms: Ostwald ripening*® and oriented attachment (Fig. 7).
Initially in the solution, the interaction between metal zinc and
betaine-HCI results in the release of crystalline precursors,
which are most likely Zn-[betaine]|Cl,.*”*®* In the early growth
stages, the simonkolleite crystals then grow following the clas-
sical growth mechanism, from crystalline precursors, into tiny
(and growing) crystals.** However, not all crystal precursors will
follow this pathway. When the level of supersaturation
decreases, non-classical crystallisation mechanisms will over-
take the classical mechanism. This shift will cause tiny crystals
to support simonkolleite growth through a sacrificial mecha-
nism, Ostwald ripening. The tiny crystals dissolve, and their
dissolution then supports the further growth of other pre-
existing (larger) crystals.*

In addition to growth through the Ostwald ripening process,
there is also evidence of growth by oriented attachment.
Through imaging two observations are made which support the
existence of this second mechanism: (1) large-scale aggregation
amongst individual crystals and (2) multiple tiny crystals
oriented and attached to large crystal surfaces. In particular,
a common approach to oriented attachment can be described
as face-to-face attaching; the [0,0,1] planes are stacked on each
other, resulting in the tiny single crystals merging into thicker
large crystals after alignment. Another type of attachment, side-

030 Bet10 Zn10
0254
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(@) SEM images of product simonkolleite; (b) particles size distribution for the case of 10% of betaine-HCl with a 10 day reaction. (b) The

sample presented is for n = 200, where hexagonal crystals showed regularity (i.e. regular hexagons). The distribution step-size selected is 0.5 um,

based on measurement confidence.
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Fig.6 SEMimages (a and b) and their corresponded size distribution maps (c and d) of simonkolleite synthesized in the betaine solution for seven
days with different concentration. Images, using SEM, are shown for (a) simonkolleite synthesized in 10% betaine-HCL The crystal structure inside
the circles show two different types of oriented attachment; (b) simonkolleite synthesized in 40% of betaine-HCL. The size distribution maps are
included below the respective SEM image where the length represents a side length of the regular hexagons for n = 200 for (c) 10% of
betaine-HCl and (d) 40% of betaine-HCL.

to-side, is also observed; large crystals undergo ordered fusion The oriented attachment is a non-classical mechanism

in the thin side plane. Through these side-to-side connections,
multiple hexagons can be aggregated into complex flat clusters
at higher scales.*

impacting the crystal coalescence process.>” Multiple crystals
are induced by the anisotropy of each plane or interaction, such
as face-specific van der Waals forces and electrostatic

Crystaling Procursor
Zn{Betaine|C1,

\ Newly Fumbd Nuclei
°
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). \'—%ﬁ 2 (
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Fig. 7 Schematic diagram of the crystallisation process of simonkolleite in betaine-HCl solution. In the first step, free betaine ions (green balls)
react with the metallic Zn surface, which can then go on to form Zn-[betaine]Cl, complexes (blue balls). This reaction, from the free to
coordinated betaine ions, has a likely intermediary step where Zn ions accumulate in the liquid phase. The Zn-[betaine]Cl,, which is the precursor
of simonkolleite, increases in concentration to supersaturation levels and the hexagonal nucleus starts to form. When the Zn-[betaine]Cl,
concentration is still high, nucleation-dominated growth will be prevalent. Subsequently, due to consumption of the precursor the supersat-
uration drops and the primary mechanism shifts away from nucleation-dominated to a combination of Ostwald ripening and oriented
attachment.
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interactions, adjusting the contact angle between crystals to
minimise the surface energy.>® Whether it is the attachment of
tiny crystals or the fusion of large crystals, the alignment is
preferential over disorder. Therefore, it can be deduced that the
crystal formation of simonkolleite in 10% of betaine-HCI is
affected by the combined action of Ostwald ripening and
oriented attachment.
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By contrast to the simonkolleite formed at 10%, that which
was precipitated from a 40% betaine-HCIl solution exhibits
a more uniform and smaller size distribution. The crystals are
easily identifiable individually and have a single side particle
length mean of ca. 1.7 pm and median of ca. 1.6 pm (Fig. 6b and
d). The crystals made at these ‘low’ water content conditions
have a significantly thinner appearance (so much so that they
appear nearly translucent under the SEM). Evidence of growth
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Fig.8 SEMimages and their corresponded size distribution charts of simonkolleite (n = 200 for each experiment) are shown for (a and e) one, (b

and f) three, (c and g) five, and (d and h) seven days in 10% betaine-HCL.
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patterns here are different, with indications pointing to
nucleation-dominated crystallisation (not growth-dominant
crystallisation). Notably, there is also no observed directional
attachment or coalescence.

Reaction time. In the previous section, focusing on concen-
tration of betaine-HCI in solution, the time step of seven days
was used to illustrate a significant difference between particles
generated at 10 versus 40% betaine-HCl solutions. These
distinctions point to the existence of different mechanisms in
play. In this section, the previously proposed mechanisms are
probed, and further explored, as a function of time.

Simonkolleite single-crystals formed in 10% betaine-HCI
solutions maintain a hexagonal shape, as a function of time,
during the crystallisation growth process (i.e. no observation of
any significant transition or polymorphism) (Fig. 8). With
increasing time, the hexagonal crystals show an increase in size
of both the face and the plate thickness. After one day in 10%
betaine-HCI solution (Fig. 8a), the crystals appear as separate
hexagonal sheets, suggesting a classical nucleation and growth
sequence of mechanisms. The crystal flakes' mean side length
was ca. 1.3 pm (Fig. 8e). The thickness of the flakes observed
was still relatively thin. With increasing time, two significant
changes occurred. Initially, the primary individual crystals
increased in size in the [1,0,0] and [1,1,0] directions. A shift in
the average side length of the hexagons is evidenced across the
period from one to seven days. At seven days, the side length
reached a mean of ca. 2.3 pnm. However, the increasing average
is only one metric; the particle distribution is gradually
widening with time. This latter phenomenon is unsurprising as
various merging and aggregation behaviours are clearly occur-
ring (Fig. 8b-d), where the various pathways differentially alter
the crystal growth, and therefore size (Fig. 8f-h).

During this process, imaging suggests that the number of
tiny crystals gradually declined with increasing time. It can be
observed that some individual tiny crystals were still present in
the third-day sample, while they were rarely found in the
seventh-day sample. This pathway illustrates the previously
discussed process of nucleation and growth. In the early phase,
tiny crystals may grow; however, with increasing time, the
majority of the tiny crystal population either have grown
themselves or have been incorporated into larger-diameter
structures by Ostwald ripening or oriented attachment.

Therefore, single crystals rarely grow individually and inde-
pendently to a diameter >5 pm. This is evidenced by the fact that
crystals of this size no longer appear to be from a single nucleus,
and notably the hexagonal shape is maintained regardless of
multiple size crystals coordinating. Considered all together, this
continues to provide substantial evidence of both Ostwald
ripening® and oriented attachment®*® occurring in the crys-
tallisation process, furthermore this then also indicates the self-
assembly capability of simonkolleite.

Precipitation of crystal product in the 40% of betaine-HCl
was not observed, nor could any product be precipitated, after
one day. The first solid precipitation was separated successfully
after two days (Fig. 9a). Although the product in 40% concen-
tration remains hexagonal shape, the crystal growth process is
different from the 10% case. The particle size increased with

2444 | Nanoscale Adv., 2023, 5, 2437-2452
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increasing reaction time; however, the crystal size distribution
is not broadening with time as was seen in the 10% case.
Individual crystals have a mean side length of ca. 1.5 pm; no
crystals’ side lengths were ever measured to be >4 um (Fig. 9e-
h). The crystals' thickness can only be assessed semi-
quantitatively, due to the nature of the sample and imaging;
however, there is virtually no evidence of increasingly thick
crystals, as is seen in the 10% case. The crystals do not exhibit
attachment mechanisms (of either the face or side), leaving
most as individual crystals without agglomeration. The rela-
tively narrow size distribution also suggests that Ostwald
ripening is either uncommon or does not occur at all.

Whilst distinctions were obvious in the samples assessed at
seven days, a qualitative look at a longer reaction time of 15 days
(Fig. 10) shows fewer notable differences. In both cases, there
are several key features observed: (1) some crystals are >10 pm
in diameter and (2) there is evidence of attachment and/or
merging. What does remain distinguishable, however, is that
the particle size distributions are consistent with what was
observed at earlier time steps. For 40% betaine-HCI the distri-
bution is narrower, with a ca. 90% of the crystals between 0 and
5 um for side length. By contrast, the 10% betaine-HCI is much
broader in its distribution and with no real peak; to provide
a comparison, the proportion of crystals between 0 and 5 pm is
only 61.5%.

The first point to address is the appearance of Ostwald
ripening, oriented attachment, and assembly behaviours in
40% betaine-HCI concentration at this extended time, whereas
these phenomena were not apparent in the assessment at seven
days. It can be speculated that the crystallisation precursor
concentration remains higher (likely supersaturated) and lasts
for longer in the case with 40% betaine-HCI, as compared to
that with 10%. This higher, and longer lingering, concentration
can be explained by the higher concentration of betaine-HCl
resulting in more Zn-containing ions,"** which, in turn,
provide a key reactant to forming a longer-lasting supply of the
simonkolleite precursor, [Zn(betaine),Cl,] (Fig. 11).

Thus, in the high concentration of betaine-HCI case (40%),
the high supersaturation of precursors is the driving force for
crystallisation during the initial period, from 2 to 7 days,
leading to the critical crystal size remaining at a low level. As
such, non-classical behaviours (namely Ostwald ripening) are
not preferential during this period. From a thermodynamic
standpoint, the surface energy of smaller crystal nuclei is always
greater than that of a large crystal; therefore, the growth velocity
of crystals is inversely proportional to size (i.e. tiny crystals have
a higher rate of growth than large crystals). Newly produced tiny
crystals can always catch up in size to larger crystals growing
more slowly; overall, this results in narrowing of the crystal size
distribution with time (‘size-distribution focusing’).”” However,
this classical growth process is limited when the chain is
broken, i.e. inadequate precursor concentration (e.g. zinc ions
are not available). In this scenario, the supersaturation in the
liquid phase then decreases (including dropping below super-
saturation levels), resulting in Ostwald ripening overtaking as
the dominant crystal growth mechanism. Of course, in cases

© 2023 The Author(s). Published by the Royal Society of Chemistry
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with 10% betaine-HCI solutions the first period, with classical
nucleation exists only briefly, if at all.

A second, competitive, behaviour of betaine-HCI molecules
may also be in play, which must be considered, as it has the
potential to act as a type of surfactant and, therefore, impact the
crystal growth. The tail carboxyl group of betaine-HCI mole-
cules releases hydrogen and leaves the carboxylate anion after

View Article Online
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the oxidation of metal zinc. The result is the formation of the
zwitterion, [betaine]-, which can complex with zinc ions present
on the polar face of the crystal. This would make it, effectively,
an end-capping agent and inhibit growth along the c-axis
direction (the [0,0,1] direction). As a result of this inhibition,
this would promote the formation of sheet-like structures® and
encourage thinner structures. Herein, the particles formed at
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Fig. 9
the side lengths of 200 hexagonal crystals.
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(a—d) SEM images of simonkolleite crystal growth synthesised in 40% of betaine-HCl over time; (e—h) corresponded PSD maps statistical
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Fig.10 SEMimages (a and b) for simonkolleite synthesized, after 15 days, and the size distribution of the side lengths (n = 200 hexagonal crystals)

(c and d) for 10% of betaine (a and c) and 40% of betaine (b and d).

A \/
—3

ON—

Fig. 11 Presumed impurity Zn—-betaine complex chemical formula
[Zn(betaine),Cl,).®

40% betaine-HCI do appear thinner than those made in 10%.
Additionally, there is significant evidence of other competing
behaviours still occurring. Namely, signs of Ostwald ripening
are apparent where tiny crystals in the solution can orientate
and attach to large flakes to form a new layer. Monomers can
stick to the raised edges of a new layer to further develop the
layer. It allows simonkolleite to grow in the [0,0,1] direction and
eventually form a thick hexagonal multilayer structure.
Reaction temperature. A comparison of this synthesis was
conducted at 160 °C for 24 h for a 40% betaine-HCI solution
with Zn (Fig. 12). Unlike the lower temperature synthesis,
various morphologies are observed, including hexagonal flakes,

2446 | Nanoscale Adv, 2023, 5, 2437-2452

rods, plush balls, and lamellar clusters. At this elevated
temperature, hexagonal platelets’ side lengths observed appear
to vary from 2.5 to 42.5 pm with a single crystal thickness of ca. 1
pm. This evidences that growth along the [0,0,1] direction (c-
axis) is still inhibited at high temperatures. The particles
formed flatter structures, resulting in a higher aspect ratio. The
edges of plate crystals with defects are more clearly discernible.
It may be inferred that individual hexagonal flakes are grown
from individual nuclei. It may mean that the growth ability of
individual nuclei at high temperatures is enhanced. Some
complex stacking clusters were also observed in this system. In
addition to face-to-face stacking, side-to-face, and side-to-side,
even agglomerated petal-like structures occur. Therefore, it is
believed that the morphological control of simonkolleite at high
temperatures is weak, but it is capable of producing more
complex assembled structures.

Simonkolleite calcination

The simonkolleite product was calcined (oxygen-free); SEM
imaging was used to demonstrate whether the structural char-
acteristics (i.e. hexagonal shape) were maintained (Fig. 13). The
calcination was monitored by thermogravimetric analysis to
900 °C (Fig. 14a). This sample was subsequently characterised
by XRD to confirm the conversion to ZnO and. To further
establish the decomposition pathway, five individual calcina-
tion experiments were conducted to different temperatures (25,
100, 250, 400, and 600 °C) and characterised by XRD (Fig. 14b)
on simonkolleite made with 10% of betaine-HCI for ten days.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3na00108c

Open Access Article. Published on 02 March 2023. Downloaded on 1/20/2026 8:30:44 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

View Article Online

Nanoscale Advances

=
=

Frequency

°
B
&

[ Betd0 a1 HT

| =
=l

5 10 15

25 30 3 40 45

Side length (um)

Fig. 12 SEM images (a—c) of simonkolleite synthesized in 40% of betaine at 160 °C, 24 hours. A distribution of the side length for hexagonally-
shaped simonkolleite particles is shown (d), where a step size of 2 um is used in this instance.

Impact on morphology from -calcination. The calcined
product still maintains a hexagonal flake structure, although
breakage and cracks are visible (Fig. 13). These new fractures in
the crystal are likely due to the release of gaseous phases
(including water and HCI) during the heating-induced decom-
position of simonkolleite.** In the crystal structure of simon-
kolleite (Fig. 1) the tetrahedral and octahedral structures,
composed of coordinated Zn-O-Cl atoms, have a staggered
stacking formation to make the crystal cell.® During the
thermal decomposition process, both H,O and HCI molecules
leave the lattice (discussed subsequently). The phase trans-
formation from simonkolleite to ZnO creates stress on the
crystal lattice. Thus, the calcined ZnO exposes loosened porous
structures at the nanoscale,® but overall it retains the hexagonal
frame formed in the synthesis of simonkolleite. It indicates that
adopting simonkolleite as a calcined precursor has the poten-
tial to prepare hexagonal sheet-like ZnO.

Fig. 13 An SEM image of ZnO (confirmed by XRD) taken after the
calcination (oxygen-free to 900 °C) of simonkolleite, which itself was
formed in 10% of betaine for 15 days.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Decomposition process. The thermal decomposition
(Fig. 14) process can be roughly divided into two regions, the
low-temperature zone (<350 °C) and the high-temperature zone
(350 °C). In the low-temperature zone, the TGA curve indicates
that the product was very dry (i.e. no measurable free water
present) because the product's weight remains unchanged until
well after 100 °C. The XRD spectrum also shows little phase
change from 25 to 100 °C (Fig. 14b, i. blue and ii. light blue).
Three key thermal decomposition reactions of simonkolleite
have been identified at <350 °C. The XRD characterisation of the
product calcined at 250 °C reveals the Zn(OH)Cl and ZnO
(Fig. 14D, iii. green); there is no evidence of simonkolleite. The
simonkolleite first decomposes into zinc oxide and 2B-Zn(OH)
Cl at 170 °C (water is also released); if this reaction it goes to
completion, a mass loss of 13.05% is expected (eqn (1)%').

Zns(OH)sCl,-H,0 — 3ZnO + 2B-Zn(OH)CI + 4H,0 (g) (1)

Subsequently, 23-Zn(OH)Cl is further decomposed into zinc
oxide (ZnO), hydrated zinc chloride (ZnCl,-0.25H,0), and water
at 220 °C (eqn (2)). The water-derived mass loss is 2.44% theo-
retically, with reaction completion.

2-Zn(OH)Cl — ZnO + ZnCl,-0.25H,0 + 0.75H,0(g)  (2)

Subsequently, ZnCl,-0.25H,0 is subject to decomposition
itself, releasing HCI >230 °C. The remaining zinc is converted
into ZnCl, and ZnO, respectively (eqn (3)).

ZnCl,-0.25H,0 — 0.25ZnO + 0.5HCI(g) + 0.75ZnCl,  (3)

Consider the following cases, where all low-temperature
zone reactions occur eqn (1)—(3) to completion. This results in
a theoretical cumulative overall mass loss of 18.8%. Experi-
mentally, the mass loss at 250 °C is 16.1%, presenting quite
good agreement with the calculated expected loss and

Nanoscale Adv., 2023, 5, 2437-2452 | 2447
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(a) The TGA analysis for product simonkolleite. The black curve stands for the residual mass of substance with increasing temperature;

the red curve stands for the mass-loss rates at different temperatures. The original product was synthesized by 10% of betaine-HCl react with Zn
for 10 days. (b) XRD data of product powder after calcination to different temperatures (100-600 °C) is presented on a sample synthesized in 10%
betaine for 10 days: (i) blue curve is before calcination at 25 °C; (ii) light blue curve — calcined to 100 °C; (iii) green curve — calcined to 250 °C; (iv)
orange curve — calcined to 400 °C; (v) red curve — calcined to 600 °C; spectra in dashed boxes represent standard diffraction peaks of

simonkolleite, B-Zn(OH)CL, and ZnO (crystallography open database).

simultaneously indicating that all three reactions do not go to
completion. The latter statement is consistent with the XRD
results where no simonkolleite remains (i.e. eqn (1) goes to
completion), but evidence of 2B-Zn(OH)CI is apparent (i.e. eqn
(2) does not go to completion).

Complex decomposition reactions can occur in the high-
temperature zone (i.e. above 350 °C). Herein, a significant
mass drop is observed in this high-temperature zone reaching
an eventual residual mass ca. 67% (of the original mass). The
mass loss predominantly occurs between 350 °C to 525 °C, with
a small continuing decline after 525 °C. At a calcination
temperature of 400 °C, the composition of the calcined product
remains 2B-Zn(OH)Cl and ZnO. Notably, a characteristic peak of
2B-Zn(OH)CI (26 = 15.603°, [0,0,—2]) is decreasing (Fig. 14b, iv
orange) relative to the spectrum at 250 °C. Simultaneously, the
intensity of ZnO peaks (26 = 31.773°, [—1,0,0]; 34.420°, [0,0,—2];
36.256°, [—1,0,—1]) is increasing relatively speaking. When the
temperature is increased to 600 °C, there is no longer evidence
of 2B-Zn(OH)CI and only peaks attributable to ZnO remain
(Fig. 14b, v. red).

In the higher temperature region the removal of ZnCl,, via
either eqn (4) (direct vaporisation from melt state) or eqn (6),
occurs. The remaining 2B-Zn(OH)Cl, which was not converted
in the low temperature range, can degrade in the high
temperature region via two alternative pathways (eqn (5) or (7))
(Fig. 15).

Several potential contributing mechanisms can be consid-
ered in this high-temperature conversion. Whilst various

2448 | Nanoscale Adv,, 2023, 5, 2437-2452

mechanisms are possible, it is critical to consider that ZnCl, is
highly hygroscopic and does not tend to melt and evaporate in
the presence of water. Anhydrous ZnCl, is thermodynamically
unstable and readily absorbs water from the environment to
form hydrates. Therefore, the moisture of calcining environ-
ment impacts the decomposition process.** Jones' research®
suggests ZnCl, can melt at 320 °C and may vaporise at >400 °C

(eqn (4))-

0.75ZnCly(melt) 2 0.75ZnClx(g)

(4)

A kinetically dominated reaction releasing water and ZnCl,
(eqn (5)) can take 2B-Zn(OH)CI reactant and form ZnO. The
theoretical volatilisation temperature of ZnCl, is 400 °C,
potentially contributing to the significant mass loss observed
between 400 and 535 °C.

2B-Zn(OH)Cl — ZnO + ZnCly(g) + H,O(g) (5)

Considering the hygroscopic nature of ZnCl,, an alternative
decomposition route of the hydrate, ZnCl,-0.25H,0, likely
contributes to the mass losses observed. The result of this
pathway are losses from gaseous HCl and H,O along with solid
ZnO (eqn (6)). A second alternative pathway for the decompo-
sition of 2B-Zn(OH)CI has been suggested (eqn (7)).*>*

0.75ZnCl, + 1.5H,0(g) — 0.75 [ZnCl,-2H,0] — 0.75 ZnO +
1.5HCI(g) + 0.75H,0(g) (6)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16
washing times is shown on the right.

28-Zn(OH)Cl — Zn,OCl, + H,0(g) 7)

The onset of mass loss at 350 °C suggests that there may be
either (1) the humidity in the calciner reducing the volatilisa-
tion temperature of ZnCl, or (2) trapped volatile impurities
released in this temperature range (Fig. 16). There is significant
evidence that the latter explanation is the cause of this apparent
early onset of mass loss. When varying degrees of washing were
implemented, there was a significant impact on the losses
measured in the range of 330-400 °C. Samples washed fewer
times, i.e. higher retention of Zn-betaine complexes in partic-
ular, were observed. It is suggested that it is the Zn-betaine
complex***® (Fig. 11), rather than pure betaine-HCI, because its
decomposition temperature (330 °C) is significantly higher than

© 2023 The Author(s). Published by the Royal Society of Chemistry

Sample Temperature (°C)

In this two part figure, illustrating the same data the TGA curve is shown on the left and the first derivative of mass loss plot with different

betaine-HCl itself (ca. 250 °C).*”*® As can be seen, the peak at ca.
330 °C is notable because it is virtually eliminated with
adequate washing. Therefore, this loss contributes ca. 3% of the
total mass loss, leaving 11.2% attributable to the high decom-
position reactions of 2f3-Zn(OH)Cl and ZnCl,.

Conclusion

In this work, hexagonal flakes of simonkolleite (Zns(OH)gCl,-
‘H,0) have been successfully synthesised in a betaine-HCI
solution resulting in the direct oxidation of ZnO (oxidative
ionothermal synthesis). The product was characterised by XRD
and TGA, where high purities of simonkolleite were reached.
The size of the simonkolleite crystals, including thickness and

Nanoscale Adv., 2023, 5, 2437-2452 | 2449
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diameter, can be adjusted by betaine-HCI concentration, reac-
tion time, and reaction temperature.

The concentration of betaine-HCI is a dominant parameter
in crystal size; overall, higher betaine-HCI concentration tested
(40%) resulted in smaller and thinner simonkolleite flakes than
the lower betaine-HCl (10%). Simonkolleite formed at 40%
results in crystals preferentially forming individual flakes and
do not show a significant tendency towards aggregation or other
coalescence behaviours. By contrast, simonkolleite formed with
10% betaine solution showed distinctly different behaviours
with the appearance of Ostwald ripening and attachment
growth. The result, in these simonkolleite crystals, is that they
appear as aggregates rather than as individual crystals. At
a longer time for reaction, 15 days, the difference distribution in
crystal size was quite notable for the different reaction condi-
tions. The elevated reaction temperature tested showed
a broader range of crystals morphologies, by contrast to the
tests conducted at 40 °C, which consistently only show hexag-
onal flake structures. In addition, the calcination of simonkol-
leite to ZnO retains the hexagonal structure on the micron scale.
This investigative work highlights how the production of
hexagonally-shaped simonkolleite, or ZnO, can be obtained
using an environmentally benign solution. Under suitable
conditions, the crystal size can be controlled to be relatively
uniform, and the distribution is within 0.5 microns. Moreover,
control of the simonkolleite morphology and understanding of
the chemistry of formation provide underpinning knowledge to
exploit this method for production.
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