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Automated analysis of transmission electron
micrographs of metallic nanoparticles by machine
learning

Nina Gumbiowski,? Kateryna Loza,® Marc Heggen® and Matthias Epple & *@

Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This
involved a separation of particles from the background (segmentation), a separation of overlapping
particles, and the identification of individual particles. An algorithm to separate overlapping particles,
based on ultimate erosion of convex shapes (UECS), was implemented. Finally, particle properties like
size, circularity, equivalent diameter, and Feret diameter were computed for each particle of the whole
particle population. Thus, particle size distributions can be easily created based on the various
parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate
because of an a priori unknown shape of a particle that is partially lying in the shadow of another
particle. The program is able to extract information from a sequence of images of the same sample,
thereby increasing the number of analysed nanoparticles to several thousands. The machine learning
approach is well-suited to identify particles at only limited particle-to-background contrast as is

rsc.li/nanoscale-advances

Introduction

Nanoparticles play a key role in materials science. As most
nanoparticle properties depend on the particle size and size
distribution, it is usually necessary to fully characterize a given
set of particles. Many methods are available that give particle
size distribution data, both in solid form (as powder) and in
dispersed form.'® However, shape-related parameters are
usually only accessible by microscopic techniques. In that case,
electron microscopy is the method of choice because light
microscopy usually does not provide sufficient resolution.

For the application of nanoparticles and (nano-)fibres, e.g. in
consumer products, cosmetics, drugs, or in heterogeneous
catalysis, the particle shape plays a decisive role.”* In occupa-
tional medicine and particle toxicology, rod-like (nano)particles
are considered to be potentially more harmful, based on the
case of asbestos where fibres cause strongly adverse effects
upon inhalation.*** Thus, nanoparticle populations are usually
visualized by electron microscopy, followed by an extraction of
their individual size- and shape-related properties.

A detailed analysis of electron micrographs of nanoparticles
is often performed manually by human evaluators. This proce-
dure is tedious, time-consuming, and inaccurate. It may also
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demonstrated for ultrasmall gold nanoparticles (2 nm).

involve a considerable degree of human bias due to an uncon-
scious selection of “typical” nanoparticles, e.g. particles with the
“expected” size or the “desired” uniform shape. In the litera-
ture, claims of allegedly uniform nanoparticle populations after
shape-specific syntheses, based on only a dozen depicted
nanoparticles, are not uncommon.

Computational methods for detecting and analysing micro-
graphs of nanoparticles do exist, however for many of them
a considerable degree of manual input and fine-tuning of
parameters is needed. Furthermore, many of these techniques
fail for images with a low signal-to-noise ratio as it is the case for
some high-resolution TEM images and images acquired with
low beam intensity.'>*®

Clearly, an objective method for a rapid nanoparticle anal-
ysis from electron microscopic data is necessary. The rise of
artificial intelligence/machine learning/deep learning has
considerably enhanced our ability to train computers to recog-
nize and autonomously analyse particles. Machine learning
techniques have already been applied to electron microscopic
images where they usually outperform classical image analysis
approaches, especially when noisy images or overlapping
particles are involved'7?* (see ref. 26-28 for recent reviews).
However, the reported approaches either do not extend to the
analysis of bright-field high-resolution TEM images or are based
on very small datasets, making them not generally applicable.

Here we present an automated method, based on machine
learning, that permits to analyse electron microscopic images
containing thousands of nanoparticles within a few seconds.
This is based on previous training on suitable images. Typical

© 2023 The Author(s). Published by the Royal Society of Chemistry
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parameters that can be extracted for each particle are size,
circularity, equivalent diameter, and Feret diameter. These
parameters are tedious to extract by manual examination, but
readily available after the particles have been identified and
their two-dimensional shape has been determined. If a high
number of particles is analysed, the corresponding distribution
functions, averages, and standard deviations can be easily
computed. In addition, an algorithm to separate overlapping
particles was implemented.

Thus, we have combined and adapted existing methods
which have shown good results for other types of electron
microscopic data to make them applicable to bright-field high-
resolution TEM images. We demonstrate the capabilities of this
method on a selection of images of metallic nanoparticles.

Results and discussion

We have implemented an autonomous pathway by which
transmission electron microscopy (TEM) images of nano-
particles can be analysed in a fully automated way. This is based
on the analysis of the TEM images to identify and extract indi-
vidual particles, assisted by machine learning. The goal of the
processing routine was to automatically extract shape- and size-
related information of nanoparticles from TEM images. Fig. 1
summarizes the different steps in this routine. The routine was
programmed in MATLAB.*

First, the program loads the image and extracts its pixel size
from the image file (dm3 format; DigitalMicrograph files from
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Gatan, Inc.) with a routine from MATLAB file exchange.** Next,
the image is segmented by a trained neural network. From the
resulting segmentation map, a binary particle segmentation
map is created. The segmentation map is de-speckled to remove
small mislabelled areas (“speckles”) from the map. Each area
with an equivalent diameter below 0.5 nm is considered as
a speckle and removed. Likewise, holes in particle areas with
a diameter below 0.5 nm are closed. Particles that cross the
image boundary are cropped by definition, therefore they
cannot be evaluated. Consequently, they are generally removed
from the particle map and excluded from further analysis. From
the remaining particle-based areas, individual particles are
identified and analysed for their shape and size. From the
dimensions of each particle, we can compute its area, circular
equivalent diameter (= diameter of the circle having the same
area), minimum and maximum Feret diameter, perimeter, and
circularity (circularity = 4 x area x m/perimeter?).

Two different options to deal with overlapping particles were
implemented. This is important to avoid the misrepresentation
of two overlapping particles as one single (and usually appar-
ently distorted) particle, e.g. a peanut-shaped overlap of two
spherical particles. Both options are based on measuring the
convexity of particle regions as illustrated in Fig. 2. The
convexity is defined as the ratio of the perimeter of the convex
hull of a particle to the actual perimeter of a particle. Thus,
a particle with concave indentations or an agglomerate of two
sphere-like particles have a convexity < 1. Here, we considered
particles with a convexity below 0.95 as non-convex and
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Illustration of the TEM image processing routine. A typical speckle that was removed is labelled by a red circle.
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therefore consisting of overlapping particles, following the
recent suggestion by Wang et al.*

In the first option, when no separation is used, convexity is
added as an output parameter so that overlapping particles can
be identified within the dataset. The program also labels all
particles that are below the convexity threshold as such in the

Pt NPs

Ag NPs

TEM image

Segmentation

Illustration of the implemented options to deal with overlapping particles and illustration of the erosion and dilation process in particle

dataset. This option is useful if the number and size of
agglomerates in a given sample are of interest.

The second option is to use dedicated algorithms to split
overlapping particles. This was realized by an adaptation of the
ultimate erosion of convex shapes (UECS) algorithm based on
the description and MATLAB code by Park et al.*®** With this

Au NPs

Fig. 3 Representative examples of the separation of metallic nanoparticles from the background (segmentation).
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approach, particle regions are eroded until they exceed the size by dilating them for as many steps as they were previously
convexity threshold. These eroded areas serve as markers for the eroded. The original outline is used as a mask to ensure that no
singular particles which are then dilated back to their original additional pixels are labelled as particles. It is not combined
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Fig. 5 Example of an analysis of TEM images taken from multiple regions of one gold nanoparticle sample by the automated image processing
routine and the accumulated results for equivalent diameter (2.5 £ 0.9 nm) and circularity (0.92 + 0.06).
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Fig. 6 Analysis of TEM images with different shapes of gold (left) and platinum (centre and right) nanoparticles.

with a watershed algorithm as that would not account for the
overlapping area. If the particle is again non-convex after the
regrowing procedure, it will be discarded and excluded from
further analysis. If the markers reach an area below 30 pixels or
are smaller than 0.5 nm in equivalent diameter before
surpassing the convexity threshold, they are discarded. This
option enables a fully automated processing of overlapping
particles and is implemented as the default option. The limits
of 30 pixels and/or 0.5 nm identified as suitable after analysing
a number of images with the developed algorithm and visually
inspecting the results for efficient particle separation.

After the completed analysis, all particle parameters are
exported as xIsx or csv files. These also shows which particles
resulted from the separation routine. TEM images and the
segmentation maps are finally exported as png files. The
program can process single image files (dm3 format) as well as
stacks of image files. The results can be saved as individual
evaluation datasets for each image or combined in one evalu-
ation dataset.

In the following, we demonstrate the single evaluation steps
with suitable examples. The separation of particles from the
background is commonly denoted as segmentation. Represen-
tative data for a variety of metallic nanoparticles are shown in
Fig. 3. The network is able to segment nanoparticles of different
metals and sizes. Note that these images always depict metallic
nanoparticles which have a high electron contrast, even if they
are ultrasmall (1-2 nm). Usually, the segmentation becomes
increasingly difficult if the contrast becomes weaker and if the
nanoparticles become smaller. High-contrast images can often
be segmented without the application of machine learning by
standard image processing procedures (rendering, contrast
variation), but the performance of image processing drops
drastically for images with lower contrast or higher background

2322 | Nanoscale Adv, 2023, 5, 2318-2326

noise. However, our machine learning approach showed the
same performance for low-contrast images as with high-
contrast images. This illustrates the advantage of the machine
learning approach over conventional image processing.

A typical quantitative evaluation of ultrasmall gold nano-
particles of about 2 nm diameter is shown in Fig. 4. The particle
map shows all particles that were included in the analysis. The
particle size distribution is expressed by equivalent diameter
(2.1 £ 0.7 nm), as well as minimum (2.0 =+ 0.7 nm) and
maximum Feret diameter (2.4 &+ 0.8 nm). A manual evaluation
by a human reviewer is also given (2.0 = 0.5 nm) and shows
good agreement with the automated evaluation.

For a typical TEM image with a low degree of overlapping
particles, this processing routine takes less than 15 seconds if
the particle separation algorithm is used and less than 10
seconds if only the convexity is evaluated but no particle sepa-
ration is performed. For images with higher degree of overlap,
the program execution takes less than 90 seconds if particle
separation is applied by iterative erosion and dilation. These
durations refer to an execution of the program on the same
machine that was used for training the neural network (see
methods for details). This is a significant time improvement
compared to a manual inspection which takes about 30 minutes
for a typical image. It also enables an unbiased and quick
analysis of large data quantities. An option to analyse multiple
images from different regions of one given sample is also
implemented. This increases the number of analysed particles
and improves the particle statistics. An example of such an
evaluation is shown in Fig. 5. The average equivalent diameter,
its standard deviation, and the particle circularity were deter-
mined from 1465 particles, i.e. a high number. Note that the
particle-to-background contrast in these images was limited

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2na00781a

Open Access Article. Published on 23 March 2023. Downloaded on 1/14/2026 3:25:47 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Paper

View Article Online

Nanoscale Advances

Degree of particle overlap

low

TEM image

Segmentation

Full routine
with particle
separation

Most particles can
be resolved

Some particles
can be resolved

high

medium

Most particles
can not be
resolved

Fig. 7 Examples of images of ultrasmall gold nanoparticles that can and cannot be properly evaluated due to different degrees of particle
overlap. The segmentation image (middle) shows pixels in the foreground in yellow. The particle separation map (bottom) shows individually

identified particles in blue.

because the nanoparticles were ultrasmall (about 2 nm). Thus,
classical image analysis routines usually fail in this evaluation.

While the network was trained on spherical particles, it was
also able to segment particles with other morphologies such as
cubes or octahedra as shown in Fig. 6. For particles with
a generic non-convex shape (Fig. 6, left image) the separation
routine obviously cannot be used. In that case the program can
only evaluate images with no overlapping particles.

A limitation of the automated routine is the analysis of
images with a high degree of particle overlap, as the particle
separation routine used performs best for low to medium
particle overlap.® Fig. 7 shows typical images to illustrate the
performance of the routine for different degrees of particle
overlap. While most of the segmented particle regions are
retained for all images, separation of particle regions with high
degrees of overlap is more prone to errors and an over-
estimation of particle sizes.

© 2023 The Author(s). Published by the Royal Society of Chemistry

Another limitation for particle separation comes with parti-
cles that overlap in such a way that they have a convexity which
is high enough to pass the convexity exclusion criteria of
a minimum convexity of 0.95. For some particles this can be
solved by increasing the convexity threshold. However, this can
also lead to the wrongful exclusion of particles with indenta-
tions. In principle, particles can also overlap in such a way that
even a higher convexity threshold would not lead to a successful
separation. An example would be an ellipse resulting from two
closely overlapping spheres. These particles are then counted as
one even after the separation algorithm. We found that not
much can be done against this problem.

The overall performance of a trained neural network is
generally expressed by accuracy, intersection over union (IoU),
and DICE coefficient.**?** These metrics can be given as global or
class-based metrics. The global accuracy describes the amount
of correctly classified pixels given as true negatives (TN) and

Nanoscale Adv, 2023, 5, 2318-2326 | 2323
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Fig. 8 Normalized confusion matrix for the trained network on the
test dataset, showing the percentage of pixels in a given class in the
ground truth (true class) being allocated to different classes by the
network (predicted class).

Table 1 Intersection over union score (loU) and DICE coefficient of
the trained network on the test dataset

IoU/% DICE coefficient/%
Background 95.42 97.67
Particle 83.00 90.71

true positives (TP) in relation to the overall number of pixels
which includes the false positives (FP) and false negatives (FN).
The class-based accuracy does not include TN and FP.

TP +TN

Global accuracy = TP T FP L TN T EN (1)
TP

1 = 2

Class accuracy TP L EN 2

IoU is defined as the amount of overlap between the ground
truth and the segmentation map divided by their union. With
respect to true and false positive and negative values, IoU is
defined as follows:

TP

U= 15 Fpr PN

(3)

The DICE coefficient is calculated as the union between the
ground truth and the segmentation map weighed by factor two
and then divided by the sum of the man and the segmentation
map.

2TP

DICE = S T FP T FN )

The network reached a final validation accuracy of 96.14%
during training. All further performance metrics were calcu-
lated based on the test dataset. The global accuracy of the test
dataset was 96.26% and therefore comparable with the

2324 | Nanoscale Adv, 2023, 5, 2318-2326
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validation accuracy. As the classes were unbalanced with
around 80% of all pixels in the images being background, it is
important to look into other metrics besides the global accu-
racy. Fig. 8 shows the class accuracy as a normalized confusion
matrix with the particle class showing a similar value to the
global accuracy of 96.12%. Table 1 shows the IoU and DICE
coefficient for the test dataset. Both have values above 80% for
the particle class and values above 95% for the background
class, i.e. the programmed routine performed very efficiently. It
outperformed other machine learning based approaches for
analysing similar TEM images.*

Experimental
Methods

Electron microscopy. High-resolution transmission electron
microscopy (TEM) was performed with an aberration-corrected
FEI Titan transmission electron microscope equipped with a Cs-
probe corrector (CEOS Company), operating at 300 kv.** The
nanoparticle dispersion was drop-cast on a copper grid, and
coated with an ultrathin amorphous carbon film. Representa-
tive TEM images of metallic nanoparticles were used for
training and analysis.

Machine learning. A deeplabv3+ network with a resnet-18
backbone was trained on TEM images to distinguish between
nanoparticles and the background by semantic segmentation
with a supervised learning approach.’®*” The training was per-
formed on 128 manually labelled TEM images of a wide variety
of nanoparticle samples of different metals and sizes. The
dataset included images of ultrasmall nanoparticles that were
in the size range of 1 to 10 nm. Manual particle labelling and the
determination of the equivalent particle diameters were per-
formed by experienced human evaluators.

Labelling was performed with MATLAB's image labeller
tool.*® Training was performed in MATLAB with a deeplabv3+
network with a pretrained resnet-18 network as a backbone that
is available from Mathworks®***® (see, e.g., ref. 28 and 40 for
general discussions on the application of CNNs in particle
analysis in electron microscopy). As good results were obtained
with these CNNs, other CNNs were not tested. The full TEM
images had a size of either 2048 x 2048 pixels or 1024 x 1024
pixels. To speed up training with only a small loss in image
resolution, the images and ground truth images (labels) were
sized down to an image size of 1024 x 1024 pixels and then
sliced into 256 x 256 pixel tiles which were then used for
training. Additionally, the full image was also included in the
training data by reducing it to a 256 x 256 pixel image. This
resulted in 2176 labelled image slices. The manually labelled
images were split into a training, a validation and a test dataset,
respectively, in a ratio of 60:20:20. To enhance training by
more variety in the images, data augmentation was applied with
scaling, rotation, x- and y-axis reflection, brightness and
contrast augmentation of the individual images. The validation
loss and accuracy were checked every other epoch during
training to monitor for overfitting.

The semantic segmentation training was performed on
a Dell Precision 7920 Tower equipped with an NVIDIA Quadro

© 2023 The Author(s). Published by the Royal Society of Chemistry
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RTX 5000. It was equipped with 32 GB RAM and an Intel®
Xeon® Gold 6226R Processor. Training was performed for 120
epochs with a batch size of 30 and an initial learning rate of
0.01. The learning rate was decreased every 15 epochs by
a learning rate drop factor of 0.75.

The network performance was analysed by global and class
accuracy, intersection over union score (IoU) and DICE score
(also known as F1 score).?*3*

The code for the described procedures, denoted here with
the acronym ANTEMA, including reference images, is available
on GitHub at https://github.com/ngumb/ANTEMA.

Conclusions

A machine learning approach for TEM data analysis creates
more accurate and user-independent results and avoids human
bias. High numbers of nanoparticles can be extracted from TEM
images and automatically analysed. The presented automated
analysis is significantly faster than a manual evaluation and
allows the analysis of multiple images of one sample. This leads
to more nanoparticles being analysed and a better statistical
accuracy. Furthermore, the algorithm extracts multiple param-
eters for each particle, thus yielding more data about a particle
than just the average core diameter. This routine and the
trained neural network can also be used to analyse large data-
sets like in situ datasets. We conclude that the application of
machine learning techniques to two-dimensional TEM images,
even with poor contrast, can considerably improve the statis-
tical basis to characterize nanoparticle samples with respect to
size and shape.

As a general limitation of the analysis of TEM images, it must
be emphasized that particles are almost always represented as
two-dimensional projections in microscopy. Neither human
trainers nor artificial intelligence are able to reconstruct data
which are not known. For instance, the two-dimensional
depiction of a circular particle is usually tacitly (and often
unconsciously) transformed into a three-dimensional sphere.
The fact that this circle could also be the two-dimensional
projection of a circular platelet, a cylinder, or a disc-like
object is often not considered. If all circular discs lay flat on
the sample holder, they would also give a circular projection.
Three-dimensional shape information can only be gained if
particles are imaged from different orientations. Tomography
would be the method of choice. However, as this is time-
consuming, it is usually applied only to individual particles. It
is not possible to apply this method to very small nanoparticles
on the ultrasmall length scale (1-2 nm). Thus, there is still
a long way to go until we can assign particle populations to their
full three-dimensional properties. For now, the presented
routine is a powerful tool for an automated analysis of two-
dimensional TEM images of nanoparticles.
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