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Protein network analysis links the NSL complex to
Parkinson’s disease via mitochondrial and nuclear
biology†

Katie Kelly, ac Patrick A. Lewis, abc Helene Plun-Favreau *ac and
Claudia Manzoni *cd

Whilst the majority of Parkinson’s Disease (PD) cases are sporadic, much of our understanding of the

pathophysiological basis of the disease can be traced back to the study of rare, monogenic forms of PD.

In the past decade, the availability of genome-wide association studies (GWAS) has facilitated a shift in

focus, toward identifying common risk variants conferring increased risk of developing PD across the

population. A recent mitophagy screening assay of GWAS candidates has functionally implicated the

non-specific lethal (NSL) complex in the regulation of PINK1-mitophagy. Here, a bioinformatics

approach has been taken to investigate the proteome of the NSL complex, to unpick its relevance to PD

pathogenesis. The NSL interactome has been built, using 3 online tools: PINOT, HIPPIE and MIST, to

mine curated, literature-derived protein–protein interaction (PPI) data. We built (i) the ‘mitochondrial’

NSL interactome exploring its relevance to PD genetics and (ii) the PD-oriented NSL interactome to

uncover biological pathways underpinning the NSL/PD association. In this study, we find the

mitochondrial NSL interactome to be significantly enriched for the protein products of PD-associated

genes, including the Mendelian PD genes LRRK2 and VPS35. In addition, we find nuclear processes to be

amongst those most significantly enriched within the PD-associated NSL interactome. These findings

strengthen the role of the NSL complex in sporadic and familial PD, mediated by both its mitochondrial

and nuclear functions.

Introduction

Parkinson’s disease (PD) is the most common movement dis-
order of old age (465 years).1 Furthermore, global prevalence
predictions suggest that the number of affected individuals
more than doubled in 25 years, with an estimated 6.1 million
people living with PD in 2016.2

The movement aspects of PD are triggered by the progressive
degeneration of neurons within the Substantia Nigra pars
compacta (SNpc). The consequent depletion of dopamine
(DA) within nigro-striatal circuits gives origin to the debilitating
triad of PD clinical symptoms: rigidity, asymmetric resting

tremor, and bradykinesia. Pathologically, neuronal loss is
paired with the deposition of a-synuclein aggregates in intra-
cellular inclusions called Lewy bodies.3 The progression of PD
is complex, with involvement of additional brain areas whose
degeneration is responsible for the clinical manifestation of
additional non-motor symptoms.4 PD has a heterogenous pre-
sentation and the interindividual differences in disease onset
and progression, typical of complex disorders, hint at the
existence of a personal burden of risk, a mix of genetic
susceptibility factors and environmental exposures which differ
on a case-to-case basis.4 Potentiation of DA signalling is the
only available therapeutic intervention, achieved via DA repla-
cement and/or by inhibition of DA catabolism and re-uptake at
the synapse. However, this is a symptomatic intervention that
does not halt neurodegeneration.5 As such, precise delineation
of the molecular mechanisms of PD neurodegeneration is
critical, to implicate novel research avenues for the develop-
ment of disease-modifying treatments.

A minority of PD cases are familial (fPD), caused by highly
penetrant mutations that segregate with the disease. The study
of monogenic forms of PD has facilitated the elucidation of
common cellular phenotypes, and the molecular patterns
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underpinning them. Functional delineation of PINK1 and PRKN
genes, for which loss-of-function mutations are causal for
autosomal recessive (AR) PD, has implicated dysfunctional
mitophagy as one of the key drivers of the disease.6,7 PINK1
and Parkin act in concert to promote the targeted degradation
of depolarised mitochondria.8–11 Additionally, mutations
within the AR PD gene DJ-1, as well as parkinsonism genes
FBXO7 and VPS35, can also be functionally associated with
mitochondrial quality control.12 However, LRRK2 and GBA1
(associated with late onset forms of PD) have been linked to
the dysregulation of autophagy and the endolysosmal
pathway.13,14 A comprehensive understanding of the relation-
ship between genes and phenotypes in fPD has implicated
biological processes that could be relevant for the disease.
However, as monogenic forms of PD represent approximately
15% of all cases,15 the question arises as to how appropriately
we can model PD in the absence of a comprehensive under-
standing of the molecular processes underpinning sporadic
disease (sPD).

To this end, data from genome-wide association studies
(GWAS) provide an unbiased approach to investigate common
genetic variations and disease risk across the population. To
date, the identification of 90 independent genetic risk signals
has supported the existence of a genetic architecture, conferring
an increased personal risk of developing sPD.16 However, GWAS
pinpoint risk loci, rather than specific genes, so the molecular
pathways behind this genetic architecture remain elusive. Trans-
lation of genetic data to the precise delineation of relevant
molecular pathways represents a rate limiting step in studies
of this kind.

Recently, our group has identified, using a high-content
screening assay, a functional association between KAT8 (other-
wise known as a MOF), a MYST family lysine acetyltransferase,
and PINK1-mitophagy.17 The KAT8 gene is located at the 16q
11.2 PD risk locus, near one of the genome wide significant PD
risk signals. KAT8 is one of the nine components (HCFC1,
KANSL1, KANSL2, KANSL3, KAT8, MCRS1, OGT, PHF20, and
WDR5) of the non-specific lethal (NSL) complex. While a
nuclear role for the NSL complex has been well defined,18,19 a
study by Chatterjee et al. suggests the partial localisation of the
complex to the mitochondria.20 Indeed, knock down (KD) of
NSL members KANSL1, KANSL2, KANSL3 and MCRS1 has also
been shown to impede PINK1-dependent induction of mitophagy.17

Interestingly, the KANSL1 gene is an additional PD-GWAS hit,21

located at the inversion polymorphism on chromosome 17q21,
alongside MAPT. Up to 25% of individuals of European descent
inherit, within this region, a sequence of B1 Mb, in the opposite
orientation.22,23 This induces a B1.3–1.6 Mb region of linkage
disequilibrium (LD), preventing recombination. Thus, haplotype-
specific polymorphisms have resulted in the emergence of two
major haplotype clades, H1 (the most common) and H2, of which
H1 has been strongly linked to neurodegenerative diseases, includ-
ing PD.24–26 While MAPT, encoding the tau protein, is frequently
attributed to the PD risk association at this locus,27 evidence has
accrued supporting the risk contribution of KANSL1 at this locus. In
summary, there is strong evidence that functional alterations of the

members of the NSL complex might underpin the risk signal for
sPD at these two loci. These findings provide functional evidence
for the importance of mitophagy and mitochondrial quality control
in sporadic forms of disease, in addition to fPD. To gain a greater
insight into the functional links between the NSL complex and its
nuclear functions, mitophagy and PD, we have constructed an in
silico protein–protein interaction (PPI) model of the NSL complex,
describing its relationship with the mitochondrial proteome in the
context of the PD genetic landscape.

Our analysis reveals that while the intersection between the
mitochondrial proteome and the NSL interactome is enriched
with PD genes, nuclear processes are also highly represented in
the functional enrichment of the PD-associated NSL interac-
tors. We therefore propose that alteration in both transcrip-
tional and mitochondrial activities of the NSL complex is
associated with the causal events in sPD.

Materials and methods

The methods for the in silico analysis of the NSL complex in PD
and mitochondria are detailed in protocols. io: dx.doi.org/
10.17504/protocols.io.5qpvorb19v4o/v3.

Nomenclature

A layered approach has been taken to build the NSL protein
network (NSL-PN), whereby members of the NSL complex are
designated as seeds to derive a list of proteins for which a
physical interaction has been experimentally determined. To
achieve this, interactors of NSL complex members, termed as
protein–protein interactors (PPIs), have been downloaded, fil-
tered, and prioritised.

Herein, the NSL complex members are designated as ‘NSL-
seeds’. NSL-seeds along with the first layer interactors will be
termed as the ‘first layer’. The ‘second layer’ constitutes direct
interactors of the first layer members, proteins that are linked
to the NSL-seeds via a ‘‘bridge’’, which is a protein in the first
layer. The ‘‘interactome’’ of an individual seed comprises the
seed under investigation, with the direct interactors (in the first
layer), plus the indirect interactors (in the second layer).

NSL-seeds, plus the first and second layers, comprise the
complete ‘NSL-PN’. Within this analysis, we have taken two
approaches to generate the complete NSL-PN: generating a
‘Mito-CORE network’, and a ‘PD-CORE network’ (outlined
below). PD-associated first layer members will be termed as
‘PD-seeds’ and mitochondrial first layer members were termed
as ‘Mito-seeds’. The pipeline for building each layer of the
network has been described hereafter.

Downloading the protein–protein interaction (PPI) data

The pipeline to derive the first layer interactome is displayed in
Fig. 1. PPIs for NSL-seeds (ESI,† Table S1; DOI: 10.5281/
zenodo.7516685) were collected using 3 different web-based
tools: PINOT v1.1 (Protein Interaction Network Online Tool;
https://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html
[downloaded September 2021 using the lenient filter option]),28
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HIPPIE with no threshold on the interaction score (Human
Integrated Protein–Protein Interaction Reference; RRID:SCR_-
014651; https://cbdm-01.zdv.uni-mainz.de/Bmschaefer/hippie/
network.php; DOI: 10.1371/journal.pone.0031826 [downloaded
September 2021])29 and MIST v5.0 (Molecular Interaction
Search Tool; https://fgr.hms.harvard.edu/MIST [downloaded
September 2021]).30 Each resource permitted the interro-
gation of a selection of IMEx consortium associated, PPI
primary repositories, to obtain the literature-derived, curated
PPI data.

The PPI data obtained using MIST and HIPPIE have been
subjected to quality control (QC), already integrated within the
PINOT pipeline, to remove low quality data. Entries lacking
‘interaction detection method’ annotation (QC1) or a PubMed ID
(QC2) have been removed. Formatting between the output files
has been standardized and interactors’ IDs converted to the
approved EntrezID, UniprotID and HGNC gene name. Proteins
with nonunivocal conversions to these 3 identifiers were removed.

Where ‘UBC’, a ubiquitin moiety, was identified as an inter-
actor within the first layer, we manually reviewed the supporting
publication. Ubiquitin is understood to be conjugated to
proteins as a marker for degradation. As such, these were

considered as potentially introducing non-specific protein inter-
actions into the analysis. UBC was removed from the first layer
interactomes of OGT and WDR5, since both interactions have
been identified via high throughput, as opposed to specific,
methods.

Merging and thresholding the PPIs

The PPI data from PINOT, HIPPIE and MIST were merged. Prior
to merging, for each interaction, we identified the number of
times the interaction was observed via a unique methodological
technique. To identify unique interaction detection methods, it
was first necessary to apply the PINOT method grouping to the
interactions downloaded from HIPPIE and MIST. To do so, the
‘method conversion table’ was downloaded (https://www.read
ing.ac.uk/bioinf/PINOT/PINOT_help.html#select), and interac-
tions were assigned a method annotation according to their
corresponding method code (MI code) (ESI,† Table S2; DOI:
10.5281/zenodo.7516685). This is a stringent approach that
allows grouping technically equivalent, but semantically differ-
ent, methods. After combining interactions from PINOT, MIST
and HIPPIE, a confidence score (CS) was assigned to each of the
interactions according to the total number of single publica-
tions (P) and unique interaction detection methods (M, after
method grouping) used for its annotation. For each interaction
the CS was calculated as follows:

CS = P + M

A score threshold (CS 4 2) was then applied to filter and
remove lower confidence PPI data lacking reproducibility. For
an interaction to have a CS of 3, it must be replicated via either
two methods or two publications.

Interactions that failed to meet the threshold were inter-
rogated further. In particular, excluded interactors that pre-
sented in more than 1 NSL protein interactome were salvaged,
considering that they might not have been replicated for a
specific NSL-seed but they were replicated across NSL-seeds,
thus effectively considering the NSL complex as a single unit.

Generating the Mito-CORE network

The pipeline for steps taken to derive the Mito-CORE network
can be found in Fig. 2. First, we prioritised members of the first
layer with mitochondrial annotation (-OGT, since it was a seed
to derive the first layer interactome), which we termed ‘Mito-
seeds’. Proteins with mitochondrial annotation were obtained
via 2 independent inventories:

(i) the AmiGO2 encyclopedia31,32 (RRID:SCR_002143) was
queried (February 2022), to derive experimentally determined
mitochondrial protein lists. Two accession terms were used:
GO:0005759, to obtain proteins annotated to the ‘mitochon-
drial matrix’ and GO:0031966 for proteins annotated to the
‘mitochondrial membrane’; in both cases, ‘Homo sapiens’ was
specified as the search organism. (ii) The Human MitoCarta3.0
dataset33 (RRID:SCR_018165) was downloaded (October 2021)
to retrieve proteins for which a mitochondrial targeting
sequence (MTS) has been identified. Interactors’ IDs were

Fig. 1 W-PPI-NA pipeline. Generating the first layer interactome of the
NSL complex. The ‘Seeds’ are the nine members of the NSL complex.
Circled numbers (1 and 2) indicate the two stages of quality control (QC)
applied. Numbers provided in brackets indicate the total number of
interactions/interactors retained at each stage. *first layer interactors–
NSL-seeds.
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converted to the approved EntrezID, UniprotID and HGNC gene
name. Proteins with nonunivocal conversions to these 3 iden-
tifiers were removed.

Mito-seeds were input into all three PPI tools to obtain the
second layer (downloaded November 2021). The NSL-seeds
together with the Mito-seeds and second layer interactors
formed the complete Mito-CORE network.

Gene set enrichment analysis (GSEA)

GSEA for PD-associated genes was conducted, by comparing the
members of the interactome under investigation to a list of 180
unique PD-associated genes generated by consulting 3 publicly
accessible resources: (i) PanelApp v1.68 diagnostic grade genes
(green annotations) for PD and parkinsonism34 (Gene Panel:
Parkinson’s Disease and Complex Parkinsonism (Version 1.108);
https://panelapp.genomicsengland.co.uk/panels/39/ [downloaded
October 2021]) and (ii) the latest GWAS meta-analysis16 and (iii) a
list of 15 genes associated with Mendelian PD, obtained from the
recent W-PPI-NA.35 The genes from i, ii, and iii were combined to
generate a PD-associated gene list, herein referred to as the ‘PD

genes list’ (ESI,† Table S3; DOI: 10.5281/zenodo.7516685). The
genes within this list have been referred to by the name of their
protein product.

Statistical evaluation via random network simulation

To test the significance of gene set overlaps, 100 000 random
simulations were carried out and used to validate the statistical
significance of overlaps of PD genes with the first layer and the
complete Mito-CORE network. 100 000 random gene lists, each
of them equivalent in length to the first layer/complete Mito-
CORE network, were obtained using the R random sampling
function, from a list of 19 947 genes. Each list was compared to
the PD gene list, keeping track of the matches. The p value has
been calculated using the p-norm function in R.

Generating the PD-CORE network

The pipeline is reported in Fig. 3. The genes in the intersection
between the first layer and the list of 180 unique PD genes were
used as PD-seeds. They were input into PINOT to obtain the
second layer interactome (downloaded May 2023). An arbitrary
confidence threshold has been applied, retaining data with a
PINOT assigned score of 42. This step has eliminated data with
just a single publication and method from the downstream

Fig. 2 W-PPI-NA pipeline. Building the ’Mito-CORE network’, and appli-
cation of PD gene-set enrichment analysis (GSEA). ‘Mito-seeds’ refers to
the mitochondrial first layer members of the NSL interactome. Circled
numbers (1 and 2) indicate the two stages of quality control (QC) applied.
Numbers provided in brackets indicate the total number of interactions/
interactors retained at each stage. *Mito-seeds + second layer interactors
(-NSL-seeds).

Fig. 3 W-PPI-NA pipeline. The ‘PD-seeds’ refers to the PD-associated
first layer members. Numbers provided in brackets indicate the total
number of interactions/interactors retained at each stage.
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analysis. Once again interactors’ IDs were converted to the
approved EntrezID, UniprotID and HGNC gene name. Proteins
with nonunivocal conversions to these 3 identifiers were
removed. To remove background noise, only members of the
second layer bridging 41 PD-seed within the PD-CORE network
were retained. Protein interactors that were private to 1 PD-seed
only were removed, and this resulted in the removal of WDR5B
from the PD-CORE network. The NSL-seeds together with the
PD-seeds and the non-private second layer interactors have thus
formed the complete PD-CORE network.

Functional enrichment analysis

To assess the enrichment of particular biological processes
within the PD-CORE network, members (-NSL-seeds), were input
into the g:Profiler search tool31,32 (g:GOSt; RRID:SCR_006809;
https://biit.cs.ut.ee/gprofiler/ [downloaded January 2022]).
Enrichment for GO terms associated with ‘biological processes
(BPs)’ only, was conducted, generating a list of enriched
GO:BP terms.

A threshold was applied to the list of enriched GO:BP terms to
retain those with a term size of o100 thus effectively removing
‘broad’ GO:BP terms. Remaining terms were assigned to custom-
made ‘semantic classes’ (SC), accompanied by a parent ‘func-
tional group’ (FG). Generic terms (classified in the semantic
classes of: RNA metabolism, general, metabolism, enzyme, DNA
metabolism, transport and response to stimulus) were discarded
from further analysis. The pipeline for this analysis is presented
in the ESI,† Fig. S1. GO:BP terms contributing to each SC were
pooled to identify the list of proteins within the network con-
tributing to the enrichment of this specific SC.

Software and scripts

Where data have been parsed in Rstudio (version 1.3.1093; RRID:
SCR_000432; https://www.rstudio.com/), the script can be
obtained at 10.5281/zenodo.7875447 within the relevant project
files. Additional software programs used are Excel (version 16.6;
RRID:SCR_016137; https://www.microsoft.com/en-gb/) and Cytos-
cape (version 3.8.2; RRID:SCR_003032; https://cytoscape.org/).36

Results
Construction of the NSL-PN: first layer

In order to construct the first layer of the NSL protein network
(NSL-PN), the nine members of the NSL complex served as
seeds to query three separate tools: PINOT, MIST and HIPPIE,
obtaining a set of direct interactors of the NSL complex. Three
tools were consulted at this stage to maximize the capture of
PPI data available within the literature. Search from PINOT,
MIST and HIPPIE yielded a total of 798, 919 and 728 direct
interactions, respectively. To pool the data between the three
search tools, differences in formatting and protein identifi-
cation nomenclature needed to be standardized. Similarly, it
was necessary to apply quality control steps excluding data
without a publication ID and/or an associated interaction
detection method. A summary of the excluded and retained
data is found in Table 1. Once the data collected from PINOT,
MIST and HIPPIE was pooled, 947 interactions were observed
across the 9 NSL interactomes. Each single seed-interactome
contained the following number of interactors: KAT8: 45,
KANSL1: 56, KANSL2: 23, KANSL3: 18, PHF20: 23, WDR5: 256,
MCRS1: 184, OGT: 181, and HCFC1: 161.

Steps were then taken to refine each interactome to remove
non-replicated data. To obtain a ‘confidence score’ (CS) for
each interaction, we counted the number of ‘observations’
associated with each interaction, defined as the number of
publications (P) or unique methods (M) reporting it (please
refer to Materials and methods section). To remove lower
confidence interactions, an arbitrary score threshold of ‘CS 4
2’ was applied. An interaction with a score of 2 indicates that
the interaction has been found using a single method via a
single publication; thus the interaction was considered as
lacking support by literature evidence. A concessionary thresh-
old was applied to those interactors that did not meet this
threshold with an individual seed but did so with the NSL
complex (between the 9 seeds). This provided a means to
prioritise interactors associated with more than one NSL
complex member; interactions that could be important for
delineating a function of the NSL complex, rather than its
constituent members. Following the refinement of the data,

Table 1 ‘NSL-seeds’ with the corresponding UniProt ID used to interrogate three separate protein–protein interaction (PPI) tools (PINOT, MIST and
HIPPIE). Columns contain PPI counts; column headings correspond to the stage of the analysis. QC1 = quality control step 1; step to remove data lacking
‘method annotation’. QC2 = quality control step 2; step to remove data lacking PubMed ID. Here, column ‘-UBC’ corresponds to the total PPI count after
the removal of this ubiquitin moiety from the final interactor list

NSL- seed
UniProt
ID

PPIs downloaded
(P, H, M)

Removed:
QC1

Removed:
QC2

Removed:
un-resolved
multi-entrez ID

Unique PPIs
[post QC and
formatting]

Post-threshold
PPIs -UBC

KAT8 Q9H7Z6 38, 42, 49 7 0 1 45 41 41
KANSL1 Q7Z3B3 49, 48, 54 2 0 0 56 35 35
KANSL2 Q9H9L4 20, 13, 22 1 0 0 23 14 14
KANSL3 Q9P2N6 13, 13, 18 1 0 0 18 11 11
PHF20 Q9BVI0 16, 16, 23 3 0 1 23 20 20
WDR5 P61964 230, 226, 249 18 9 1 256 201 200
MCRS1 Q96EZ8 177, 83, 177 0 89 0 184 74 74
OGT O15294 140, 153, 175 14 3 0 181 133 132
HCFC1 P51610 115, 134, 152 13 0 0 161 108 108
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B67% of interactions were retained across all interactomes
(ESI,† Fig. S2).

To the post-threshold total, each single seed interactome
contributed to the following number of interactors: KAT8: 41,
KANSL1: 35, KANSL2: 14, KANSL3: 11, PHF20: 20, WDR5: 200,
MCRS1: 74, OGT: 132, and HCFC1: 108 (ESI,† Table S1; DOI:
10.5281/zenodo.7516685). Of the complete interactor list,
B87% were captured by all three search tools (ESI,† Fig. S3).
Merging the nine interactomes generated the first layer of the
NSL-PN, represented by 475 single nodes (i.e., unique inter-
actors) and 635 undirected edges (i.e., unique interactions).
None of the nine interactomes within the first layer were
isolated, and all were connected in the same unique graph,
supporting the functional association of all seeds as part of the
NSL complex.

The first layer interactome is enriched for PD-associated genes

We sought to assess whether there was an enrichment of
proteins associated with PD in the first layer by overlapping
475 first layer members with the list of 180 PD genes (ESI,†
Table S3; DOI: 10.5281/zenodo.7516685). Indeed, an intersection
of 14 proteins between the first layer and the list of PD genes was
found (p value = 9.4 � 10�7). Out of the 14 genes linked to PD
represented within the first layer, the protein products of LRRK2
and VPS35, in which mutations cause autosomal dominant (AD)
forms of PD, were found to be direct interactors of the NSL
complex. Taken together, these findings strengthen the existence
of a functional association between the NSL complex and the
disease mechanisms that underpin PD.

Construction of the NSL-PN: second layer

In order to minimise the bias derived from the use of NSL
complex members as seeds (i.e., seed centrality bias), a multi-
layered NSL-PN was built (i.e., first layer plus second layer
interactors). Two different approaches were taken to prioritise
members of the first layer and to generate an expansion of the
network to the second layer of protein interactions. First, a
‘mitochondrial’ NSL interactome was built, referred to as the
Mito-CORE network, to explore the relevance of the NSL mito-
chondrial interactome to PD. Secondly, a ‘PD-oriented’ NSL
interactome was built, referred to as the PD-CORE network, to
uncover biological pathways associated with the portion of the
NSL complex network that is relevant for PD.

The Mito-CORE network is enriched for PD-associated genes

To establish the Mito-CORE network, members of the first layer
interactome were prioritised based on mitochondrial annota-
tion; the pipeline for building this network is shown in Fig. 2. A
list of 1346 unique ‘mitochondrial proteins’ were derived from
two independent inventories: the AmiGO2 encyclopaedia and
the Human MitoCarta3.0 dataset (ESI,† Table S4; DOI: 10.5281/
zenodo.7516685). Overlapping this list of 1346 proteins with the
components of the first layer NSL interactome revealed an
intersection of 17 proteins (Fig. 4(A)). A list of 16 (upon exclusion
of OGT as this mitochondrial protein is an NSL- seed) mitochon-
drial proteins within the first layer were used as ‘Mito-seeds’ and

represented the starting point to download the second layer
interactors using PINOT, MIST and HIPPIE (a summary of the
downloaded data is shown in Table 2). The resultant Mito-CORE
network contained 7 out of 9 members of the NSL complex
(KANSL2 and KANSL3 were missing) and held 2644 single nodes
(unique first and second layer interactors + NSL-seeds) and 3511
undirected edges (unique interactions within the entire network)
(second layer interactions of the Mito-CORE network can be
found in the ESI,† Table S5; DOI: 10.5281/zenodo.7516685).
We next sought to assess whether an enrichment of genes linked
to PD was upheld in the complete Mito-CORE network. Notably,
there were 40 overlaps between the PD gene list and the
complete Mito-CORE network, accounting for 22% of the com-
plete PD gene list being represented (Fig. 4(B)). Thus, there was a
significant enrichment of proteins encoded by PD-associated
genes within the mitochondrial interactome of the NSL complex
(p value = 0.0002; ESI,† Fig. S4) (the complete list of overlaps
reported in the ESI,† Table S6; DOI: 10.5281/zenodo.7516685).
Moreover, 6/15 genes from the more ‘stringent’ Mendelian PD
gene list were represented in the Mito-CORE network: PRKN,
SNCA, PRKRA, PARK7, VPS35 and LRRK2 (Fig. 4(B)), an overlap
which meets the statistical significance (p value = 0.001; ESI,† Fig.
S5). Considering these results, we propose that the mitochondrial
interactome of the NSL complex might indeed represent one of
the functional links between the NSL complex and PD.

The PD-CORE network is enriched for mitochondrial processes

We next expanded the PD-CORE downloading the protein
interactions of the 14 PD linked proteins directly interacting
with the NSL-seeds thus generating the PD-CORE network. The
pipeline for building this network is illustrated in Fig. 3. The

Fig. 4 Building the ’Mito-CORE network’ (A) 16 members of the first layer
interactome were prioritised as ‘Mito-seeds’ for the derivation of the
second layer (after the exclusion of OGT as an NSL-seed). Nodes are
colour coded according to the repository reporting mitochondrial locali-
sation. (B) The Mito-CORE network was subjected to PD gene set enrich-
ment analysis (GSEA) to reveal the statistically significant enrichment of PD
risk genes (40/180; 22%) (p value = 0.0002). We also found 6 out of a
stringent list of 15 genes associated with Mendelian PD, represented within
the Mito-CORE network: PRKN, SNCA, PRKRA, PARK7, VPS35 and LRRK2,
an enrichment which meets the statistical significance (p value = 0.001).
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input of the PD-associated first layer members into PINOT
followed by QC (a summary of the retained data is shown in
Table 3) initially returned a total of 4843 protein interactions, of
which 815 were retained following the application of the CS
threshold (ESI,† Table S7; DOI: 10.5281/zenodo.7516685). The
PD-CORE network at this first stage was therefore composed of
the NSL-seeds directly connecting to PD proteins and the direct
interactors of the PD proteins. We intended to identify the more
densely connected unit of this network and therefore we
removed the second layer interactors that were unique to a
single PD protein and did not generate connectivity within the
PD-CORE network. To do so, we removed the second layer nodes
connected to o2 first layer interactors; thus, keeping those
proteins in the second layer that were able to bind multiple PD-
associated proteins of the first layer (ESI,† Table S8; DOI:
10.5281/zenodo.7516685). As expected, this step increased the

connectivity of the network, removing second layer members
which might represent a ‘background noise’. The final PD-
CORE network contained 88 nodes comprising 6 out of 9 of the
NSL-seeds, 13 out of 14 of the PD-associated first layer mem-
bers, and their interactions in the second layer (communal to
more than 1 PD proteins in the first layer) (Fig. 5).

To determine enriched biological processes within the PD-
CORE network, its 82 members (88 excluding the 6 NSL-seeds)
were input into the g:Profiler tool (g:GOSt). 456 GO:BP terms
were returned, 56 of which were retained after subsequent
refinement to remove broader (term size 4100) and more
general terms (detailed in the materials and methods section).
Once each GO:BP had been manually assigned to a ‘functional
group’ (FG) and ‘semantic class’ (SC), enrichment of 8 FGs and
20 SCs was observed (ESI,† Table S9; DOI: 10.5281/
zenodo.7516685) (Fig. 6(A) and (B)). The top five most

Table 2 Mito-seeds with the corresponding UniProt ID used to interrogate three separate PPI tools (PINOT, MIST and HIPPIE) to generate the second
layer of the complete Mito-CORE network. Columns contain data counts; column headings indicate the corresponding stage of the analysis. QC1 =
quality control step 1; step to remove data lacking ‘method annotation’. QC2 = quality control step 2; step to remove data lacking a PubMed ID. Here,
column ‘-UBC’ corresponds to the total PPI count after removal of this ubiquitin moiety from the final interactor list

Mito-seed UniProt ID
PPIs downloaded
(P, H, M) Removed: QC1 Removed: QC2

Removed: un-resolved
multi-entrez ID

Unique PPIs [post
QC and formatting] Post-threshold PPIs

MRPS15 P82914 70, 66, 77 1 0 0 82 71
MRPL11 Q9Y3B7 95, 83, 106 30 16 1 110 75
FOXRED1 Q96CU9 28, 26, 51 0 0 0 52 24
MAVS Q7Z434 108, 121, 142 23 0 0 150 119
SNAP29 O95721 95, 91, 108 11 8 0 112 72
ECI2 O75521 81, 89, 100 8 1 0 100 80
LAP3 P28838 46, 40, 80 7 9 0 84 38
DUS2 Q9NX74 4, 6, 7 0 0 0 7 4
AGMAT Q9BSE5 22, 24, 27 9 0 0 27 24
LRRK2 Q5S007 1439, 548, 1850 5 1 1 1861 1326
PPP1CC P36873 345, 371, 651 5 3 2 660 324
PPP2R2B Q00005 191, 198, 201 2 0 1 206 113
TRAK1 Q9UPV9 17, 22, 21 3 0 0 23 17
TERT O14746 73, 108, 114 1 1 0 119 49
TP53 Q96S44 1101, 1073, 1190 15 3 2 1317 1005
CCAR2 Q8N163 163, 166, 189 10 0 0 205 154

Table 3 PD-seeds with the corresponding UniProt ID; used to interrogate PINOT to generate the second layer of the ’PD-CORE network’. ‘PD
association’ column indicates the source of the association. ‘Mendelian’ refers to a list of 15 genes associated with Mendelian PD. GWAS refers to a list of
PD risk genes from the latest PD GWAS meta-analysis. ‘PANELAPP’ refers to a list of diagnostic grade genes for PD and Parkinsonism. Columns contain
data counts; column headings indicate the corresponding stage of the analysis. ‘Post-threshold PPIs’ correspond to those with PINOT confidence scores
42. The ‘PD-association threshold’ corresponds to the number of PPIs bridging 41 interactome within the PD-CORE network. WDR5B was removed
from the PD-CORE network, once private interactors were excluded

PD-seed UniProt ID
PD association (G = GWAS,
P = PanelApp, W = W PPI NA) Total PPIs downloaded Post-threshold PPIs Post PD-association threshold

CAMK2D Q13557 G 179 20 4
CSTA P01040 G 67 6 1
CYLD Q9NQC7 G 622 34 8
ATN1 P54259 P 111 15 4
MAPT P10636 G/P 622 84 36
PPP2R2B Q00005 P 192 84 16
UBTF P17480 G 90 19 2
SETD1A O15047 G 57 16 7
WDR5B Q86VZ2 G 27 1 0
VPS35 Q96QK1 P/W 136 20 1
CCAR2 Q8N163 G 174 26 6
SGF29 Q96ES7 G 114 53 3
LRRK2 Q5S007 G/P/W 1448 215 51
HTT P42858 P 1004 222 29
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significantly enriched SCs (in terms of p value) were ‘‘protein
modification’’, ‘‘protein stability’’, ‘‘nuclear protein localisa-
tion’’, ‘‘nuclear transport’’ and ‘‘protein folding’’. However, it is
notable that the 3 SCs with the highest number of single GO:BPs
allocated to them were all nuclear associated: ‘‘nuclear protein
localisation’’, ‘‘nuclear transport’’ and ‘‘chromatin metabolism’’
(Fig. 6(B)). Taken together, this analysis reveals that alongside
processes involved in protein metabolism, nuclear processes are
strongly associated with the proteins composing the PD-CORE
network. The PD-CORE network was then refined, retaining only
those proteins responsible for this enrichment (Fig. 7(A)), allow-
ing the extraction of the PD – nuclear subnetwork. Topological
analysis of the extracted subnetwork showed that three of the
NSL-seeds contributed to much of the network with 83% (20/24)
and 67% (16/24) and 58% (14/24) of the PD-CORE nodes
represented by the OGT, HCFC1 and WDR5 interactomes respec-
tively, while only 29% (7/24) and 8% (2/24) of the PD-CORE
nodes are represented by the MCRS1 and KAT8 interactomes
(Fig. 7(B)). Taken together, these findings point to OGT, HCFC1
and WDR5 as key drivers of the PD association with the NSL
nuclear processes, at the protein level.

Discussion

To date, functional studies of the genetic basis for PD have
focused on delineating the precise molecular underpinnings of
monogenic PD. However, the genetic architecture of both
familial PD and sporadic PD is complex, and an interplay

between the genetic and environmental factors has been
proposed to be the basis of PD aetiopathogenesis.4 While
GWAS have revealed multiple genetic risk factors, these studies
identify loci as opposed to specific genes, which are associated
with an increase or decrease in the risk of PD development.
Recently, our lab has revealed a role for several members of the
NSL complex in the regulation of PINK1-mitophagy, in which
two members have been proposed as genetic risk factors for
sporadic PD development (Soutar et al., 2022).16 Thus, it has
been suggested that the NSL complex could play a role in
mitochondrial quality control mechanisms within the context
of sporadic PD. However, the NSL complex has mainly been
characterized in the context of the regulation of nuclear pro-
cesses. To gain a deeper understanding of how the NSL
complex intersects with pathways involved in PD, we re-
constructed the protein interactome of the NSL complex. Our

Fig. 5 Generating the ’PD-CORE network’. The PD-CORE network was
derived by prioritising the 14 PD-associated members of the NSL-PN first
layer. The second layer was obtained to generate the PD-CORE network.
Subsequent refinement of the network, removing ‘private’ interactors,
generated the refined network, composed of 13 first layer interactors
(PD-seed WDR5B was removed) and 69 second layer interactors of seeds:
KAT8, KANSL3, OGT, WDR5, HCFC1, MCRS1 (black nodes). ‘Mendelian’
refers to a list of 15 genes associated with Mendelian PD. GWAS refers to a
list of PD risk genes from the latest PD GWAS meta-analysis. ‘PANELAPP’
refers to a list of diagnostic grade genes for PD and AParkinsonism.

Fig. 6 Nuclear processes are functionally enriched within the ’PD-CORE
network’ (A) The pie chart depicts the proportion of enriched GO terms
represented by each functional group (FG) (outside ring), and each
semantic class (SC), inner ring. FGs for which there is a nuclear represen-
tation amongst SCs are depicted in a shade of blue. Numbers correspond
to the number of GO terms represented by each SC. ‘Resp. to stim.’ =
‘response to stimulus.’ (B) The bubble chart illustrates weighted SCs. The
lowest p value of associated GO terms has been allocated to the SC. The
bubble size represents the number of GO terms within the SC.
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results not only demonstrated a link to other PD-associated
genes at the mitochondria, but also indicated that a functional
link between the NSL complex and PD might be underpinned
by the nuclear functionality of the NSL complex. Thus, we here
provide a computational prediction that the NSL complex
serves as a link between familial PD and sporadic PD via both
the mitochondrial and nuclear-associated pathways.

Protein–protein interactions (PPIs) were collected from the
peer-reviewed literature to construct the NSL-PN. Initially, we
used three separate tools to obtain a comprehensive list of
direct interactors for each of our nine ‘NSL-seeds’, to construct
the first layer interactome. PPI data have utility in guiding the
interpretation of the data generated by genomics studies, to
make biological sense of the data, inferring functional associa-
tions and pathways associated with disease risk. However, PPI
studies are inherently limited by the ascertainment bias, since
the available data reflects interactions that have been deter-
mined by hypothesis-led experimentation within the wet lab,
resulting in an over-representation of interactions reported for
proteins with an existing disease-association.37 Indeed, in the
present study, we report 200 interactors for WDR5, meeting the

confidence threshold, while only 11 interactors for KANSL3 and
14 interactors for KANSL2 were reported. The disparity in the
interactome size that we have found could reflect the physio-
logically relevant difference in the number of cellular interac-
tors of each protein; however, it is not possible to exclude the
possibility that it might reflect a bias in the research literature.
To minimise the effect of this research bias within our analysis,
we have taken a multi-layered approach to build NSL-PN.
Rather than looking at individual members of the interactome,
we have carried out a set of analyses using the entire NSL-PN,
suitable for drawing meaningful conclusions from an inher-
ently partial data set.

In the first approach, we expanded the ‘first layer’ of the NSL-
PN to obtain the ‘Mito-CORE network’ of the NSL complex. The
NSL complex, with KAT8, is well characterized as a master
regulator of transcription, responsible for acetylation of histone
4 at lysine 5, lysine 8 and lysine 16 in the nuclear
compartment.18,38 However, a role for the NSL complex at the
mitochondria has also been suggested.20 This suggestion is of
interest in the context of PD, since mitochondrial quality
control/dynamics have been intimately associated with familial
PD.39 We therefore filtered the NSL-PN to retain only mitochon-
drial proteins. The identification of the mitochondrial proteins
was conducted using two independent inventories that were
pooled to maximise coverage. We retrieved the Human Mito-
Carta3.0 data set,40 a set of proteins harbouring a mitochon-
drial targeting sequence (MTS), along with candidates obtained
from the AmiGO2 encyclopaedia,31,32 experimentally evidenced
to localise to the mitochondrial matrix or the membrane. Using
this approach, we found 16/475 members of the NSL-PN first
layer to be localised to the mitochondria: ECI2, DUS2,
PPP1CCC,PPP2R2B, MAVS, LRRK2, TP53, SNAP29, MRPL11,
MRPS15, AGMAT, FOXRED1, LAP3, TRAK1, TERT, and CCAR2.
While 16/475 represents a lower proportion than would be
expected by chance, we suggest that the incomplete nature of
PPI data alongside a research bias toward a nuclear function for
the NSL complex could explain this lack of data. Nevertheless,
we used these mitochondria localised proteins within the first
layer of the NSL-PN to expand the network and download the
‘second layer’ of protein interactions, thus obtaining the Mito-
CORE network of the NSL complex. This is the protein inter-
action network built around the protein interactors of the NSL
complex that are suggested to localise to the mitochondria.

The Mito-CORE network of the NSL complex was signifi-
cantly enriched for the protein products of 180 PD linked genes,
implicating a role for the NSL complex in the genetic risk of PD,
via its mitochondrial functions. There are challenges in defin-
ing PD relevant genes, and here we have opted to include a
panel of PD risk candidate genes from the recent GWAS16 along
with a set of diagnostic markers obtained from PanelApp v 1.68
(diagnostic grade genes for PD and Parkinsonism).34 Of course,
caution must be taken in the interpretation of GWAS candidate
genes, for which approaches to annotate causal genes at a given
risk locus remain controversial.41 Considering these limita-
tions, the assessment of enrichment of a more stringent list
of 15 genes, associated with Mendelian PD, has been carried

Fig. 7 OGT, HCFC1 and WDR5 are possible key drivers of the PD risk
associated with nuclear processes. (A) Visualisation of the refinement of
the PD-CORE network, containing proteins that contribute to the enrich-
ment of nuclear processes. The final network contains 24 nodes (FL + SL)
+ 5 NSL-seeds. ‘NUCLEAR BP’ refers to the ‘nuclear biological process.’ (B)
Extraction and isolation of contributing interactomes demonstrates that
OGT, HCFC1 and WDR5 contribute most significantly to the enrichment of
nuclear processes with 83% (20/24), 67% (16/24) and 58% (14/24) of the
‘‘PD-CORE’’ nodes represented by their interactomes, respectively.
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out. It was observed that gene set enrichment is maintained
(6/15 members represented) within the Mito-CORE network.
A caveat for this analysis, and for the use of PPIs in general, is
the discrepancy in the total number of annotations between
disease relevant and non-relevant proteins; however, our results
showed an enrichment of proteins encoded by PD relevant
genes within this network, reinforcing the argument for a
mitochondrial role of the NSL complex bridging sporadic and
familial diseases.

As a second approach, we have filtered the first layer NSL-PN
to retain the protein products of 14 genes linked to PD present
within the first layer of the NSL-PN (CSTA, PPP2R2B, SGF29,
ATN1, VPS35, UBTF, SETD1A, CCAR2, CAMK2D, MAPT, CYLD,
HTT, WDR5B and LRRK2). We used these 14 proteins to expand
the network and download the second layer, thus obtaining the
‘PD-CORE network’ of the NSL complex. This is the protein
interaction network built around the protein interactors of the
NSL complex that are coded by genes that present a genetic
association with PD.

Functional enrichment analysis of the PD-CORE network
showed a high representation of nuclear biological processes
amongst those significantly enriched within the network, with
semantic classes (SCs) ‘‘nuclear protein localisation’’, ‘‘nuclear
transport’’ and ‘‘chromatin metabolism’’ represented by the
highest number of GO:BPs. As a final approach, we have refined
the PD-CORE network, enabling us to visualise and extract
subnetworks that could provide mechanistic insight between
NSL and nuclear processes. We have first identified the entities
within the PD-CORE network represented by the terms ‘‘nuclear
protein localisation’’, ‘‘nuclear transport’’ and ‘‘chromatin
metabolism’’. We have then highlighted these within the net-
work, using the Cytoscape (v.3.8.2) visualisation tool,36 to reveal
the interactions with the NSL complex members that mediate
this enrichment. The results of this final analysis point to OGT,
HCFC1 and WDR5 as possible key drivers of the PD risk
associated with these nuclear processes.

Taken together, this study provides further evidence for the
role of the NSL complex in driving PD aetiopathogenesis.
Specifically, we have illuminated a significant PD association,
strengthening the role of the NSL complex in both familial and
sporadic diseases. Additionally, we have shown that this PD
association is underpinned, at the protein level, by a set of
mitochondrial protein interactions as well as nuclear processes.
This bioinformatics-led approach serves as a proof-of-principle,
unbiased approach to extract biologically meaningful informa-
tion from genetic findings and delineate functional predictions
to guide experimental investigation to clarify the role of the NSL
in PD and eventually facilitate drug discovery.
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