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Machine learning-assisted optimization of multi-
metal hydroxide electrocatalysts for overall water
splitting†
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Green hydrogen produced via electrochemical water splitting is a

suitable candidate to replace emission-intensive fuels. However, the

successful widespread adoption of green hydrogen is contingent on

the development of low-cost, earth-abundant catalysts. Herein,

machine learning models built on experimental data were used to

optimize the precursor ratios of hydroxide-based electrocatalysts,

with the objective of improving the product’s electrocatalytic

performance for overall water splitting. The Neural Network-based

models were found to be the most effective in predicting and

minimizing the overpotentials of the catalysts, reaching a minimum

in two iterations. The relatively mild reaction conditions of the

synthesis procedure, coupled with its scalability demonstrated herein,

renders the optimized catalyst relevant for industrial implementation

in the future. The optimized catalyst, characterized to be a

molybdate-intercalated CoFe LDH, demonstrated overpotentials of

266 and 272 mV at 10 mA cm�2 for oxygen and hydrogen evolution

reactions respectively in alkaline electrolyte, alongside unwavering

stability for overall water splitting over 50 h. Overall, our results

reflect the efficacy and advantages of machine learning strategies to

alleviate the time and labour-intensive nature of experimental opti-

mizations, which can greatly accelerate electrocatalysts research.

1. Introduction

Electrochemical water splitting can produce green hydrogen
from renewable energy or off-peak surplus electricity, which is
poised as a suitable low-carbon alternative to fossil fuels.1,2
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New concepts
We demonstrate a relatively straightforward implementation of machine
learning for the optimization of synthesis parameters to yield the best-
performing catalysts for overall water splitting in a given material space. In
contrast to the majority of first-principles based machine learning approaches
in the literature, this work highlights how simple machine learning methods
can be practically integrated into experimental workflows to expedite
electrocatalysis performance optimization. Specifically, we show how the
experimental overpotentials of both electrocatalytic hydrogen and oxygen
evolution reactions can be correlated directly to the input parameters – namely
the molar fractions of the 5 metal-based precursors, leading to rapid
performance optimisation. Computationally and experimentally-intensive
steps of ascertaining structure–property-performance relations can then be
reserved for better performing catalysts. As the machine learning models used
herein are open source and easily adaptable, we expect wider implementation
of the concept beyond electrocatalysis field.
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Unfortunately, existing catalysts for water splitting are dominated
by platinum group metals that are both rare and expensive. To
accelerate industrial-scale applications, development of efficient
and stable bifunctional catalysts based on earth-abundant ele-
ments for both half-reactions of water electrolysis is highly
desirable.3,4 To further reduce manufacturing complexity and
cost, the preparation of these electrocatalysts should also be
simple and scalable.

Layered double hydroxides (LDHs) are one such class of
bifunctional electrocatalysts demonstrating noteworthy overall
electrochemical water-splitting activity due to their unique
lamellar structure and tuneable compositions.5 The structure
of LDHs may be described as brucite-like metal hydroxide
layers, but with 3+ oxidation states metals introduced into the
2+ metal hydroxide host structure, thereby leading to the
intercalation of anion between the layers to compensate for
additional positive charges.6 The electrocatalytic performances
of these LDH structures have been shown to be further
enhanced via diverse strategies including utilizing multi-
metallic compositions,7,8 doping and defect engineering,9–12

as well as heterostructures and hierarchical architectures.13,14

In addition, it has been reported that introducing different
intercalated ions also affect the electrochemical performance of
the catalysts. This includes the influence of intercalated electro-
lyte cations15 as well as anions introduced into the interlayer
spacing during the preparation of the LDH.16–18 For example,
molybdate,19 and tungstate20 intercalated nickel–iron (NiFe)
LDHs have significantly enhanced oxygen evolution (OER) activ-
ities. Systematic compositional studies via high-throughput
experimentations have been used to investigate the electro-
catalytic activity of complex multi-metallic (oxy)hydroxides.21,22

Alas, such approaches require screening of the entire material
space to be fully effective, which remains extremely tedious and
relies heavily on costly high-throughput instrumentation.

Beyond the full-scale high-throughput experiments, machine
learning (ML)-aided approaches have also garnered increasing
attention in electrocatalysis.23 Many of these ML studies and
discussions are centred around computational models and density
functional theory (DFT)-based catalyst screening (inverse
design).24–29 However, it is common to observe a very wide
disparity between the theoretically predicted potential and experi-
mental reality, arising from a myriad of factors that remain very
challenging to model accurately – such as the synthesis viability,
reaction micro-environment, side reactions, and catalyst
stability.30 Whilst there have been many recent advances in ML
models based on experimental data for electrocatalysis,29,31,32

none for LDH systems have been reported to our knowledge. Ergo,
the objective of this work is to implement a straightforward
ML-driven optimization of LDH synthesis for overall water splitting
based solely on the elemental composition of the electrocatalyst,
with a small initial training dataset generated in-house and
efficient convergence towards optimum performance via optimum
tuning of the Bayesian Optimization process.33

Given the rich literature on NiFe,6,13,34 cobalt–iron (CoFe),35–37

and NiCoFe7,38 LDH-based catalysts and the abovementioned
molybdate- and tungstate-intercalated LDHs, we seek an optimized

LDH synthesis for overall water splitting centred around these five
metal components. Given the five-dimensional material space
selected, a typical full-scale optimization approach would be
extremely time- and resource-intensive. Rather than approaching
catalyst synthesis with a preferred composition and material in
mind, we instead allow the ML models to optimize the metal
precursor ratios based on the performance of the catalysts alone,
facilitating the exploration of the parameter space with fewer
human biases. The optimization of the synthesis parameters is
entirely based on the experimental electrochemical performance of
the catalysts, bypassing the need to obtain the composition–
structure–property relationship of each datapoint. Such a straight-
forward approach aims to reflect practical implementation of ML
in experimental workflows and demonstrate the efficacy of simple
ML approaches without the use of extremely large datasets gener-
ated by high-throughput set-ups nor computationally-intensive
calculations, given that both of which remain inaccessible to many
experimentalists.

Despite the relatively small initial dataset of 53 samples, the
ML models – particularly that from the neural network algorithm –
were found to be efficient in optimizing the synthesis of electro-
catalysts for overall water splitting. At present, we demonstrate the
convergence of the models in as little as two iterations with the
neural network predictive oracle, with a molybdate-intercalated
CoFe hydroxide as the best performing overall electrochemical
water splitting catalyst in alkaline conditions, with OER and HER
overpotentials of 267 and 272 mV at 10 mA cm�2 when deposited
on an Ni foam.

2. Results and discussion

A wet-chemistry approach based on NiFe LDH synthesis39 was
adopted in this work. This triethanolamine-assisted route is
selected for its mild reaction conditions of 95 1C in aqueous
medium, without the need for strict monitoring and control of
the solution pH. These mild conditions are amenable to auto-
mated workstations while retaining the ease of scaling up toward
commercial production in the future. Five metal salts, namely
cobalt(II) nitrate hexahydrate, nickel(II) nitrate hexahydrate,
iron(III) nitrate nonahydrate, ammonium molybdate (para) tetra-
hydrate, and ammonium tungsten oxide hydrate were employed
as Co, Ni, Fe, Mo, and W metal precursors respectively. Auto-
mated synthesis of the catalysts was conducted on a Lissy
Chemical Workstation from Zinsser Analytics, which allows for
pre-programmed steps of pipetting, shaking, and heating (full
synthesis methods in Section S1.2, ESI†). The synthesized cata-
lysts were then re-dispersed, drop-casted onto glassy carbon
electrodes, and tested in a typical three-electrode rotating disc
set-up in 1 M potassium hydroxide electrolyte (Section S1.4, ESI†).

2.1. Machine learning optimization of synthesis parameters

The input parameters were chosen to be the molar ratio of the
five metal precursors (X). With that the true number and
identity of the active sites are difficult to ascertain, we adopt
the recommendation where turnover frequency of the catalysts
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considers all relevant metal sides as active sites.40 Hence, the
molar amount of all metal species – both cationic and anionic –
is kept constant. In other words, X represents a set of five molar
ratios, each varying between 0 and 1, with the sum of the five
ratios equalling to 1.

An initial dataset was constructed by obtaining OER and
HER overpotentials at 10 mA cm�2 (ZOER and ZHER) and
bifunctional activity metric (Ybifunc. = �(ZOER

2 + ZHER
2)�1) from

linear sweep voltammetry (LSV) measurement at 10 mV s�1 of
53 samples synthesized with random varying ratios of the five
metal precursors (Fig. S3.1–3, samples labelled i-{}, ESI†). The
initial dataset is relatively diverse (Fig. S2.7, ESI†), with ZOER

values between 279 to 409 mV; ZHER values from 348 to 562 mV;
and Ybifunc. values between �2.18 and �4.90.

The overall machine learning workflow is summarised in
Fig. 1. For model construction, the dataset was split into
training and test sets with proportions of 70% and 30% of the
dataset size respectively (Fig. S2.1, ESI†). We applied (trained
and hyperparameters optimized) three commonly used
machine learning (ML) algorithms, namely Gaussian process
regression (GPR), gradient boosting (GB), and neural network
(NN) to the dataset. GPR and GB were implemented in Python
using scikit_learn library,41 while NN was implemented using
pytorch library.42

We utilized Bayesian-Optimization with Gaussian process
surrogate (BO-GP) to search for the optimum set of hyperpara-
meters for each machine learning algorithm. The gp_minimize
function, implemented in scikit-optimize,43 was used for hyper-
parameter tuning across the algorithms via minimization of the
mean squared error (MSE) of the predictions for a third of the
test set. The full description of the machine learning methods
may be found in Section S2.1 (ESI†).

The objectives were to optimize the synthesis of electroca-
talysts for oxygen evolution reaction (OER), hydrogen evolution
reaction (HER), and collectively for both reactions. Machine

learning surrogate models for these three objectives were then
built for each of the algorithms as follows:

ZOER = fOER(X) (1)

ZHER = fHER(X) (2)

Y(bifunc.) = �(ZOER
2 + ZHER

2)�1 = fbifunc.(X) (3)

where X represents the molar ratio of the metal precursors; and
fOER, fHER, and fbifunc. are the surrogate functions for ZOER, ZHER,
and Ybifunc., respectively. We opted for a simple negative inverse
sum of squares of ZOER and ZHER to evaluate the overall water
splitting performance of the catalyst as opposed to more complex
scalarization methods such as Chimera,44 due to ease of imple-
mentation and high sensitivity to small changes in both ZHER and
ZOER. For the optimization, the objectives were set to minimise
eqn (1)–(3) separately, to obtain sets of suggested molar ratio of
the metal precursors (X*) via gp_minimize. Two X* for each of the
fOER and fHER as well as four X* for bifunctional catalysts fbifunc.

were then synthesized and tested, adding 24 datapoints to the
dataset (Fig. S3.4–5, ESI†). The uniqueness of the X* selected with
respect to the 53 points of the initial dataset is evaluated by
projecting the five-input composition to two transformed axis
using Uniform Manifold Approximation and Projection (UMAP,
Section S2.2 and Fig. S2.7, ESI†).45 The ML suggestions are rather
distinct and unique from the initial dataset, with the majority of
the suggestions lying beyond the UMAP boundary of the initial
points. In addition, the UMAP plots reflect a general direction in
the UMAP’s hyperspace in which the performance of the catalysts
seems to improve along, with a significant portion of the ML
suggestions crowding in that area of the hyperspace.

Comparing the overpotentials prediction (ZOER, ZHER,
Ybifunc.), it is apparent that NN-suggested X* consistently show
much better performance compared to GB and GPR in all
objectives (Fig. 2a). NN also shows the highest prediction

Fig. 1 Summary of machine learning optimization workflow.
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accuracy relative to GB and GPR, suggested by the closer data-
points to the parity line across all objectives (Fig. 2b and Fig. S2.6,
ESI†). As such, NN was chosen as the preferred technique for
subsequent iterations. Interestingly, Ni ratios seem to be sup-
pressed or completely excluded from most of the models’ sugges-
tions (Fig. S3.4, ESI†), which is contradictory to existing literature
on LDH since Ni appears to be central to LDH’s water splitting
performance.5 In addition, the GB models also tend to favour
higher ratios of W, as opposed to the NN suggestions where Mo is
preferred.

Combining the additional 24 data points with the initial
data set, the NN models were refitted, and new X* were
generated (Fig. S3.6, ESI†). Due to significantly higher ZHER

relative to ZOER, reducing ZHER has a greater effect in minimizing
Ybifunc., consequently leading to similar compositions in the
suggestions to minimise ZHER and Ybifunc.. Similar to the initial
iteration, two suggestions each from the fOER(X) and fHER(X)
models as well as four suggestions from the bifunctional model
were synthesized and tested (Fig. S3.7, ESI†) for each iteration,
and all data points were combined into the dataset to be re-
fitted in the next iteration.

After the 3rd iteration, the activities seem to have already
converged to a local minimum (Fig. 2c). NN-12, synthesized
with only Co, Fe and Mo precursors from the 2nd NN iteration,
was found to have the lowest Ybifunc. value amongst all samples
at �5.28. NN-12 has ZOER and ZHER values of 277.5 mV and
335.4 mV respectively (Fig. 3b and c). Although NN-12 had the
most negative Ybifunc., NN-13 from the 2nd iteration had the
overall lowest ZOER at 273.4 mV while NN-21 from the 3rd
iteration had the lowest ZHER at 329.4 mV.

We note that the difference between the overpotentials of
the 10 best-performing catalysts is less than 25 mV and may be

within experimental error. The compositions of these catalysts
follow an apparent trend, where lower overpotentials are achieved
with catalysts that excludes Ni alongside low to no amounts of W
(Fig. 3a). Consistently high Fe is also favoured, which is unsurpris-
ing given that Fe incorporation has been found to significantly
increase the activity of Ni/Co(oxy)hydroxides relative to their unary
oxides.46,47 The exclusion of Ni is unexpected, especially for OER,
since typical NiFe systems generally outperform CoFe,48,49 and
further characterisation and investigation is conducted below to
better understand this trend. Nevertheless, the optimized
catalyst significantly outperforms similarly-synthesized NiFe
LDH which exhibited ZOER and ZHER values of 324.5 mV and
542.5 mV respectively, consistent with the ZOER reported value
for this synthesis method.39 Additional discussion on the influ-
ence of the five metal precursors is included in the ESI,† Section
S2.2 and Fig. S2.8, based on the NN models’ SHapley Additive
exPlanations (SHAP) values.50

2.2. Characterisation of the optimized catalyst

Both energy dispersive X-ray (EDX) and X-ray photoelectron
spectroscopy (XPS) spectra confirm that NN-12 predominantly
comprises of Co, Fe, Mo, and O, with trace amounts of N also
observed from contaminant TEA or urea decomposition (Fig. S4.1,
ESI†).

To validate the potential of the synthesis procedure to be
translated towards industrial adoption, the synthesis of NN-12
was also scaled up by a factor of 10 from the scale used in the
automated workstation (Section S1.2, ESI†). Similar morpholo-
gies resembling agglomerated nanosheets were observed from
scanning electron micrographs of samples obtained from the
automated and scaled-up synthesis method (Fig. 4a and b). EDX
mappings of the two samples also reveal good homogeneity

Fig. 2 (a) Comparison of experimental ZHER and ZOER between the initial data set modelled and the performance of the model-suggested compositions
of the three ML algorithms. (b) True vs. the NN predicted values of the initial dataset alongside the values for the NN-suggested compositions. (c)
Experimental ZHER and ZOER values for the three NN iterations.
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throughout the samples (Fig. S4.3, ESI†), with less than 1.25 at%
variation of metal composition difference between the synthesis
methods (Table S4, ESI†). High-resolution XPS scans of both
samples are also similar (Fig. 4c–f and Fig. S4.4, ESI†), with
multiplets corresponding to Co(OH)2 observed in the Co 2p at
780.4, 782.2, 786.0, and 790.4 eV51,52 (Fig. 4c). Meanwhile, the Fe
2p spectra (Fig. 4d) suggest that the Fe predominantly exists as
Fe(III),53 while a pair of peaks identifies the Mo species as Mo(VI)
from the molybdate54,55 (Fig. 4e). In the O 1s range (Fig. 4f),
several peaks are observed: adsorbed water at 533.0 eV; lattice
hydroxides at 531.1 eV; and metal–O species at 529.9 eV, which
are largely attributed to the molybdate anions.52,56 No major
change in the metal oxidation states from their precursors is
observed, which is expected given the lack of strongly oxidising
or reducing precursors.

Fourier transform infrared spectrometry-attenuated total
reflectance (FTIR-ATR) spectra of the catalysts (Fig. 4g and h)
corroborates the presence of O–H groups from the XPS O 1s
spectra. A broad absorption band, red-shifted from the
3600 cm�1 band of free water molecules, is observed around
3370 cm�1 and is attributed to the stretching vibrations of the
hydroxyl groups of the LDH as well as surface and interlayer
water molecules.57 This is accompanied by a weaker band at

1625 cm�1, assigned to the O–H bending. Strong features
associated with the presence of molybdates are also observed
around 900 cm�1, most notably bands related to O–Mo–O and
MQO at 856 and 926 cm�1 respectively.57,58 Meanwhile, other
peaks at wavenumbers below 800 cm�1 are usually attributed to
metal–O/–OH bonding.59,60

Interestingly, a well-defined peak at B1350 cm�1, typically
observed for carbonate anion-intercalated LDH structures from
the anti-symmetric stretching mode of carbonate,61–63 is absent.
Such a strong peak was reported in the NiFe FTIR spectrum
obtained from the synthesis procedure this work was built
upon,39 and was attributed to the intercalation of carbonate
anions from urea decomposition to neutralize the positive charge
generated by Fe3+ substitution within Ni(OH)2. The absence of
such a carbonate feature further supports our hypothesis that
molybdate anions may be intercalated into the LDH structure, in
place of the carbonate anions.

Peaks identified in the Raman spectra (Fig. S4.5, ESI†) of both
samples are also consistent with the presence of molybdate species
seen with FTIR-ATR, with the strongest features at 328 cm�1,
820 cm�1, and 932 cm�1 assigned to its bending, asymmetric
stretching, and symmetric stretching modes respectively.64,65 A
weaker peak observed at 523 cm�1 is attributed to metal–oxygen

Fig. 3 (a) Composition of catalysts synthesized and tested, sorted in order of ascending Ybifunc and their corresponding Ybifunc, ZOER, and ZHER values. (b)
OER and (c) HER linear sweep voltammograms of the best performing bifunctional (NN-12), HER (NN-21), and OER (NN-13) catalysts, benchmarked
against NiFe LDH synthesized as per literature,39 with comparable ZOER to the reported value. Linear sweep voltammograms collected at 10 mV s�1 on
half-cell rotating disc electrode set-up in Ar-purged 1 M KOH.
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vibrations observed for FeOOH34,66 or the Co–O (Ag) symmetric
stretching mode,52 and is consistent with the previous spectra
for CoFe LDHs.17,67

No differences were apparent between the X-ray diffraction
(XRD) patterns of the samples from either synthesis method as
well (Fig. S4.6, ESI†). Both patterns reflect poor crystallinity and
are comparable to previous reports of molybdate-doped and
intercalated NiFe LDHs.19,68 A strong (00l) peak at B101 typically
observed for regular LDH structures is absent, suggesting lower
periodicity in the direction perpendicular to the layers.19 No XRD
peaks belonging to Co(II)- or Fe(III)-molybdate crystals are
observed,69,70 supporting the case for molybdate ions intercala-
tion between hydroxide sheets as opposed to a composite of
molybdate salts and metal hydroxides or alloying.

Overall, the characterisation of our best catalyst suggests that
the ML-optimized parameters yields a molybdate-intercalated
CoFe LDH. The promising overall water splitting activity of this
ML-suggested material is consistent with a recent report on
Mo-doped CoFe LDH synthesized via electrochemical oxidation
of CoFe Prussian-blue nanocubes, demonstrating excellent

performance for overall water splitting.11 Although studies on
molybdate-intercalated CoFe are limited, molybdate intercalation
into NiFe LDH structures have been widely studied, particularly for
improving the electrocatalytic activity for OER. To elaborate, the
molybdate species were found to facilitate the reconstruction of
the OER-active M-OOH phases,71–73 by undergoing dissolution and
re-adsorption process at OER conditions. Molybdate anions were
similarly observed to promote the reconstruction of a-Co(OH)2

nanosheets to active Co-OOH phases,74 and we posit similar effects
may be operating in our NN-12 sample. In addition, prior literature
also suggest that Mo doping could induce redistribution of the
surface electron density to accelerate charge transfer and promote
the formation of the *OOH intermediate for NiFe LDH structures
as well.11,68,71,75 Congruent with these prior observations, NN-12
also exhibits significantly lower charge transfer resistance (Rct)
than the original NiFe LDH,39 as observed from electrochemical
impedance spectroscopy (Fig. S5.4, ESI†).

To better understand the physical phenomenon behind the
ML suggestion, four additional samples were synthesised and
characterised, varying the Ni : Fe ratio, replacing Ni and Co, as

Fig. 4 Scanning electron micrographs of NN-12 synthesized via (a) the automated workstation and (b) the scaled-up synthesis. Deconvoluted high-
resolution X-ray photoelectron spectra for (c) Co 2p, (d) Fe 2p, (e) Mo 3d, and (f) O 2p of NN-12 synthesized by the automated workstation. (g) Fourier
transform infrared spectrometry-attenuated total reflectance spectra of the catalysts and (h) an enlarged portion of the spectra as demarcated by broken
lines in (g). (i) X-ray diffraction patterns of NN-12 alongside additional samples with systematic compositional changes,39 including NiFe from the original
synthesis procedure (Ni3Fe1), Ni4Fe3 and Co4Fe3.
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well as replacing the molybdate from NN-12 with tungstate
(Section S4.2, ESI†). It was found that the incorporation of Co,
exacerbated by the high Fe content and molybdate incorpora-
tion, compromises the crystallinity and stacking order of the
LDH, as shown from the diminishing (00l) peaks (Fig. 4i). Given
that the stability of the bulk LDH structure has been found to
be affected by interlayer anions,76 the incorporation of molyb-
date may decrease the cohesion between the LDH sheets,
leading to the disruption of the turbostratic structure. Relative
to well stacked layers, structures with poor crystallinity and
stacking have increased surface area, exposure of rich active
sites as well as defects, all of which may contribute to enhanced
electrochemical activity.77,78 Meanwhile, the incorporation of
tungstate seems to induce the precipitation of electrically
insulating FeOOH phase (Fig. S4.7, ESI†), which degrades the
electrochemical performance. The full discussion may be found
in the ESI,† Section S4.2. Overall, although the NiFe LDH is
expected to have higher OER activity than CoFe LDH from

literature,48 we hypothesise that this may be outweighed by the
influence of the catalysts’ nanostructures arising from the
effects of the different precursors used during synthesis.

2.3. Catalyst stability

To better reflect the performance of the catalyst in practical
applications, NN-12 from the scaled-up synthesis procedure was
also tested on larger stationary electrodes, where the catalysts are
air-brushed onto both sides of 0.3 mm Ni foams (Section S1.4,
ESI†). Electrode areas measuring 1� 1 cm (geometric active area =
2 cm2 per electrode) were isolated using epoxy resin to minimise
possible current contributions from electrolyte ingress.

Half-cell chronopotentiometry of NN-12/Ni foam electrodes
was conducted at 10 mA cmgeo

�2, delivering overpotentials of
266 and 272 mV for OER and HER respectively (averaged from
the 2nd to 10th hour, Fig. 5a and c). Higher initial overpoten-
tials observed is common amongst similar catalysts,79 and may
be attributed to the ongoing reconstruction of the catalysts as

Fig. 5 (a) OER chronopotentiometry plot of NN-12/Ni foam at 10 mA cmgeo
�2 and (b) corresponding LSV at 5 mV s�1 after 5 and 10 h. (c) HER

chronopotentiometry plot of NN-12/Ni foam at 10 mA cmgeo
�2 and (d) corresponding LSV at 5 mV s�1 after 5 and 10 h. (e) Chronopotentiometry runs of

the electrode tested for overall water splitting at current densities of 10 mA cmgeo
�2 and 50 mA cmgeo

�2 for 50 hours. Electrolyte: Ar-purged 1 M KOH.
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these foam electrodes are not pre-treated. Apart from the for-
mation of active metal hydroxide phases,48,80 the reconstruction
process may also include dynamic dissolution and re-adsorption
of the molybdate anions71–74,81 as mentioned earlier. No signifi-
cant degradation was observed from LSV measured after 10 h
(Fig. 5b and d), alluding to the good long-term stability of the
catalyst. In addition, the observed OER Tafel slope of 59 mV dec�1

(Fig. S5.2a, ESI†) is in agreement with the proposed mechanisms
for alkaline conditions, with reaction kinetics limited by the
coverage of M*OOH sites.82 Meanwhile, the Tafel slope value for
HER of 170 mV dec�1 (Fig. S5.2b, ESI†) is comparable to prior
literature of LDH-based catalysts with no heteroatom doping.83

The deviation from cardinal HER Tafel values suggests possible
Volmer–Heyrovsky mechanism,83,84 coupled with higher *H cover-
age and pH effects.82

The performance for overall water splitting was also evalu-
ated via chronopotentiometry with the NN-12/Ni foam electrodes
serving as both the cathode and anode. At 10 and 50 mA cmgeo

�2,
the cell voltage stabilised at around 1.78 and 2.04 V respectively,
with no significant loss of activity after 50 h. Further quantifica-
tion of hydrogen gas evolved during HER via gas chromatography
yields average faradaic efficiency of 99.5% over more than 4 h at
10 mA cm�2 (Fig. S5.3, ESI†). Given its simple synthesis and
structure, with no further modifications nor dopants, NN-12 delivers
respectable performance and catalytic durability for overall water
splitting, with comparable catalytic activities to some of the best
LDH catalysts from prior literature (Table S5, ESI†).

3. Conclusion

In summary, we demonstrate the optimization of a simple
synthesis and scalable procedure for bifunctional water split-
ting electrocatalysts. An optimum composition with the lowest
bifunctional overpotential was found with merely two experi-
mental iterations of our machine learning workflow. The
syntheses were conducted in an automated workstation and
the optimization was driven via ML through NN models built
upon experimental data of 53 samples. The best-performing
catalyst, NN-12, was tested to possess the characteristics of
molybdate-intercalated CoFe LDHs, alongside good activity and
stability for overall water splitting. Nevertheless, there remains much
room for improvement and exploration in this work, such as
increasing the material space and input parameters to be optimized.
Possible expansion of this work includes the optimisation of het-
eroatom dopant species and content, with prior literature reporting
promising electrocatalytic85–88 and photoelectrocatalytic88,89 water
splitting activity with late transition metal dopants, especially copper
and zinc.

Consideration of experimental uncertainty as well as predicted
uncertainty in the models may also allow for more robust ML
models.90 In addition, whilst a simple negative inverse sum of
squares approach was used herein to optimize for overall water
splitting, there also exists well-established methods for multi-
objective optimizations such as Chimera,44 which are particularly
suited for more complex multi-objective optimizations.

Our key message is to highlight the efficacy of ML in
assisting the optimization of experimental parameters and
encourage experimentalists to tap into ML-assisted workflows
to accelerate the time and labour-intensive nature of experi-
mental work – particularly those with numerous parameters to
be simultaneously optimized. Moreover, the use of ML may also
aid in material discovery by removing human biases from the
experimental process. Herein, the exclusion of Ni surprisingly
led to better catalytic performances – which would not have
been otherwise considered based on our preconception that Ni-
based LDHs would yield better performances than Co-based
LDHs. Other methods such as Phoenics91 have also been
developed with chemistry and experimentation in mind, which
is also an incredible tool for experimental catalyst discovery
and optimization. Nevertheless, there remain many areas for
further development. For example, developing better models
suitable for smaller datasets would further increase the acces-
sibility of ML to experimentalists, particularly for experiments
conducted without high-throughput or automated set-ups to
generate large data volumes. Such machine learning methods
may be further expanded upon to facilitate the discovery and
optimization of electrocatalysts over a wider material space,
with greater efficiency relative to the Edisonian approach typi-
cally adopted in experimental catalysis research.
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M. Cherti, K. Pfannschmidt, F. Linzberger, C. Cauet,
A. Gut, A. Mueller and A. Fabisch, 2018.
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