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Accurate calculation of second osmotic virial
coefficients of proteins using mixed Poisson–
Boltzmann and extended DLVO theory†

Srdjan Pusara, Wolfgang Wenzel and Mariana Kozlowska *

The state of proteins in aqueous solution is determined by weak, nonspecific interactions affected by pH,

solvent composition, and ionic strength. Protein–protein interactions play a crucial role in determining

protein stability and solubility. The second osmotic coefficient (B22) provides insight into effective

interactions between proteins in solution. Models for calculating B22 are valuable for estimating

interactions, explaining measured phenomena, and reducing experimental time. However, existing models,

like the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, assume a simple spherical shape for proteins.

Owing to the fact that proteins exhibit diverse shapes and charge distributions, influencing their

electrostatic properties and overall interactions, DLVO accuracy is significantly reduced for nonspherical

proteins. To address this limitation, we introduce the xDLVO-CGhybr model, which combines Poisson–

Boltzmann (PB) and Debye–Hückel (DH) theories to account for electrostatic interactions between proteins.

PB is used for short intermolecular distances (<2 nm) with an all-atom resolution, while DH is employed

for longer distances on a coarse-grained level. Additionally, xDLVO-CGhybr incorporates an improved

coarse-grained Lennard-Jones (LJ) potential derived directly from the all-atom potential to capture

dispersion interactions. This model improves the calculated B22 values compared to existing models and

can be applied to proteins with arbitrary shape and charge under various solvent conditions (up to 1 M

monovalent salt concentration). We demonstrate the application of xDLVO-CGhybr to bovine trypsin

inhibitor, ribonuclease A, chymotrypsinogen, concanavalin A, bovine serum albumin, and human

immunoglobulin type I proteins, validating the model against experimental data.

1. Introduction

Protein–protein interactions (PPIs) in aqueous solution are of
great interest from both a fundamental science and a

technology standpoint. Specific protein interactions are
typically more directional and greater in magnitude than
non-specific interactions. Such specific interactions in living
systems, for example, force proteins into biologically relevant
assemblies, which provide a distinct biochemical function
than for the molecule in the monomer state.1 In addition,
such interactions are responsible for particular recognition,
such as substrate to enzyme binding, antigen to antibody
binding, or enzyme inactivation.2
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Design, System, Application

Proteins, as complex macromolecules, exhibit diverse structures, functions, and sizes, making them the most versatile biological species. Understanding
protein behaviour in diverse solutions is essential for numerous scientific, pharmaceutical, and technological applications. However, the intricate
complexity of protein–protein interactions and their dependence on solution conditions may lead to chemical and physical instability of protein solutions,
posing challenges in their processing and target application. Predicting the state of proteins in specific conditions using molecular modelling and
theoretical calculations of the second osmotic virial coefficient, which indicates the overall interactions between two macromolecules in a solution, tends
to accelerate the discovery of adequate processing conditions and guide experiments. Here, we introduce a new theoretical model called xDLVO-CGhybr to
calculate protein solution stability, modulated by diverse protein–protein interactions, by incorporating the most essential interaction potential terms
governing protein behaviour. In future applications, this model can be utilised to provide quantitative predictions of protein solubility when coupled with
other models that consider protein–solvent interactions. Furthermore, by bridging the gap between macroscopic experimental observables and microscopic
structure–function relationships, our research contributes to a deeper understanding of protein behaviour in solution.
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On the other hand, weaker, nonspecific interactions play a
crucial role in determining the state of proteins in solution,
therefore, they determine the protein's solubility and its
tendency to undergo transient aggregation or precipitation.
Protein aggregation is a significant issue for the
biopharmaceutical industry from a technological standpoint,3

and it continues to be one of the barriers to the development
of biotherapeutics. In general, it is essential to know how to
minimise and restrict protein aggregation in specific
conditions. Therefore, understanding protein–protein
interactions and their dependencies upon the change of
solution conditions is essential for designing and developing
effective strategies to control protein stability and prevent
undesirable aggregation or precipitation. This can
significantly impact the performance and shelf-life of
protein-based products.4,5

To understand conditions that lead to protein
aggregation,6,7 assembly, gel formation or protein
crystallisation,8,9 it is necessary to comprehend forces that
act between proteins on a molecular level.10 Nonspecific
interactions are mostly governed by weak noncovalent
interactions, such as attractive van der Waals and
hydrophobic interactions, and attractive or repulsive short-
and long-range electrostatic interactions. The stability of
protein solutions is determined by the balance between
repulsive and attractive forces, therefore understanding of
these interactions on a quantitative level is an important step
towards prediction of processability conditions.

The second osmotic virial coefficient, B22, serves as a
valuable indicator of the overall interactions between two
macromolecules in a solution,11 as well as a measure of
weak, nonspecific interactions.12 The B22 coefficient is
defined by the deviation of the solution from ideal behaviour
and quantifies the extent to which the osmotic pressure
differs from that of an ideal solution:

Π ¼ RTcp
1
Mw

þ B22cp þ…

� �
; (1)

where Π is the osmotic pressure, cp is the protein
concentration (in mass units), R is the gas constant, T is the
temperature in K and Mw is the molecular weight of the
protein. Positive values of the coefficient indicate overall
repulsive interactions between proteins in solution, while
negative values indicate attractive interactions. In diluted
protein systems, higher order virial coefficients can be
neglected,13 and therefore the second osmotic virial
coefficient provides information on the average effective
interaction between macromolecules in solution.

In addition to its theoretical significance, the experimental
determination of the second osmotic virial coefficient
provides a valuable source for weak PPIs. This technique has
been widely employed by researchers to semi-quantitatively
predict or explain various thermodynamic properties,
including protein solubility,14–16 crystallisation,17,18

aggregation propensity,19 and the critical temperature for
liquid–liquid phase separation.20 As such, the second

osmotic virial coefficient serves as a versatile tool for
understanding the behaviour of macromolecules in solution
and has become an indispensable part of the modern
biotechnology toolkit.21 In their pioneering work, George and
Wilson demonstrated that the measured second osmotic
virial coefficients could be correlated to crystallisation
behaviour.17,22 It needs to fall within a narrow interval known
as the “crystallisation slot” for protein crystals to be formed.
If the values are below the crystallisation slot (indicating
stronger attraction), amorphous precipitates would form
instead. Since then, the second osmotic virial coefficient has
been also used to understand protein solubility at different
concentrations and solution conditions. Here, solubility of
macromolecules or particles can be modelled using either
the thermodynamic relationship between solubility and
second osmotic virial coefficients,14,18 or through semi-
empirical models, in which adjustable parameters are fitted
from experimental data.15,16

Various experimental techniques can be used to measure
second osmotic virial coefficients, including membrane
osmometry,12,23 self interaction chromatography,7 dynamic
or static light scattering,24–27 sedimentation equilibrium, and
small angle X-ray or neutron scattering (SAXS/SANS).28,29

However, these techniques have limitations, as they can be
time-consuming or require large amounts of protein samples,
making them unsuitable for quick screening of PPIs under
various solution conditions. Furthermore, B22 measurements
can yield different results when different experimental
techniques are used, or even when the same technique is
applied by different researchers. Finally, experimentally
determined B22 values do not provide information about the
origin of PPIs or which molecular interactions contribute the
most to the observed macroscopic effects. In addition, B22
was reported also to be calculated using all-atom or coarse-
grained molecular dynamics with explicit solvent, via free
energy techniques.30 However, the B22 coefficients obtained
differ significantly from experimental results. To achieve
better agreement with experiments in this case, Lennard-
Jones interactions needed to be weakened by a factor of
approximately 0.1.11,30

The importance of developing theoretical models to
rapidly evaluate PPIs under a broad range of solution
conditions is evident. Second osmotic coefficients can be
derived using concepts of statistical thermodynamics,13

where B22 is defined as an integral measure of the pair
interaction potential W(r) experienced by particles in
solution:

B22 ¼ 1
2
NA

M2

ð
Ω1

ð
Ω1

ð ∞

0
1 − e−

W r;Ω1 ;dΩ2ð Þ
kBT

� �
4πr2drdΩ1dΩ2 (2)

with Ω1 and Ω2 representing angular orientation, and r
representing centre-of-mass (COM) distance between two
proteins with respect to each other. By determining the
potential of mean force (PMF) between two macromolecules
and integrating it over all relative protein orientations and
separations, this equation establishes a relationship between
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B22 and the effective pair potential. Hence, it offers a method
for calculating the effective pair potential.

Various computational methods have been employed to
calculate B22 values. For example, Monte Carlo simulations31

have been used to integrate the Mayer f-function (equal to
the negative of the term in brackets in eqn (2)) in the six-
dimensional relative configurational space.32,33 Molecular
dynamics,30 Brownian dynamics34,35 and Monte Carlo
simulations36 have been used to simulate dilute protein
solutions to obtain the radial distribution function
(RDF),34,35 which can be used to determine the Mayer
function through the relationship RDF-1 = f-function.
Additionally, the PMF has been determined by counting
configurations in which proteins interact or by using free
energy techniques.30,37 In these calculations, proteins were
modelled using either sphere models,38,39 coarse grained
(CG) models,30,33 or full all-atom representations,11 while the
solvent was mostly represented implicitly. Some researchers
have also focused on optimising the force field by tuning the
nonbonded parameters to match the experimentally
determined B22 values.30 Aside from the aforementioned
computationally expensive methods, there are also simplified
models available for calculating second osmotic virial
coefficients, where proteins are represented as spheres. One
widely used model is based on the colloidal DLVO
(Derjaguin–Landau–Verwey–Overbeek) theory,40 which
describes the interaction between proteins as a combination
of spherically symmetric van der Waals forces and repulsive
electrostatic interactions between charged macroions
surrounded by small ions:

W(r) = Wdisp(r) + Wel(r). (3)

The DLVO model is widely used to interpret experimental
data, such as salt dependence on B22.

16,41 However, the
parameters derived from such applications often lack
physical significance or are poorly transferable to other
proteins or solvent conditions. Some modifications of the
DLVO theory, such as the inclusion of other potential terms,
like the osmotic depletion potential,12,15 potential that
models hydrophobic forces, or potential terms that describe
the effects of excipients or polymers,42,43 have been reported.
Despite these efforts, fundamental limitations of the DLVO
theory persist, i.e. it agrees well with experiments conducted
only on the spherical particles.16 Moreover, proteins can
experience various non-DLVO interactions, including
hydrodynamic and solvation forces or can exist in various
non-spherical forms, which can significantly impact the
quality of the prediction. Therefore, while the DLVO model is
a useful tool, it is crucial to consider its limitations and other
contributing factors to better understand protein behaviour
and PPIs.

Among protein–protein interactions, electrostatic
interactions are particularly important, as the protonation
states of amino acids are pH-dependent and can vary based
on the local protein environment. Moreover, proteins come

in a range of shapes and can exhibit significant charge
anisotropy, which can impact their physicochemical
properties. As a result, the behaviour of proteins in solution
is influenced by a variety of solution conditions, modulating
to a huge extent the electrostatic PPIs. It includes solution
pH, ionic strength, and the addition of polyelectrolytes or
small molecule additives. One common approach for
modulating PPIs in solution is to adjust the salt
concentration, which weakens repulsive electrostatic
interactions. In addition, according to the Lifshitz theory of
electrodynamic forces,44,45 changing the ionic strength can
also have an impact on dispersion interactions, with some
estimates suggesting a change of around 10% at high ionic
strengths.41 However, including the effects of ionic strength
on dispersion interactions is challenging, and therefore, in
the majority of theoretical models dispersion interactions are
assumed to be independent of ionic strength.

Most theoretical models to calculate B22 values use
simplified continuum models to simulate electrostatic
interactions. They are mainly based on Debye–Hückel theory.
However, DH theory is an approximation, especially valid for
diluted solutions at low ionic strengths (e.g. of 0.1 M), and
has not been extensively tested for its validity in representing
biomolecular electrostatics. Some attempts have been made
to move beyond Debye–Hückel theory. Kim et al. have used a
fast multipole method solved by a boundary element method
to model electrostatic interactions at a residue-level coarse-
grained structure.46 Song et al. have proposed the extended
Debye–Hückel continuum model to improve solvation
dynamics.47 In addition, Neal et al. have used Poisson–
Boltzmann theory to solve the electrostatic potential between
atomistically represented proteins to compute B22.

11 The PB
equation is a partial differential equation that describes the
electrostatic potential and ion distribution around charged
molecules or macromolecules in an electrolyte solution.48 It
takes into account the charges on a molecule, the dielectric
constant of the solvent, and the concentration of ions in the
solution. It is a popular approach for calculating the
electrostatic interaction of proteins and other
biomolecules.48–51 However, computational cost of PB for
macromolecules restricts this method only to a small number
of relative protein orientations. In addition, PB theory cannot
take into account ion specificity.53 Therefore, Boström et al.
have modified the Poisson–Boltzmann method and
incorporated ion-specific effects in spherical protein
representations.38,39,52,53

Recently, we have reported the xDLVO-CG model, which is
an approach to compute second osmotic virial coefficients of
proteins by adapting the equations of extended DLVO
(xDLVO) theory for the use on coarse-grained protein
structures.54 While the xDLVO-CG model showed reasonable
agreement with experimental values for B22 coefficients, some
discrepancies were observed for large and irregularly-shaped
proteins, such as bovine serum albumin and monoclonal
antibodies. While computationally efficient, we have found
that this approach may not capture molecular-level details on
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short protein–protein distances, accounted for in the higher
resolution (computationally expensive) models.

To improve accuracy of xDLVO-CG and better model
complex biological systems, we report here the xDLVO-
CGhybr model, which includes modified electrostatic
potential term. The xDLVO-CGhybr model employs a hybrid
approach that combines Poisson–Boltzmann theory and
Debye–Hückel theory to calculate the electrostatic
contribution to the total interaction potential, regardless of
protein size and shape. Given the computational complexity
of solving PB equations for protein systems, particularly
when determining second osmotic virial coefficients for
diverse starting orientations, COM distances, and salt
concentrations, we chose a hybrid approach. This strategy
effectively balances computational efficiency and accuracy.
Additionally, in the present report we also implemented a
coarse-grained-based Lennard-Jones potential that is carefully
parameterized to match reference all-atom potentials for
accurate prediction of dispersion-based PPIs. To validate the
accuracy of our model, we tested it on six different proteins
with varying complexity and shape: bovine trypsin inhibitor
(BPTI), ribonuclease A (RbnA), chymotrypsinogen (ChmT),
concanavalin A (ConcA), bovine serum albumin (BSA) and
human immunoglobulin type I (IgG1). The new
implementation demonstrates improved predictions of B22
values at ionic strength of 10 mM to 1 M and arbitrary pH.

2. Theoretical background
2.1. Interaction potential in xDLVO-CGhybr model

In the xDLVO-CGhybr model, the interaction potential,
denoted as W(r), is computed by summing up the
electrostatic, Wel(r), dispersion, Wdisp(r), osmotic, Wosm(r),
and ion-protein, Wi-pr(r) potential terms between pairs of
proteins. The resulting equation for the interaction potential
is:

W(r) = Wel(r) + Wdisp(r) + Wosm(r) + Wi‐pr(r). (4)

Therefore, it consists of similar four terms as were
implemented in the previously reported xDLVO-CG model,54

but electrostatic and dispersion potentials are modified in
xDLVO-CGhybr. These modifications are explained in detail
below. The osmotic attraction and ion-protein potential terms
remained unchanged, so we explain them only briefly.
Wosm(r) arises from the exclusion of salt ions between
proteins at short distances. It leads to a local osmotic
pressure imbalance compensated by an attractive interaction
between the proteins.55 In the model implemented (also in
our previous work), this potential considers the mean
hydrated radius of salt and the salt density. The ion-protein
dispersion potential involves the total dispersion interaction
between a protein and the ions in its vicinity. The calculation
includes parameters characterising the dispersion interaction
between the protein and anion and cation ions, respectively.
For a more thorough explanation of these terms and

respective equations, please refer to our previous
publications.12,54

2.2. Electrostatic interactions

The xDLVO-CGhybr model employs a hybrid approach to
calculate the electrostatic interaction energy between two
proteins. At short protein separations, i.e. up to R0 + 2 nm,
where R0 represents the COM distance between proteins in
their crystal structure, the model uses the Poisson–
Boltzmann equation and all-atom protein structures to
compute electrostatic interaction energy (EPB). At larger
distances, the Debye–Hückel model and coarse-grained
protein structures are used instead (EDB):

W el rð Þ ¼ EPB rð Þ; r ≤ R0 þ 2 nm

EDB rð Þ; r > R0 þ 2 nm

�
: (5)

This scheme is illustrated in Fig. 1.
In contrast, xDLVO-CG is a purely coarse-grained model

that calculates all potential terms, including the electrostatic
interaction energy, using simplified shape-based CG
representations without the use of the hybrid resolution, as
we implemented in xDLVO-CGhybr.

The linearized Poisson–Boltzmann equation can be
expressed using the following formula:51

−Δ·ε xð ÞΔϕ xð Þþ κ−2ϕ xð Þ ¼ 4πe2c
kBT

XM
i¼1

qiδ x − xið Þ;

for x ∈ Ω;where ϕ xð Þ ¼ g xð Þ for x ∈ ∂Ω

(6)

This equation solves for the dimensionless electrostatic
potential ϕ(x), resulting from a charge distribution in a
polarizable continuum with dielectric constant ε(x), within a
finite domain Ω with Dirichlet boundary conditions, where
g(x) represents a fixed potential on the boundary. In general,
in a biomolecular system exist two types of charges: fixed
charges (qi with coordinates xi), which are associated with
proteins (represented on the right side of eqn (6)), and
mobile charges, which represent the counterions present in
the surrounding electrolyte (shown in the second term on the

Fig. 1 Illustration of hybrid (all-atom and coarse-grained) scheme
used to calculate electrostatic interactions between proteins in
xDLVO-CGhybr model.
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left side of eqn (6)). There, κ denotes the coefficient which
describes ion accessabilities and ionic strength.49,50 After
solving the PB equation to determine the electrostatic
potential ϕ(x), the free energy, G(ϕ), can be calculated by
integrating the potential across the relevant domain:50

G ϕð Þ ¼
ð

Ω

ρ fϕ −
∈
2

Δϕð Þ2 − κ−2 coshϕ − 1ð Þ
h i

dx: (7)

In eqn (7), the first term corresponds to the energy required
to insert the protein charges into the electrostatic potential,
which can be seen as the energy of interaction between the
fixed charges. The second term represents the energy of
polarisation in the dielectric medium. Lastly, the third term
takes into account the energy of the mobile charge
distribution, which can be interpreted as the excess osmotic
pressure of the system. Since the PB equation cannot be
solved analytically, we have employed a numerical method,
i.e. the finite difference method.

In xDLVO-CGhybr, when proteins are located in close
proximity to each other, the electrostatic interaction energy,
EPB(r), is obtained by calculating several energy terms and
their difference shown in eqn (8). Therefore, EPB(r) is the
difference between the total electrostatic free energy of the
protein complex and the electrostatic energies of the
individual, separated proteins:

EPB(r) = Gcomplex(r) − GProt1(r) − GProt2(r), (8)

where the term Gcomplex, GProt1 and GProt2 represent the
electrostatic free energy obtained through the use of an
iterative solver.48

When the protein separation exceeds R0 + 2 nm,
electrostatic interactions are computed using the
computationally less expensive Debye–Hückel model as
follows:

W el rð Þ¼
XN1

i¼1

XN2

j¼1

ZiZje2 exp κ Rbi þ Rbj − rij
� �� �

4πε0εrr 1þ κ Rbi þ Rbj
� �

4

� �2 ; rij > dij þ 2σ; (9)

where Rbi and Rbj represent bead radii assumed to be
equivalent to the radius of gyration of the constituent atoms.
N1 and N2 denote the total number of beads, dij is the initial
distance between bead pairs, rij corresponds to the current
bead-to-bead distance during protein translation, σ is the
thickness of the water layer surrounding the protein (0.1
nm), r represents the relative permittivity, Zi and Zj indicate
the charges of the beads, and κ is the reciprocal of the Debye
length, which is given by:

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NAe2I
ε0εrkBT

s
; (10)

where I stands for ionic strength, NA stands for Avogadro
number, kB stands for Boltzmann constant, and T stands for
absolute temperature.

2.3. The dispersion potential

In the xDLVO-CGhybr model, the dispersion interactions
between proteins are calculated through either the Hamaker
potential or the Lennard-Jones potential. The Hamaker
potential describes the attraction forces between molecules
arising from electromagnetic quantum fluctuations.44,45,56 It
is derived by integrating the London dispersion forces,
between two homogeneous spheres,57 and is represented by
following equation:

WH rð Þ ¼ −
XN1

i¼1

XN2

j¼1

AH
12

1
N1N2

dij
r2ij − d2

ij

þ d2ij
r2ij

þ 2 ln 1 −
d2ij
r2ij

 !" #
; rij

> dij þ 2σ

(11)

The Hamaker constant is represented by AH in the formula.
It determines the depth of the interactions between the two
surfaces and is the only adjustable parameter in the model.
The value of AH depends on various factors, such as the
dielectric polarizability of macromolecules and of the
surrounding medium, the separation distance between the
two surfaces, and the properties of the interacting surfaces
themselves.58

Furthermore, the dispersion interactions between proteins
were also calculated based on the Lennard-Jones potential,
represented by following equation:

WLJ rð Þ ¼
XN1

i¼1

XN2

j¼1

εij
σij

rij

� �12

− σij

rij

� �6
 �
; rij > dij þ 2σ: (12)

Here, εij and σij represent the respective Lennard-Jones
parameters for each bead pair. They were directly
parametrized from all-atom LJ potentials (as described in
Computational details) unlike the Lennard-Jones parameters
in our previous work,54 which were derived using a simplified
method implemented in the coarse-grained builder in VMD
(shape-based CG).59

3. Computational details
3.1. Preparation of protein structures

The all-atom structures of proteins were taken from the
protein data bank (PDB) with the codes 1bpi, 3rn3, 2cga,
3nwk, 4f5s and 1mco for bovine BPTI, RbnA, ChmT, ConcA,
BSA and IgG1, respectively. The chosen PDB structures were
checked if they contain the missing residues, and in case
they did, they were reconstructed by the Swiss Model
program.56 The protonation states of protein residues were
assigned at desired pH (see in Results and Discussion) by
using PROPKA method (version 3.3)48,60 and PDB2PQR online
web server.61 Such starting all-atom structures of proteins
were used for the PB calculation with Adaptive Poisson–
Boltzmann Solver (APBS)60 on short distances (described in
section 3.2), where partial charges and van der Waals radii
were assigned to the atoms using the CHARMM force field.62

The protonated all-atom structures were also used for the CG
mapping (with approximately 500 atoms per one bead) for all
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other calculations for the intermolecular distances higher
than R0 + 2 nm, as depicted in Fig. 1. CG mapping was
performed by using a shape-based coarse-grained model,59

implemented in the VMD program (version 1.9.3).63 Center of
each bead was placed in the COM of the corresponding
atoms. The bead radius was assigned to the radius of
gyration, whereas the charge of the bead was calculated as a
sum of partial charges of all atoms comprising the bead.
Upon CG mapping of BPTI and RbnA, each protein unit was
represented by 4 beads, while ChmT, ConcA, BSA, and IgG1
were represented by 8, 15, 20, and 40 beads, respectively (see
Fig. S1†).

3.2. Poisson–Boltzmann calculations

Adaptive Poisson–Boltzmann Solver (APBS) was used to
conduct Poisson–Boltzmann calculations on all-atom protein
structures studied.48,60 Specifically, it was used to solve the
linearized finite difference Poisson–Boltzmann equation
(lpbe). The iterative solver was initially applied on coarse grid
dimensions with fewer grid points and larger size, obtained
by expanding the molecular dimensions by a factor of 1.7.
Subsequently, the resulting Dirichlet boundary conditions
were utilised to solve the equation on a smaller region of
interest using a finer grid, obtained by increasing the
molecular dimensions by 20 Å. For lpbe calculations of each
protein, the number of grid points, the dimensions of the
coarse grid and of the fine mesh domain were set by the
internal APBS script. To obtain the electrostatic binding
energy of the protein complex for a specific COM distance or
ionic strength, six lpbe calculations were required: two for
the complex and two for each protein. These calculations
were performed with the same grid spacing to ensure proper
cancellation of self-solvation energies. The electrostatic
interaction energy was then calculated as the difference
between the electrostatic energy of the complex and the
electrostatic energies of the separated proteins. APBS
calculations were carried out at 20 different monovalent salt
concentrations ranging from 10 mM to 1 M NaCl.
Specifically, concentrations were incremented by 27 mM up
to 0.2 M, and by 70 mM for concentrations exceeding 0.2 M.
The sodium and chloride radii were set to 2.0 Å and 2.23 Å,
respectively. For each calculation at specific salt
concentration, one of the proteins was kept fixed in space,
while another protein was translated along the vector
connecting their COMs, by incrementing the distance by 1 Å
in each step. The second protein was moved up to a distance
of R0 + 2 nm from its starting COM distance R0, and APBS
calculations were performed at each intermediate distance
(in total 120 lpbe calculations for one concentration).

Multiple Debye–Hückel boundary conditions were
employed, and the molecular surface was smoothed using
9-point harmonic averaging64 with the solvent (water) probe
radius set to 1.4 Å and the solvent density set to 10
quadrature points per Å.2 The cubic B-spline discretization
was used to map protein charges to the grid. The internal

dielectric constant of all proteins studied was set to 4.0, while
the external dielectric constant was set to 78.4 (the dielectric
constant of water medium).

3.3. LJ parameters for CG model

The CG beads, obtained with procedure explained in section
3.1, were assigned Rmin values equal to the radius of gyration
of their constituent atoms. The sigma parameter in the LJ
potential was set as Rmin = 21/6σ, and the epsilon parameters
were adjusted to match the all-atom LJ potential. The all-
atom LJ potential was obtained by using CHARMM36m
parameters calculated on a translation trajectory created by
translating proteins over vectors between COMs of protein
pairs from five different relative orientations.62,65 The CG LJ
potential was fitted to the all-atom potential by varying
epsilon parameters using a least squares algorithm. The
interaction parameters between different beads were
determined using Lorentz–Berthelot combining rules.

Finally, the depth of the CG LJ potential was scaled to
match the Hamaker dispersion potential, as LJ parameters
are usually optimised for vacuum and have a weaker effective
interaction in a solvent.30,66,67 For that, we have used either
AH values reported in the literature (see Table S1†) or
assigned a general value of 5 kBT, i.e. according to
fundamental Lifshitz theory of electrodynamic forces.44,45

Such value is characteristic to a variety of proteins. The list of
parameters used for LJ scaling is given in Table S1 in the
ESI.† We have to point out that the only adjustable parameter
in our model is the Hamaker constant for each of the
proteins (see eqn (11)).

3.4. Calculations of second osmotic virial coefficients

PMF was calculated by summing interactions between the
corresponding bead pairs from each protein pair, according
to eqn (4)–(12). The PMF and B22 were calculated by the in-
house code, and B22 was determined by numerical
integration of the PMF over different protein–protein
orientations according to eqn (2). Protein–protein
orientations were sampled by the procedure described in our
previous work,54 except that due to higher computational cost
of PB calculations at short COM distances, PMF was
determined over less protein–protein configurations, i.e. by
starting from 83 starting radial positions. For each starting
configuration the PMF was calculated by translating proteins
over vector connecting COMs of two protein pairs, up to a
distance of R0 + 30 nm, where R0 is the initial distance.

Additionally, to enable a comprehensive comparison of
xDLVO-CGhybr with other models, we also calculated B22
values using our previously reported xDLVO-CG model,54

spherical xDLVO model16,41 and an all-atom FMAPB2
model.66 The FMAPB2 uses an all-atom protein
representation in combination with an implicit solvent model
and is publicly available on a web server (https://pipe.rcc.fsu.
edu/fmapb2/). For xDLVO calculations, the protein charge
was set to be equal to the charge obtained by PROPKA, and
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the protein radius was set to be equal to the experimentally
determined hydrodynamic radius from the literature.

4. Results and discussion

To validate our model, we performed calculations on six
diverse proteins: BPTI, RbnA, ChmT, ConcA, BSA, and IgG1.
These proteins vary in size and shape, ranging from small
and intermediate (BPTI, RbnA and ChmT with 58aa, 124aa
and 395aa, respectively) to large (ConcA, BSA and IgG1 with
474aa, 583aa and 1287aa, respectively) proteins. Moreover,
they represent either simple spherical or ellipsoidal to more
irregular shapes. The structure and shape of the six proteins
studied are shown in Fig. 2, along with their corresponding
electrostatic maps. From the visualisation of the electrostatic
maps one can notice that the proteins selected possess

various degrees of positive (in blue) and negative (in red)
charge localization. Some proteins in the pH given show less
charge anisotropy (e.g. RbnA, Fig. 2b), while in most cases
proteins possess larger differences in the surface changes.

Given the diverse characteristics of these six proteins in
terms of their size and shape, as well as the availability of
experimentally measured data for their second osmotic
virial coefficients, we regard this dataset as a suitable basis
for validating the accuracy and applicability of the xDLVO-
CGhybr model. We compared the calculated results to the
experimental B22 values reported in the literature. The
results section is organised as follows: first, we discuss the
impact of employing the hybrid Poisson–Boltzmann/Debye–
Hückel scheme and the criteria for switching between
models. Next, we present B22 calculations with the new
method developed and validate results in comparison with
experimental data and other models. In the end, we briefly
discuss the impact of including Lennard-Jones interactions
versus Hamaker dispersion potential on the accuracy of
calculations.

4.1. Poisson–Boltzmann and Debye–Hückel approaches in
xDLVO-CGhybr

In this study, we aimed to improve the accuracy of the
electrostatic part of the PMF reported in xDLVO-CG by using
a hybrid approach based on Poisson–Boltzmann and Debye–
Hückel theory. Specifically, we employed PB calculations on
all-atom structures at short COM distances, and Debye–
Hückel calculations on coarse-grained structures at larger
COM distances, as depicted in Fig. 1. To demonstrate criteria
used for the linking of two different methods, the
comparison of the electrostatic energy term of interactions
between two different proteins: BPTI and IgG1 using PB and
DH has been performed, as illustrated in Fig. 3. The results
are plotted as a function of the COM distance between the
two proteins and the vertical dashed orange line indicates
the point at which the electrostatic potential in the xDLVO-
CGhybr model switches from PB to DH.

The analysis of IgG1 and BPTI revealed that the largest
differences are observed at short COM distances, i.e. around
2 nm from the position of the proteins in their crystal
structure. Note that the COM between BPTI and IgG1 in the
crystal is 2.41 nm and 7 nm, respectively. The energies are
fairly similar at larger protein separations. This indicates
that DH theory cannot properly describe repulsion
interactions between proteins on shorter distances. At these
distances, repulsion energy obtained by using the Debye–
Hückel model is generally smaller than those obtained by
PB theory, i.e. by a factor of three to five or more. This
conclusion applies to all proteins studied (see Fig. S2†). A
smooth transition from PB to Debye–Hückel potential was
observed at intermediate COM distances that are on average
of R0 + 2 nm. For this reason, we implemented different
integration schemes that switch at this distance. The
Debye–Hückel equation is an analytical solution of the PB

Fig. 2 The visualisation of the structure and electrostatic maps of six
proteins studied in the present work: a) bovine trypsin inhibitor (BPTI)
at pH 4.9 (total charge of +6), b) ribonuclease A (RbnA) at pH 3 (total
charge of +16), c) chymotrypsinogen (ChmT) at pH 3 (total charge of
+17), d) concanavalin A (ConcA) at pH 4 (total charge of +25), e)
bovine serum albumin (BSA) at pH 7.4 (total charge of −16), and f)
human immunoglobulin type 1 (IgG1) at pH 6.5 (total charge of +27).
The protein surface is coloured according to the electrostatic potential
calculated by APBS, with blue, red and white colours indicating regions
of excess positive, negative and neutral charges respectively. The sizes
of the proteins in the illustrations are not to scale, but are depicted for
viewer convenience.
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equation for interaction between two homogeneously
charged spheres of equal radius. It gets more approximative,
while using it for other cases.

The larger deviation between these two models at short
separations is expected because specific (local) residue–
residue interactions can be better described by all-atom
protein representation and PB theory. At the protein–
protein interface, the effective dielectric constant can shift
from the solvent to the protein interior. As a result, these
residues effectively interact as if they belong to the same
protein within its low dielectric environment. This results
in a higher repulsive charge–charge interaction than if
they were placed in a solvent medium. As the protein–
protein separation increases, residues become more
solvated, thus beginning to feel the dielectric environment
of the solvent, reducing repulsion.68 The effects of
dielectric discontinuity become significant only at
separations less than Debye length.

The PB numerical methods determine the dielectric
constant by rolling a solvent sphere with its probe radius
over the protein surface, which distinguishes the solvent
region from the protein interior region, each having a
different dielectric constant. Therefore, the electrostatic
interactions between proteins depend greatly on their
unique shape and charge distribution. The energy of
polarisation, arising from the dielectric interface (as
described in the second term of eqn (7)), is affected
mostly by partial atomic charges located near the surface.
These factors, along with others, contribute significantly to
the interaction energy and are better described by PB
theory49 than by DH. We found that the new hybrid
approach in xDLVO-CGhybr provides fairly accurate
modelling of electrostatic effects, which should lead to
better agreement of second osmotic coefficients in
comparison to experiments in comparison to previously
reported methods.

4.2. Calculation of B22 coefficients for small sized proteins

Bovine pancreatic trypsin inhibitor. BPTI is a small
ellipsoid-shaped protein that consists of 58 residues and has
a molecular mass of 6.5 kDa. It binds with high affinity to
trypsin and other digestive proteases, inhibiting their
enzymatic activity.69 Trypsin inhibitors naturally found in
various plants, including soybeans, legumes, and grains,
where it acts as a self-defence mechanism.69

Fig. 4b presents the calculated B22 coefficients for BPTI at
pH 4.9 using xDLVO-CGhybr, in comparison to xDLVO-CG,
FMAPB2, and xDLVO models. The calculated values at low
and medium salt concentrations decrease faster towards
negative values of B22 (i.e. stronger attractive interactions)
with increasing ionic strength using xDLVO and xDLVO-CG
methods. Theoretically determined B22 data points, derived
using the xDLVO-CGhybr model, cross zero at approximately
0.42 M, following a similar trend to the experimental data.
Calculated values of B22 coefficients show nearly quantitative
agreement with experimental results of Farnum et al., who
performed static light experiments to measure the
experimental B22 values.70 To the best of our knowledge, no
other experimental B22 measurements were performed on
BPTI protein. In comparison, the B22 values obtained using
xDLVO-CG are shifted more to the negative values. The zero-
crossing point is located at a lower ionic strength of 0.36 M
NaCl. B22 values calculated with FMAPB2 correlate with
xDLVO-CGhybr results and match with experimental data at
most of the points except at the lowest ionic strength of 0.3
M. At this ionic strength, the FMAPB2 model results in a B22
value of −2.05 × 10−5 mol ml g−2, while the experimentally
determined value is 3.32 × 10−4 mol ml g−2. xDLVO-CGhybr
gives a value of 3.32 × 10−4 mol ml g−2. Differences between
calculations made with these two different methods differ
more at lower ionic strengths. Given the lack of available
experimental measurements, it is hard to judge which model

Fig. 3 Comparison of calculated energy of electrostatic interactions at 10 mM NaCl between a) two BPTI and b) two IgG1 proteins by solving
Poisson–Boltzmann equations (applied to the full all-atom structure of proteins) and by using Debye–Hückel theory (applied to the coarse-grained
model of proteins). The vertical dashed orange line indicates the COM distance (at R0 + 2 nm), where electrostatic potential in xDLVO-CGhybr is
switched from Poisson–Boltzman to Debye–Hückel model.
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performs better at low salt conditions. In general, both
xDLVO-CGhybr and FMAPB2 follow experimentally obtained
trends better than other methods.

The xDLVO model overestimates the B22 values and is out
of range of experimental values except at the first point. From
Fig. 2a, we see that at pH 4.9, the protein has a relatively high
charge as for its small size (+6 according to the PROPKA
method). Fig. S1a† shows that BPTI has mostly positive local
charge distribution which contributes to high electrostatic
repulsion, necessitating an intermediate salt concentration to
screen electrostatic interactions and shift protein–protein
interactions from repulsive to attractive ones. This may be
the reason for the poorer description of electrostatic PPIs in
xDLVO. It should be mentioned that other researchers, such

as Mereghetti et al., have employed also Brownian dynamics
simulations to calculate the second osmotic virial coefficients
of BPTI solutions.34 There, they have used an all-atom protein
representation, aiming to compute B22 and diffusion
coefficients, however they could only achieve a semi-
quantitative agreement with experimental data.

Contribution of potentials in the PMF. Understanding the
trends observed in the changes of the second osmotic virial
coefficients requires a detailed examination of the potential
of mean force. Fig. 5a highlights how PMF varies with the
addition of salt. At low salt concentrations, the PMF shows
strong repulsion between the proteins due to electrostatic
interactions. Increasing the salt concentration leads to a
screening effect that reduces the strength of the repulsive

Fig. 4 Visualisation of BPTI (a) and RbnA (c) proteins using the coarse-grained model implemented in xDLVO-CGhybr. The new cartoon
representation of all-atom proteins is given for clarity. Calculated B22 coefficients for BPTI at pH 4.9 (b) and RbnA at pH 3 and pH 4 (upper and
lower panel) (d) as a function of NaCl concentration. B22 values are compared with the values obtained with xDLVO-CG (dashed red), FMAPB2
(dashed orange) and xDLVO (green dots) models and experimental results (red circles).
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interactions. Further increase of ionic strength results in
more pronounced dispersion interactions between the
proteins. This shift in dominant PPI interactions, i.e. from
electrostatic to dispersion forces, is due to the charge
screening effect that reduces the influence of electrostatic
forces, making dispersion forces more important in
determining the behaviour of the proteins at higher ionic
strengths. In Fig. 5b, the PMF of BPTI at a salt concentration
of 1 M NaCl obtained using xDLVO-CGhybr and xDLVO-CG
models is illustrated. PB theory indicates repulsive
interactions even at 1 M NaCl, however, the respective peak
only exists at the first five distances, i.e. up to COM of 2.91
nm. Potential in xDLVO-CG shows higher attractive
contributions, which explains lower B22 values in Fig. 4b. By
examining the PMF carefully, we can gain a better
understanding of the underlying PPIs of the system and the
factors that contribute to changes in the B22 values.

Bovine pancreatic ribonuclease. Ribonuclease A, RbnA, is
a digestive enzyme found in the pancreas that plays a
critical role in the digestion of single-stranded RNAs in
food.71 This small protein is composed of 124 amino acid
residues and has a triangular shape (see Fig. 4b) and a
molecular mass of 13.7 kDa. Its ease of purification and
small size make it a valuable tool in biochemical
research.71 Fig. 4d displays the calculated B22 coefficients
for RbnA at pH 3 and 4 and at ionic strengths ranging
from 50 mM to 1 M NaCl. Experimentally determined B22
values at pH 3 are positive in most cases, indicating
repulsive PPIs until a concentration of approximately 0.95
M NaCl is used.72 The values of second osmotic virial
coefficients calculated using the xDLVO-CGhybr model
follow a similar trend of B22 decrease as a function of ionic
strength increase. Since electrostatic forces play a decisive
role in this case, the hybrid scheme of treating
electrostatics in xDLVO-CGhybr improves the calculated B22
values in comparison to xDLVO-CG. The calculated data
match the experimental data in a semi-quantitative manner,
with good agreement observed at 0.1 M and 1 M NaCl.

However, experimental data of the B22 decrease at pH 3 is
non-monotonous. This trend cannot be fully captured using
the coarse-grained protein model in xDLVO-CGhybr and
without considering dynamical changes on an all-atom
level.

As the ionic strength increases, the repulsion between
proteins is diminished due to electrostatic screening,
resulting in decrease of B22 coefficients. At the highest
salt concentration (1 M NaCl), the experimentally
determined B22 value is −2.70 × 10−6 mol ml g−2, while
the value calculated using the xDLVO-CGhybr model is
−2.72 × 10−6 mol ml g−2. This shows a good agreement of
data and indicates that the B22 coefficient is close to the
zero-crossing point. Such a small value of B22 is
insufficient to indicate sufficiently strong attractive PPIs,
thus aggregation should happen at higher ionic strengths.
The B22 values calculated at pH 4 using xDLVO-CGhybr
follow a similar trend, but they are slightly shifted
towards negative values, i.e. more prone aggregation, due
to a decrease in protein charge (+16 and +13 at pH 3 and
pH 4, respectively). Calculated values of B22 at pH 4 also
show repulsive interactions at almost all salt
concentrations considered. They agree nearly quantitatively
with experimental data, except at the first two points at
low ionic strength. From Fig. 4d, it is evident that
increasing the ionic strength up to 1 M NaCl is not
sufficient to shift PPIs in RbnA towards attraction since
B22 does not cross the zero-point. The reason behind the
repulsive interactions in this case is the high protein
charge of RbnA, despite its small size. The distribution of
positive charges throughout the protein is uniform (see
Fig. S1b†), without any significant charge anisotropy that
can reduce the electrostatic repulsion.

In comparison to the xDLVO-CGhybr, B22 values obtained
from the xDLVO-CG model are slightly higher at low salt
concentrations (below 0.3 M NaCl). They shift towards
negative values at higher salt concentrations, resulting in
larger discrepancies from experimental data. The FMAPB2

Fig. 5 Changes of the PMF of BPTI at pH 4.9 with increasing NaCl concentration using xDLVO-CGhybr (a). Comparison of the PMF at 1 M NaCl
obtained by xDLVO-CGhybr and xDLVO-CG models (b).
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model exhibits a similar trend to xDLVO-CG calculations
until around 0.2 M NaCl, but at higher ionic strengths,
FMAPB2 fails to reproduce experimental trends of B22 of
RbnA. The data indicate strong attractive interactions and
fast decrease of B22, which is not observed in experiment. B22
calculated with the xDLVO model fall outside the range of
experimental values and the values calculated with xDLVO-
CG and xDLVO-CGhybr. The positive shift throughout the
entire salt concentration range is visible (see Fig. 4d), except
at the highest ionic strength where it matches experimental
data. This demonstrates once again that the proper
representation of the protein shape is important for the B22
calculation. Since RbnA is far away from the spheric form
(see Fig. 2b), standard DLVO methods cannot result in good
agreements with experiments.

4.3. Calculation of B22 coefficients for medium-sized proteins

Chymotrypsinogen A. ChmT is a medium-sized protein
with a globular shape, consisting of 245 residues (Fig. 6a). It
serves as an inactive precursor of chymotrypsin, an enzyme
that hydrolyzes peptide bonds between aromatic residues
such as tyrosine, phenylalanine, and tryptophan.73 In the
present study, we calculated B22 values for ChmT at pH 3 and
up to 1 M NaCl salt concentration (Fig. 6b). The values
calculated by xDLVO-CGhybr values match nearly
quantitatively with static light scattering measurements
conducted by Velev et al.24 and self-interaction
chromatography measurements performed by Tessier et al.74

Furthermore, a semi-quantitative agreement is observed with
scattered light intensity measurements reported by Bajaj

Fig. 6 Visualisation of ChmT (a) and ConcA (c) proteins using the coarse-grained model implemented in xDLVO-CGhybr. The new cartoon
representation of all-atom proteins is given for clarity. Calculated B22 coefficients by using xDLVO-CGhybr model and experimental results for
ChmT at pH 3 (b). Data calculated by xDLVO-CG, FMAPB2 and xDLVO are marked by dashed red, dashed orange and green dots, respectively. B22

coefficients for ConcA at pH 4 and pH 5 (d) in comparison with reported experimental data.
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et al.75 and membrane osmometry measurements conducted
by Pjura et al.76 However, data calculated by the xDLVO-CG
model are slightly negatively shifted compared to the data
obtained by our new model. FMAPB2 calculations give data
which are shifted towards negative values even more,
especially at higher ionic strengths, indicating higher
contribution of attractive PPIs. Values calculated by the
xDLVO model are slightly positively shifted at low salt
concentrations and towards negative at high salt
concentrations. To the best of our knowledge, no
experimental data were reported for concentrations higher
than 0.4 M NaCl, making it difficult to compare the
performance of these models at higher ionic strengths.
Despite the variations in experimental B22 values, the B22
values calculated by xDLVO-CGhybr demonstrate a slightly
more repulsive behaviour at lower ionic strengths. This trend
aligns with the observations made in the Monte Carlo
calculations of ChmT conducted by Lund et al.36 and Neal
et al.11 In their studies, Lund et al. employed a residue-level
coarse-grained model, while Neal et al. utilised an all-atom
grained model to represent ChmT. Both studies reported
similar behaviour regarding the repulsion at lower ionic
strengths.

Concanavalin A. ConcA is a 50 kDa protein composed of
237 amino acid residues that exhibit a planar shape rich in
antiparallel beta sheets (see Fig. 6c). Occurring naturally in
jack-beans, ConcA is commonly used in biochemistry to
characterise sugar-containing molecules and to purify
glycosylated molecules in lectin-affinity chromatography.77

The protein exhibits a specific dimer-tetramer equilibrium
that depends on solution conditions.78,79 It exists as a
homodimer at pH lower than 7 and as a homotetramer at pH
higher than 7.78–80 In this study, we performed B22
calculations of ConcA at pH 4 and pH 5 and compared them
with experimental values reported by Quigley et al.,7 where
self-interaction chromatography was used to measure B22
values.

Since ConcA predominantly exists as a dimer at the acidic
pH range considered, calculations were performed between
pairs of dimers (depicted in Fig. 6c). The experimental B22
measurements revealed that ConcA exhibits attractive PPIs,
which cross the zero point at approximately 0.12 M NaCl.7

The B22 coefficients calculated by the FMAPB2 and xDLVO
models did not align with the experimental data and have
therefore been omitted from the graph presented in Fig. 6d
for simplicity (instead, see Fig. S3†). Our results show that
both xDLVO-CGhybr and xDLVO-CG models can reproduce
the general trends of experimental data and, more
importantly, properly account repulsion interactions between
dimers of ConcA in low ionic strengths, allowing to properly
estimate its solubility and conditions, where aggregation
happens. Overall, attractive interactions between proteins in
solution are also well accounted for, however only till ca. 0.25
M NaCl. At higher salt concentrations, the agreement
between theoretically and experimentally determined values
is less quantitative than we have observed for other proteins.

At pH 4, the xDLVO-CG values are more positive than
values reported in experiment, i.e. contribution of repulsion
electrostatics is stronger than in other cases. The
implementation of the new algorithm, where the electrostatic
interactions are calculated on the smaller distances between
proteins using PB, has significantly improved the quality of
the B22 values, i.e. xDLVO-CGhybr model outperforms xDLVO-
CG in this case. However, at pH 5, the xDLVO-CG model
provides a nearly quantitative match with the experimentally
measured data, therefore the performance of both methods
shows the dependence on the pH used, which directly
impacts the electrostatic potential on the protein surface.
Nonetheless, since the xDLVO-CG model performs well only
at one pH value, the strong agreement at pH 5 is more likely
to be a coincidence than a systematic indication of its
predictive capability. Therefore, we assume that limitations
of the xDLVO-CGhybr model for the ConcA protein could be
attributed to several factors. Firstly, the uncertainty in the
correspondence between the protein charges assigned by the
PROPKA method and the actual physical charges. Secondly,
the ability of the protein to specifically absorb certain ions,
which can alter its effective charge, is not accounted for in
this model. Third, the ConcA protein and its dimer possess
some degree of conformational flexibility80–82 as a function of
pH, which cannot be accounted for in our model which
considers proteins like rigid bodies.

4.4. B22 calculations for large proteins

Bovine serum albumin. BSA is known for its remarkable
ability to bind ligands such as drugs, nutrients, and metals.83

With a mass of 65 kDa and an irregular shape (see Fig. 2e),
BSA is composed of 583 amino acid residues. Its coarse-
grained structure is modelled in the present study with 20
beads (see Fig. 7a). We performed calculations under
conditions of pH 7.4 and NaCl concentration up to 1 M, and
compared the results obtained with previously reported
experimental values.23,26,84

As shown in Fig. 7b, calculations with xDLVO-CGhybr
model yield significantly improved results compared to
previous calculations using the xDLVO-CG model.54

Calculated B22 values match the experimental values of Ma
et al.26 much better and keep the repulsive character of PPIs
up to 1 M NaCl, following experimental trends. While at
higher salt concentrations, the data calculated with xDLVO-
CGhybr closely resembles the FMAPB2 data (based on all-
atom structure of proteins), at lower ionic strengths, xDLVO-
CGhybr exhibits significantly lower deviations from the
experimentally measured values, indicating its better
performance. In contrast, at NaCl salt concentration above
0.1 M, the spherical xDLVO model fails to properly reproduce
B22 coefficients. The calculated values are decreasing abruptly
towards the negative range, incorrectly predicting strong
aggregation of BSA at these conditions. This highlights the
limitations of simple spherical models like (x)DLVO in
predicting the behaviour of complex proteins like BSA.
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Therefore, such models rely heavily on fitted parameters to
achieve quantitative agreement with experimental data. On
the contrary, with hybrid treatment of the electrostatic
interactions between proteins in the developed xDLVO-
CGhydr model, the behaviour of BSA, in solutions under both
low and high ionic strength conditions, are accurately
predicted. This finding underscores the importance of
developing more advanced models that incorporate the
structural and dynamic complexities of proteins to better
understand their behaviour in various environments.

Human immunoglobulin type one. IgG1 belongs to the
subclass of monoclonal antibodies that play a critical role in
the immune system's defence by recognizing and binding to
specific antigens. These molecules have significant
biotechnological and pharmaceutical importance, and many

are used in clinical therapies.85 It is therefore crucial to
develop formulations that remain stable in solution and do
not undergo aggregation over time. IgG1 has a molecular
mass of 13.9 kDa and a characteristic T-shaped structure (see
Fig. 7c). It is composed of 644 residues and is modelled here
with 40 CG beads. We performed calculations of IgG1 at pH
6.5 and compared them with experimental results reported in
the literature.5,86

The B22 data calculated by xDLVO-CGhybr model, along
with other models (refer to Fig. 7d), exhibit closer agreement
with the experimental values reported by Roberts et al.86

compared to the findings reported by Le Brun et al.5 In the
latter case, the higher B22 values indicate stronger repulsion
interactions between proteins. In comparison to the xDLVO-
CG model, yielding values that were closer to the

Fig. 7 Visualisation of BSA (a) and IgG1 (c) proteins using the coarse-grained model implemented in xDLVO-CGhybr. The new cartoon
representation of all-atom proteins is given for clarity. Calculated B22 coefficients for BSA at pH 7.4 (b) and IgG1 at pH 6.5 (d) as a function of NaCl
concentration. Due to the computational cost of PB, twenty salt concentrations were used for the calculation of IgG1 in xDLVO-CGhybr. B22 values
are compared with the values obtained with xDLVO-CG (dashed red), FMAPB2 (dashed orange) and xDLVO (green dots) models and experimental
results (circles and triangles).
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experimentally determined ones and similar to those
obtained using the all-atom FMAPB2 model,54 a clear
improvement in the calculation of the second osmotic virial
coefficients by the new model is visible (marked with the
black line in Fig. 7d). In contrast, the simplified xDLVO
model yielded data that are completely outside the
experimental range, further highlighting its limited predictive
power for large and irregular proteins.

IgG1 is the largest protein we have studied, and its
complex shape highlights the need for more rigorous
theoretical approaches to obtain more quantitative results.
Still, we observe that improvement of the accuracy of the
electrostatic interactions and the anisotropy of the protein
shape refine the theoretical calculation of the B22 coefficients.
Moreover, more experimental data points of B22 in diverse
conditions would increase the validation set for future
predictions. Several studies have been conducted using DLVO
or xDLVO to model second osmotic coefficients of
monoclonal antibodies in different solution conditions,27,33

as well as to study its PPIs at higher protein concentrations.87

These studies typically involved the use of various levels of
coarse graining, and the models were often based on direct
parametrization from experimental data.

4.5. Modelling dispersion interactions: comparing Hamaker
and Lennard-Jones potentials

The interaction between two molecules, as proposed by the
Lifshitz theory of van der Waals forces, is rooted in the dipole
field created by quantum fluctuations.44,88 This results in
mutual polarisation between molecules and with the solvent,
giving rise to net attractive dispersion interactions.44,45,56 The
McLachlan formulation, which involves excess polarizability
and dielectric permittivities at imaginary frequencies, can be
used to calculate these interactions. However, modelling
dispersion interactions is challenging, and the widely used
Hamaker potential, which involves integrating the attractive
part of Lennard-Jones potential between two homogeneous
spheres, offers a simplified approach.57 Nevertheless,
determining the Hamaker constant according to Lifshitz–
McLachlan theory is practically limited due to the
requirement to know optical properties such as refractive
indices and dielectric functions of proteins and solvent
media.89 As a result, other approaches are typically used in
practice, such as fitting the Hamaker constant from
experiments or using Lennard-Jones potential. Using
Lennard-Jones parameters from all-atom force fields can
result in interactions that are overly attractive, leading to
overestimated assembly, i.e. negative B22 values. Empirical
factors ranging from 0.1 to 0.3, which depend on the protein
system being studied, are often used to scale these
interactions.11,32,66,67 Some researchers have attempted a
hybrid approach, using LJ potential at short distances and
Hamaker potential at larger distances, while scaling the LJ
potential with an empirical factor to enable a smooth
transition between potentials.67

In the present study, we have utilised LJ potentials to
calculate dispersion interactions between proteins. They
were scaled to match the depth of interaction of Hamaker
potential with AH obtained from literature (see Table S1†).
To show the difference in the B22 calculation using LJ
and Hamaker dispersion potentials, in Fig. 8 we
demonstrate results for BPTI and IgG1 proteins using
both approaches. We have observed that both LJ and
Hamaker potential give similar B22 values, and correlate
well with experimental data. While Hamaker potential is
more convenient to use since it does not require
additional parametrization, Lennard-Jones potential can
better model anisotropy of dispersion interactions caused
by protein orientations. Therefore, it may be preferable to
use LJ potential in cases where more accurate and
quantitative modelling is required.

It is important to note that current B22 models rely on the
depth of dispersion interactions either through Hamaker
constant or LJ scaling factor, thus, require further
advancements in the field, particularly in simplifying the
determination of dispersion interactions and Hamaker
constants using Lifshitz–McLachlan theory for any protein
system. These developments would greatly benefit predictive
screening of solution conditions for desired protein phase
behaviour. Finally, our results suggest that accurately
evaluating electrostatic interactions is more crucial for
improving the overall predictive power of the model, while
the choice between Hamaker or Lennard-Jones potentials has
less impact.

Conclusions

In conclusion, we have developed the xDLVO-CGhybr
model to accurately calculate the second osmotic virial
coefficients of proteins at different pH as a function of
the monovalent salt concentration. The new model
represents a significant improvement over our previously
reported xDLVO-CG model. By using a hybrid approach
that combines Poisson–Boltzmann and Debye–Hückel
theories, xDLVO-CGhybr more properly calculates the
electrostatic contribution to the total interaction potential
between proteins of arbitrary size and shape. Additionally,
we have introduced a carefully parameterized coarse-
grained Lennard-Jones potential in the PMF that enables
accurate predictions of dispersion-based PPIs matched to
the reference all-atom potentials.

To validate the accuracy of the model, we conducted
extensive tests on six different proteins, ranging from
small molecules like BPTI to large and complex proteins
such as IgG1. Our results showed that the xDLVO-CGhybr
model outperformed other theoretical models, such as
xDLVO and FMAPB2, giving improved predictions of the
B22 values. It enables the assessment of protein stability,
solubility, and precise solubility calculations at different
concentrations, pH values, and ionic strengths. These
results demonstrate the potential of the xDLVO-CGhybr
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model as a reliable tool for studying protein interactions
and the behaviour of proteins in solution, particularly in
the context of pharmaceutical and biotechnological
applications. Moreover, the results obtained underscore
the crucial role of accurate modelling of electrostatic
interactions in determining overall PPIs in solution and
the calculation of the B22 coefficients.

However, the xDLVO-CGhybr model does have certain
limitations. It assumes rigid protein structures based on
the available PDB database structures, while proteins in
solution can undergo conformational changes that affect
their interactions with other molecules. Additionally, the
model's accuracy is influenced by the available protonation
schemes, which may not fully capture the pH dependence
of protein–protein interactions. Addressing these limitations
and exploring alternative models that incorporate flexible
structures and improved protonation schemes could
enhance the accuracy and versatility of the model.
Therefore, future developments may focus on advancing the
xDLVO-CGhybr model by implementing advanced
orientational sampling techniques that could efficiently
explore relevant relative protein orientations, further
improving predictions. Additionally, the integration of
machine learning algorithms could enhance the speed and
accuracy of the computation of interaction potential,
expanding the model's scope and enabling more efficient
exploration of parameter space.
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