
MSDE

PAPER

Cite this: Mol. Syst. Des. Eng., 2023,

8, 300

Received 18th July 2022,
Accepted 1st November 2022

DOI: 10.1039/d2me00149g

rsc.li/molecular-engineering

Leveraging genetic algorithms to maximise the
predictive capabilities of the SOAP descriptor†

Trent Barnard, a Steven Tseng, a James P. Darby, b Albert P. Bartók, c

Anders Broo d and Gabriele C. Sosso *a

The smooth overlap of atomic positions (SOAP) descriptor represents an increasingly common approach

to encode local atomic environments in a form readily digestible to machine learning algorithms. The

SOAP descriptor is obtained by using a local expansion of a Gaussian smeared atomic density with

orthonormal functions based on spherical harmonics and radial basis functions. To construct this

representation, one has to choose a number of parameters. Whilst the knowledge of the dataset of interest

can and should guide this choice, more often than not some optimisation method is required to pinpoint

the most effective combinations of SOAP parameters in terms of both accuracy and computational cost. In

this work, we present SOAP_GAS, a simple, freely available computational tool that leverages genetic

algorithms to optimise the relevant parameters for any given SOAP descriptor. To explore the capabilities

of the algorithm, we have applied SOAP_GAS to a prototypical molecular dataset of relevance for drug

design. In this process, we have realised that a diverse portfolio of different combinations of SOAP

parameters can result in equally substantial improvements in terms of the accuracy of the SOAP-based

model. This is especially true when dealing with the concurrent optimisation of the SOAP parameters for

multiple SOAP descriptors, which we found often leads to further accuracy gains. Overall, we show that

SOAP_GAS offers an often superior alternative to e.g. randomised grid search approaches to enhance the

predictive capabilities of SOAP descriptors in a largely automatised fashion.

I. Introduction

The last few years have seen a rapidly growing interest in the
application of machine learning (ML) techniques to

understand, predict and determine the functional properties
of a diverse array of molecules and materials.1–6 Properties
ranging from the thermal conductivity of alloys7–11 to the
solubility of pharmaceutical drugs12–18 have all been
predicted with various levels of success using modern ML
techniques. A large contributing factor to the meteoric rise of
ML in the last two decades is the large amount of data that is
becoming more easily accessible.19 There are a multitude of
open access databases that anyone can use to train their own
ML algorithms.20,21 This new insurgence of data, however,
does not come without its own set of challenges. In the field
of computational chemistry, a particularly arduous aspect of
ML is determining how to translate structural or dynamical
information about a system into a numerical array of

300 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

a Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

E-mail: G.Sosso@warwick.ac.uk
bDepartment of Engineering, University of Cambridge, Trumpington St.,

Cambridge, CB2 1PZ, UK
cDepartment of Physics and Warwick Centre for Predictive Modelling, School of

Engineering, University of Warwick, Coventry CV4 7AL, UK
dData Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca

Gothenburg, Pepparedsleden 1, Mölndal SE-431 83, Sweden

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d2me00149g

Design, System, Application

The development of machine learning approaches for molecular design has now reached a stage where our ability to translate the molecular structure into
one or more descriptors (or features, or fingerprints) is actually more important than the choice of the machine learning algorithm itself. The smooth
overlap of atomic positions (SOAP) descriptor constitutes an increasingly popular approach to represent the local atomic environments of both molecules
and solids. However, the (necessary) optimisation of the parameters intrinsic to this descriptor has traditionally been approached via either trial-and-error or
via systematic, intrinsically inefficient approaches such as randomised grid searches. Here, we present SOAP_GAS, a computational framework that leverages
genetic algorithms to optimise any given SOAP descriptor in a reliable and efficient way, surpassing the performance of grid search-based methods and
providing a freely available tool for the community to improve on the performance of machine learning for applications such as drug design and discovery.
To demonstrate the capabilities of SOAP_GAS, we apply it to the prototypical problem of predicting the solubility of a dataset of small drug-like molecules,
thus showcasing the potential of this approach to boost the usefulness of machine learning methods in the context of machine learning for drug discovery.

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online
View Journal | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d2me00149g&domain=pdf&date_stamp=2023-03-02
http://orcid.org/0000-0001-7910-6710
http://orcid.org/0000-0002-4757-5042
http://orcid.org/0000-0002-3365-599X
http://orcid.org/0000-0002-4347-8819
http://orcid.org/0000-0001-6121-7818
http://orcid.org/0000-0002-6156-7399
https://doi.org/10.1039/d2me00149g
https://doi.org/10.1039/d2me00149g
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME008003

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 301This journal is © The Royal Society of Chemistry and IChemE 2023

descriptors (or features, or fingerprints) that can be fed into
a ML algorithm. The resulting mathematical object needs to
be complex enough to encapsulate all relevant information
about the molecular structure. In order to avoid overfitting,
the model should be of low dimensionality or it should not
have any rapidly varying features. Alternatively, the model
may be regularised, thereby preventing sharp features
gaining dominance.

As shown in previous work,22–25 the choice of descriptor
has a large impact on the quality of predictions. There is a
huge selection of descriptors available to use, and if some
thought is not employed to understand which ones are
appropriate, it may lead to poor results. A regularly used
strategy is to utilise as many descriptors as possible to make
predictions, however this is fallacious as it increases the
likelihood of overfitting.22

One descriptor that has been proven to be sufficient in
offering an accurate representation of any given molecular
structure is the smooth overlap of atomic positions (SOAP)
descriptor.26 Even though its most commonly used form only
encodes up to three-body correlations,27 the SOAP descriptor
has been gaining popularity given its impressive performance
across a plethora of widely different classes of materials and
problems ranging from hydrogen absorption of nano-
clusters28 to the development of bespoke interatomic
potentials.29,30 The premise of the SOAP descriptor is that it
offers a convenient method to describe atomic environments
that is invariant to any form of rotation, translation,
reflection or permutation of equivalent atomic species.

The SOAP descriptor formalism26 is based on representing
atomic environments by a scalar field centred on atom a,
composed of Gaussian functions

ρa rð Þ ¼
X
j

exp − r − rj
�� ��2
2σ2

 !
sj
�� � f cut rj

� �
(1)

where the sum is performed over the neighbours j of atom
a that are situated within a spatial cutoff. sj denotes the
atom species of atom j, forming species-dependent basis
functions |sj〉, which allow distinction of different species
within the atomic environment.31 The cutoff function fcut
ensures that neighbouring atoms enter and leave the atomic
environment in a smooth fashion. Summing the Gaussian
functions representing the neighbouring atoms ensures
permutational invariance to the atomic indices within the
same species. The atomic density ρ is expanded in a basis
formed of spherical harmonic Ylm, and orthogonal radial
basis functions gn(r)

ρa rð Þ ¼
X
s∈S

sj i
X
n;l;m

cas;n;l;m·gn rð Þ·Yl;m r̂ð Þ (2)

where the first sum is performed over the set of
neighbouring species Sn. Invariant features can be formed
from the basis set coefficients by calculating the power
spectrum

pas;s′;n;n′;l ¼
X
m

cas;n;l;m
� �

× cas′;n′;l;m

which can be shown to be invariant to rotations and

reflections of the environment with respect to its central
atom. Defined as such, each atomic environment is
described by a single power spectrum. In addition, the
formalism can be extended to describe molecules or
condensed matter structures by averaging the representing
density field across the constituent atoms. The basis set
coefficients belonging to the same central atom species 
are accumulated as:

cs;n;l;m ¼
X
sa∈

cas′;n′;l;m (3)

which can be used to form a set of power spectrum
components p for each distinct atom species within the
structure. In order to reduce the complexity of the
descriptors, it is also possible to sum all individual
coefficients regardless of the central atom species
information, although this leads to a loss of information.

SOAPs are not the only way to generate rotationally
invariant molecular descriptors,32,33 however, some other
rotationally invariant descriptors may be unsuitable to
represent a heterogeneous dataset for ML purposes. For
example, it is very challenging to perform ML with varying
descriptor lengths without information being lost. When
using SOAPs for ML it is possible to ensure the generated
descriptor length does not scale with the number of atoms in
the system leading to a uniform length descriptor vector for
every element in the dataset. This is not the case for some
other structural descriptors whereby they scale in length with
the number of atoms in the molecule.22,34 The main
drawback of SOAP descriptors is the potentially large
computational cost, as the length  of their power spectrum

can be written as  ¼ 1
2
nmaxSn nmaxSn þ 1ð Þ lmax þ 1ð Þ, where

Sn is the number of neighbour species, nmax is the number of
radial basis functions and lmax is the number of angular basis
functions. In fitting ML models based on SOAP descriptors it
is common to incur another factor proportional to Sn if a
different model is defined for each centre species. This can
lead, depending on the number of species used as centres
and neighbors, to extremely large descriptor vectors which
can be a challenge to compute due to the large amounts of
computer memory required. As we show in sec. II however, it
is possible to compress these vectors with a relatively small
decrease in predictive performance.

SOAPs work by using a series of orthonormal radial and
angular basis functions to expand the local neighbourhood
density around each atom. An individual expansion is used
for each species of atom in the neighbourhood. In this paper
we attempt to maximise the predictive capabilities of SOAPs
by optimising the following parameters that are stipulated
when generating SOAPs:

– nmax – the number of radial basis functions gn.

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

302 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

– lmax – the maximum degree of the spherical harmonics Ylm.
– cutoff – the cutoff distance for the basis function (Å).
– atom_sigma – the Gaussian smearing width of atom

density σ (Å).
– centres – the atomic species used as centres for the basis

functions.
– neighbours – the atomic species used as neighbours for

the basis function.
The optimisation of these parameters is no easy feat,

particularly when dealing with heterogeneous datasets. It is
not obvious which sets of parameters will work when working
with datasets that contain diverse molecular structures or
models characterised by a variety of atomic species or
environments. Initially, it may seem intuitive to simply use
trial-and-error or even an exhaustive grid search strategy to
optimise these parameters, however due to the large
computational costs of generating SOAP descriptors, these
methods are rather inefficient. A number of approaches have
been proposed in the last few years to optimise the
performance of the SOAP descriptor,35–38 including Bayesian
optimisation,30 grid search,39,40 gradient descent41 and
particle swarm optimizers.42

In this work, we have leveraged genetic algorithms (GAs)43,44

in order to optimise the above mentioned SOAP parameters for
one or multiple SOAP descriptors – given a certain choice of
centres and neighbours. At its core, a GA is a straightforward
optimisation method where a set of different SOAP parameters
is evaluated using a metric of choice. The best performing
parameters are then combined by taking values randomly from
pairs of parameters to create a new population. This is repeated
for multiple generations until a sufficient level of
accuracy is reached. The resulting framework, which we
have named SOAP_GAS, is freely available on GitHub at
https://github.com/gcsosso/SOAP_GAS.git.

SOAP_GAS allows to consistently and efficiently improve
the accuracy of any given SOAP descriptor in a largely
automatic fashion. It can be applied to heterogeneous
datasets containing different molecular species in different
forms (i.e. as isolated molecules as well as crystalline
structures) thanks to the recent advances in terms of
averaging described in ref. 45. It can also deal with large
datasets, by leveraging the compression options recently
introduced in ref. 46, and can optimise the parameters of
multiple SOAP vectors at the same time.

Here, we have chosen to explore the capabilities of
SOAP_GAS by applying it to a prototypical dataset for drug
design and discovery, which includes ∼6000 small drug-like
molecules and the values of their solubility in water as the
target functional property. We stress that the aim of this work
is not to advance the state-of-the-art with respect to this
specific application of ML for drug design and discovery.
Instead, we have picked this rather popular ML application
so as to showcase the potential and general applicability of
SOAP_GAS to any given molecular dataset.

We have found that, at least in the case of this particular
“solubility” dataset, a number of significantly different

combinations of SOAP parameters can result in similarly
accurate models. Whilst some weak correlations exists
between the different SOAP parameters, it may be concluded
that pinpointing efficient combinations based on physical
intuition alone is not an efficient strategy. Instead, SOAP_GAS
offers a straightforward framework to identify these optimal
combinations of SOAP parameters. It represents a solid
alternative to the commonly used randomised grid search
approach, which can prove rather inefficient/sub-optimal
when dealing with the concurrent optimisation of the SOAP
parameters of multiple SOAP vectors – which we have found
to often result in more accurate descriptors when compared
to concatenation of individually optimised SOAP vectors.

The paper is organised as follows: we start by presenting
in sec. II the SOAP_GAS algorithm, its structure and its
capabilities. We then apply the framework to a dataset of
relevance for drug design and discovery. The results are
discussed in sec. III and include some reflections on the
accuracy of the algorithm, the correlations between the
resulting SOAP parameters, a comparison in terms of
accuracy and timing with respect to a randomised grid search
approach as well as the concurrent optimisation of multiple
SOAP descriptors.

II. Computational methods
A. Dataset utilized

We have chosen to apply the SOAP_GAS algorithm to a
dataset containing the SMILES strings47 of 6119 drug-like
molecules and their solubility. The solubility (S) i.e. the extent
to which a chemical substance can dissolve in a solvent and
form a homogeneous solution, is customarily represented
using the base 10 logarithm as log S, with S in moles per litre
units.48,49 Based on the information contained in ref. 50 and
51, we believe that the solubility values in question refer to
the thermodynamic solubility of these molecules. This
dataset was curated by merging several sub-datasets
containing solubility values characterised by an uncertainty
inferior to 0.4log S so as to maximise the reliability of the
experimental data (a notorious issue when dealing with
solubility measures) quality. This particular threshold in
terms of uncertainty corresponds to the standard deviation
relative to the sets of experimental measurements of S
obtained for the same compounds by different research
groups.47 Prior to use, we discarded 35 compounds that were
either inorganic (i.e. they contained no C atoms) or contained
counter-ions.

To generate three-dimensional molecular models from the
SMILES strings, we employed the make3D method from
Pybel, subsequently performing 50 steps of geometry
optimisation via the MMFF94 force field.52 We note that this
is not a sophisticated approach,53 particularly if compared to
methods such ensemble descriptors,54 where several different
conformations are generated, optimised and evaluated for
any given molecular structure. However, as previously stated,
this work does not seek to improve on the current

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

https://github.com/gcsosso/SOAP_GAS.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 303This journal is © The Royal Society of Chemistry and IChemE 2023

performance of ML methods in the context of predictive
models for solubility. Instead, we are aiming to illustrate the
potential of SOAP_GAS – and to that end, any realistic three-
dimensional rendition of the SMILES strings will serve to
illustrate the differences between optimised and non-
optimised SOAP descriptors.

As shown in Fig. 1, the dataset is characterised by a log S
range between −13.2 and 1.58, and a mean of −2.78. Overall,
the target values are distributed rather homogeneously, albeit
one can notice a tail in the distribution corresponding to low
solubility values (i.e. log S < −6) which we expect to prove
difficult to deal with as they are under-represented within the
dataset.

Table 1 reports the frequency with which each atomic
species occurs within the dataset. Unsurprisingly, given the
nature of the dataset, C, N, O and H are the most numerous,
with a significant population of Cl and S as well. We have
chosen to consider only the atomic species that are present
in at least 50 different molecules within the dataset, when
constructing the SOAP vectors discussed in section III.

B. The SOAP_GAS algorithm

In this section we describe the SOAP_GAS algorithm (a
schematics is provided in Fig. 2). We start by constructing a
so-called initial population containing a certain number
(popSize) of individuals. Each individual corresponds to a
SOAP descriptor characterised by a fixed selection of atomic
species as centres and neighbours as well as a randomly selected
set of SOAP parameters (i.e., nmax, lmax, cutoff and atom_sigma,
see sec. I). The user has the freedom to specify lower and
upper boundaries (usually dictated by physical intuition and/
or computational cost) for each of the four SOAP parameters.

The choice of which atomic species are to be selected as
centres and neighbours for the SOAP descriptor is left to the
user. The average keyword within the SOAP descriptor (see
next section) implements the structure-wise SOAP descriptor

described in eqn (3), resulting in feature vectors of the same
dimensionality across heterogeneous datasets containing
different molecules or different number of molecules in a
given structure. A simple script included in the SOAP_GAS
package can be used to analyse a dataset of N molecular
structures and gain information about the frequency by
which a given atomic species is present within the dataset.

For each individual descriptor within the initial
population we compute a score (or “fitness”, as customary in
the GA literature), i.e. a metric that quantifies the accuracy of
the individual in predicting the functional property of
interest – in this case, the solubility of a given molecular
species. In particular, in our case we have chosen to combine
two popular metrics, the mean squared error (MSE) and the
Pearson correlation coefficient (PCC), for both the training
and test sets, as follows:

Score = 2·MSEtr·(1 − PCCtr) + MSEte·(1 − PCCte), (4)

where MSEtr and MSEte are the mean squared error of the
training and test sets respectively, and PCCtr and PCCte are the
Pearson correlation coefficients of the two sets. This unusual
score metric was used to balance the contributions of training
and test sets for our relatively small dataset. We decided to
include the PCC as opposed to just using MSE to fit the tail of
the distribution where there is less data, but this score metric
can be straightforwardly modified if necessary. We remark that
the lower the score, the better the performance.

To obtain this score, we have employed a straightforward
random forest (RF) model. RF is an ensemble learning
technique that averages the predictions from a collection of
decision trees and may be utilized for both classification and
regression.55 Each decision tree is built on N data points that
are bootstrapped, i.e., sampled with replacement, from the
N-sized training data, with the results collected and averaged
to obtain a single prediction, a procedure called bootstrap
aggregation or “bagging”. The split at each node is selected
only from a subset of the features, with the feature that
minimizes the error being selected. This framework
randomises the ensemble of decision trees, creating a set of
independent predictions from weak learners that may not be
as good individually but once aggregated and averaged,
produces a better result. Furthermore, as bootstrapping
creates multiple datasets that are distinct from the original
to construct each decision tree, RFs are effective for modeling
small datasets.56,57 In terms of the training/test split, we have
used 33% of the dataset as the test set.

Fig. 1 Probability density function (PDF) of the solubility values (as log
S) across the dataset.

Table 1 Frequency with which each atomic species appears in the dataset.
The overall occurrences are reported in bold text, whilst the number of
molecules containing a given atomic species are reported in parenthesis

H 80 119 (6068) Cl 3319 (1270) P 269 (246) K 8 (5) As 3 (3)
C 65 389 (6119) S 1383 (990) I 114 (78) Sn 5 (5) Ge 2 (1)
O 14 738 (4894) F 699 (321) Si 35 (16) Hg 5 (5) Ba 2 (2)
N 7302 (3289) Br 373 (224) Se 9 (6) Zn 4 (4) Ca 1 (1)
Mn 1 (1) Cu 1 (1) Sr 1 (1) Ag 1 (1)

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

304 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

Once we have a score for each of the popSize individuals,
we select a certain number (bestSample) of them according
to their scores, plus a usually small number (luckyFew) of
individuals regardless of their score. These selected
individuals constitute the so-called “parents” of the next
generation of SOAP parameters. At this point, we move onto
the “breeding” procedure, where we randomly split the (even
number of) parents into (bestSample + luckyFew)/2 pairs.
Each pair of parents produces a “child”, i.e. a new SOAP
descriptor characterised by a new set of SOAP parameters –

randomly picked with a 50% chance from either of the
parents. We then proceed to apply “mutations”: each SOAP
parameter within each child has a certain probability
(mutationChance) to be changed into a randomly picked
value (within the boundaries specified for that SOAP
parameter). Note that the resulting population size, popSize =
[(bestSample + luckyFew)/2) × numberChildren)] is identical
to the size of the initial population.

Once we have obtained the new generation, we repeat
the process until we reach the desired level of accuracy. The
idea at the heart of SOAP_GAS and GA algorithms in
general is that they allow to progressively explore the search
space in an efficient, targeted fashion, while introducing
mutations and other degrees of freedom (such as the
number of luckyFew) to avoid getting stuck in local minima
of the parameter space. SOAP_GAS also features an early-
stopping criterion: if the current generation is within a
certain threshold (in terms of score, earlyStop), of a specific
number (earlyNum) of any previous generations, the
algorithm is considered to be converged.

It is worth mentioning that we have chosen not to
introduce an elitism operator explicitly when generating new
populations of parameters. In the context of GAs, elitism
operators are used to select the best individuals for the next
generation without applying any mutation. This implies that,
once a particularly well-performing individual is found, it
persists throughout the algorithm/generations until an even
better-performing one comes along.

Whilst adopting an elitism operator is a perfectly valid
strategy (albeit by no means a mandatory one), we have

chosen not to because (a.) the SOAP_GAS algorithm selects
the best performing individual that appears in any
generation. Hence, there is no real need to keep the same
individual in the population from generation to
generation. In fact, it might be detrimental to do so, as a
lesser extent of the feature space will be explored; (b.) an
elitism operator can be constructed via suitable
combinations of the input parameters. For instance, a
large number of luckyFew individuals and a low number
of bestSample as well as a low mutationChance would
achieve a result almost identical to that of applying an actual
elitism operator.

Note that, depending on the size of the dataset, the
choice of centres and neighbours as well as the choice of
nmax, lmax and cutoff, the dimensionality of the SOAP
vector can grow to the point of causing issues in terms of
memory requirements. Aside from the compression
strategy discussed in the next sections, in order to free
memory the SOAP_GAS algorithm writes to disk the
information about each individual in a bespoke class that
contains the SOAP vectors, the target values of the whole
database as well as the score and each of the train/test
splits used for the cross validation relative to that particular
score.

It is worth noting, however, that grid search approaches
can trivially and effectively leverage parallel computing in
that each grid point can be evaluated independently from the
others. Conversely, SOAP_GAS is by its very nature a
sequential algorithm, as the construction of given i-th
generation of individuals depends on the accuracy of the
individuals within the (i − 1)-th generation. However, we can
still take advantage of parallel computing for the evaluation
of different individuals within a given generation. To this
end, we have adopted the concurrent.futures Python module,
which provides a simple platform to allocate different
instances of the same task (in our case the evaluation of the
different individuals using the very same RF model) to the
available computing cores. A scaling test, demonstrating the
quasi-linear scaling of SOAP_GAS with the number of CPU
cores, can be found in the ESI.†

Fig. 2 Schematics of the genetic algorithm framework implemented in the SOAP_GAS code.

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 305This journal is © The Royal Society of Chemistry and IChemE 2023

III. Results
A. Optimising individual SOAPs

As a first test of the SOAP_GAS framework, we have applied it
to a number of different SOAP vectors characterised by
different combinations of atomic species as centres and
neighbours. In particular, we have built an “all–all” SOAP
where the ten most abundant species (see Table 1) have been
used as both centres and neighbours. We have also built ten
different SOAP vectors where each of the ten most abundant
species has been used as centre whilst all of the ten have
been used as neighbours. Finally, we have also considered
what we call a “double” SOAP, i.e. “all–all (double)”, which
consists of two all–all SOAP's using different values for the
cutoff and atom_sigma, allowing for short and long range
structure to be described with different resolutions.

In terms of the search space for the SOAP_GAS algorithm,
we have chosen the following, rather wide range: 2 < nmax <

10, 2 < lmax < 10, 5 < cutoff < 20, and 0.1 < atom_sigma < 1.5.
Note that these boundaries of the cutoff have been superseded
by the following limits in the case of short/long SOAP in the
context of the all–all (double) SOAP: 5 < cutoff < 12 and 12 <

cutoff < 20 for short and long all–all SOAP, respectively.
The results are reported in Table 2 relative to the data

set discussed in II A. The “vanilla” data refer to the
results obtained via the following non-optimised set of
SOAP parameters: cutoff = 5, lmax = 6, nmax = 12 and
atom_sigma = 0.5 which have been taken off-the-shelf from
the online documentation of the SOAP descriptor.58 The
“GA” data refer to the results obtained via the SOAP_GAS
algorithm. We report the score metric described in eqn
(4) together with both the MSE and PCC (including the
associated uncertainties as the standard deviation from a
5-fold cross validation). It is clear that applying the
SOAP_GAS algorithm consistently results in SOAP vectors
corresponding to more accurate models in all cases. The
greatest improvements in terms of accuracy can be
appreciated for those SOAP vectors whose centres
correspond to frequently occurring atomic species in the
data set, such as C, H, and O. Conversely, the gains are
only marginals for SOAP vectors with e.g., P or I as
centres. This is expected, as the predictive power of those
descriptors is bound to be rather weak given the minimal
occurrence of those species in the data set.

Given the relatively small size of our dataset, it is
important to make sure that the fact that the performance of
the test set contributes to our score would not prevent us
from making a reliable performance comparison between
vanilla and SOAP_GAS result. To address this aspect, we have
verified that using a validation set (which at no point is
involved in either the training/test of the models) does not
have an impact on our results. The details of this analysis
can be found in the ESI.†

As in the case of specific SOAP vectors the performance
improvements obtained via SOAP_GAS might appear rather
small, it is worth to perform a simple statistical test to verify

that these performance differences are in fact significant. To
this end, we have performed a Z test59 (i.e., a statistical test
to determine whether two population means are different
when the variances are known) on our results in terms of the
mean squared error (MSE).

The results are reported in the ESI,† and indicate that for
the all–all (and double) SOAP as well as for the SOAP centred
on C, H, O, N and S atoms, the performance differences we
observe for SOAP_GAS compared to vanilla SOAP are
significant with respect to a 95% confidence interval.
However, the same cannot be said for the SOAP centred on
the far less frequent atomic species, namely the halogen
atoms. This is somewhat expected, in that our predictions
are more accurate when using SOAP centred on the most
frequent atomic species, which in turn is reflected in the
extent of the accuracy improvement upon applying the
SOAP_GAS framework to SOAP vectors centred on more or
less frequent species.

We note that the computational cost of dealing with the
all–all SOAP stretched the capabilities of “regular” computing
nodes. Dedicated high-memory computing nodes are often
needed when dealing with SOAP vectors. Rather than
adopting that approach, here we instead chose to take
advantage of the compression scheme described in ref. 46.
Within this scheme the SOAP power spectrum is compressed
through a combination of projecting the atomic neighbour
density onto the surface of the unit sphere, which reduces
the radially sensitive body order, and summing over the
neighbour densities of different species, which reduces the
element sensitive body order. Combining these operations in
different ways leads to nine distinct options ranging from the
full power spectrum, where the length scales as
(nmax

2S2lmax) to the most extreme compression which scales
as (lmax).

In Table 3, we report the dimensionality as well as the
accuracy of the all–all SOAP obtained with these different
levels of compression and denote them using the same
notation as in ref. 46; note that the μ = 0,  = 0, ν = 2 and  =
0 option corresponds to the original uncompressed SOAP
vector. In light of the results reported in Table 3, we chose to
apply the μ = 0,  = 1, ν = 1 and  = 0 option as it provides an
excellent compromise between accuracy and compression. In
particular, this combination retains much of the accuracy of
the non-compressed SOAP vector (with a score of 0.445
against a score of 0.368) whilst drastically reducing the
dimensionality from 1471 to 141 elements. The loss of
accuracy is to be expected, as this level of compression does
not preserve information, although it is interesting that
accuracy is no worse than with μ = 1,  = 0, ν = 1 and  = 0,
which, subject to certain conditions, is known to preserve
information. All the results presented in this section have
been obtained using μ = 0,  = 1, ν = 1 and  = 0.

It is informative to look for correlations between the four
SOAP parameters, as well as the resulting score. To this end,
we have chosen the all–all SOAP, where every atomic species
within the dataset is used as both centre and neighbour – with

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

306 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

the exception of atomic species occurring in less than fifty
molecules across the entire dataset (see Table 1) so that S =
10. We have run 96, independent instances of SOAP_GAS,
where the initial values of each set of SOAP parameters for
each individual within the initial population have been
randomly selected. The SOAP parameters that resulted in the
best score for each run are collected in Fig. 3. Overall, it is
fair to say that there are no strong correlations between any
of the SOAP parameters, albeit there is tendency for the

accuracy (score) to improve when increasing the number or
radial basis functions nmax. This is quite interesting, as one
might think that an increase in e.g., cutoff should be
accompanied by a larger nmax, as the greater spatial extent of
the local atomic environment might need a greater number
of radial basis functions. However, this is not the case. In
fact, none of the SOAP parameters seem to be strongly
correlated with the score. Again, this is somehow counter
intuitive, as one might expect the SOAP vector to capture a

Table 2 SOAP_GAS improves the accuracy of any given SOAP vector. Search space: 2 < nmax < 10, 2 < lmax < 10, 5 < cutoff < 20, and 0.1 <

atom_sigma < 1.5. The “vanilla” data refer to the results obtained via the following non-optimised set of SOAP parameters: cutoff = 5, lmax = 6, nmax =
12 and atom_sigma = 0.5, taken off-the-shelf from the online documentation of the SOAP descriptor.58 The “GA” data refer instead to the results
obtained via the SOAP_GAS algorithm. We report the score metric described in eqn (4) together with both the MSE and PCC (including the associated
uncertainties as the standard deviation accumulated of a 5-fold cross validation). The μ = 0,  = 1, ν = 1 and  = 0 combination has been used in terms
of compression (see text)

Score

Vanilla GA

All–all 0.483 0.309
All–all (double) 0.317 0.269
C-ten 0.573 0.341
H-ten 0.749 0.402
O-ten 2.66 1.963
Cl-ten 3.925 3.677
N-ten 6.047 5.428
S-ten 10.987 10.529
F-ten 11.688 11.369
Br-ten 12.412 12.114
P-ten 12.207 12.159
I-ten 14.361 14.267

MSE

Vanilla GA

Test Train Test Train

All–all 1.43 ± 0.108 1.152 ± 0.018 1.154 ± 0.065 0.929 ± 0.015
All–all (double) 1.186 ± 0.095 0.924 ± 0.015 1.106 ± 0.069 0.855 ± 0.015
C-ten 1.569 ± 0.107 1.252 ± 0.016 1.209 ± 0.067 0.973 ± 0.013
H-ten 1.748 ± 0.105 1.427 ± 0.037 1.293 ± 0.076 1.074 ± 0.02
O-ten 2.935 ± 0.235 2.683 ± 0.055 2.580 ± 0.202 2.325 ± 0.044
Cl-ten 3.394 ± 0.189 3.192 ± 0.037 3.265 ± 0.176 3.12 ± 0.38
N-ten 4.068 ± 0.178 3.83 ± 0.042 3.869 ± 0.17 3.676 ± 0.037
S-ten 4.891 ± 0.192 4.758 ± 0.044 4.812 ± 0.181 4.708 ± 0.04
F-ten 4.945 ± 0.229 4.841 ± 0.058 4.877 ± 0.238 4.823 ± 0.06
Br-ten 5.003 ± 0.176 4.915 ± 0.041 4.948 ± 0.176 4.902 ± 0.043
P-ten 4.968 ± 0.211 4.908 ± 0.05 4.955 ± 0.212 4.905 ± 0.05
I-ten 5.077 ± 0.208 5.057 ± 0.053 5.071 ± 0.208 5.057 ± 0.053

PCC

Vanilla GA

Test Train Test Train

All–all 0.85 ± 0.008 0.884 ± 0.001 0.881 ± 0.003 0.907 ± 0.001
All–all (double) 0.877 ± 0.005 0.908 ± 0.001 0.887 ± 0.002 0.916 ± 0.001
C-ten 0.835 ± 0.006 0.875 ± 0.001 0.875 ± 0.002 0.902 ± 0.001
H-ten 0.812 ± 0.006 0.853 ± 0.003 0.867 ± 0.002 0.893 ± 0.002
O-ten 0.654 ± 0.019 0.694 ± 0.005 0.705 ± 0.013 0.742 ± 0.004
Cl-ten 0.577 ± 0.016 0.61 ± 0.002 0.598 ± 0.014 0.621 ± 0.003
N-ten 0.45 ± 0.022 0.503 ± 0.005 0.49 ± 0.023 0.53 ± 0.005
S-ten 0.194 ± 0.019 0.259 ± 0.004 0.231 ± 0.011 0.275 ± 0.004
F-ten 0.166 ± 0.021 0.219 ± 0.006 0.202 ± 0.027 0.225 ± 0.006
Br-ten 0.124 ± 0.023 0.183 ± 0.005 0.161 ± 0.023 0.188 ± 0.005
P-ten 0.151 ± 0.021 0.186 ± 0.003 0.157 ± 0.018 0.186 ± 0.003
I-ten 0.03 ± 0.015 0.067 ± 0.004 0.047 ± 0.003 0.067 ± 0.053

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 307This journal is © The Royal Society of Chemistry and IChemE 2023

greater deal of information about the molecular structure
when increasing, e.g., the number of basis functions. As such,
it appears that physical intuition alone might not suffice to
guide the choice of the SOAP parameters – hence the need
for an optimisation strategy such as the one offered by
SOAP_GAS.

The results reported in Fig. 3 also allow us to draw some
conclusions in terms of the reproducibility of the SOAP_GAS
results. Namely, there are specific combinations of SOAP
parameters that tend to feature much more prominently that
others, as illustrated by the histograms in Fig. 3. Whilst it is
perfectly possible for the SOAP_GAS to yield very different
combinations of SOAP parameters that ultimately offer the

Fig. 3 There are no simple (cor)relations between the different SOAP parameters. Correlations between the SOAP parameters for the all–all SOAP,
as well as the score. The scatter plots refer to the best set of SOAP parameters obtained for 96 statistically independent GA.

Table 3 Compressing the SOAP vector allows to substantially reduce
the dimensionality of the descriptor whilst retaining most of its predictive
power. Dimensionality (Dim.) and score (see text) for the all–all SOAP
according to different choices of compression

μ  ν  Dim. Score

0 2 0 0 8 3.756
2 0 0 0 22 2.845
1 1 0 0 15 2.587
0 1 0 1 71 0.739
0 0 0 2 386 0.584
0 1 1 0 141 0.445
1 0 1 0 281 0.442
0 0 2 0 1471 0.368
0 0 1 1 1401 0.366

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

308 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

same accuracy, the nmax = 9, lmax = 9, cutoff = 11 and
atom_sigma = 0.8 scenario appears to be consistent in
improving the score for the all–all SOAP vector.

In order to validate the robustness of the results obtained
via the SOAP_GAS framework, we have applied the latter to an
additional dataset, namely the QM7b dataset.60,61 This is a
relatively low-noise dataset that contains 7211 molecules and
features 13 target properties – we have chosen to focus on
polarizability. The results, summarised in the ESI,† confirm the
efficiency of the SOAP_GAS framework in improving the
performance of the SOAP descriptor (notwithstanding the size
of the dataset) and provide further evidence for a positive
correlation between accuracy and nmax.

Given the results we have obtained for two different,
entirely independent datasets, we argue that, at least for

molecular datasets containing 102–103 data points, the
existence of a Pareto front in terms of the SOAP parameters
is a possibility – albeit of course we have no way to ensure
that this result would hold for other datasets as well.

The performance of SOAP_GAS itself might depend to an
extent upon the choice of specific GA parameters. This aspect
is investigated in the next section.

B. SOAP_GAS: performance tuning

As opposed to brute-force optimisation approaches such as
grid searches, GA are characterised by a number of
parameters that allow for the fine tuning of the algorithm. In
this section, we explore the impact of these parameters on
both the accuracy of the resulting SOAP descriptors as well as

Fig. 4 SOAP_GAS offers a reliable performance notwithstanding the choice of parameters concerning the underlying GA. Impact of the different
SOAP_GAS parameters on both accuracy (score) and computational cost (no. of generations). a) Learning curves for different mutation chances
(0.1, 0.15, 0.2 and 0.3) for a specific GA. b) Impact of popSize. c) Impact of mutationChance. d) Impact of ratio between numChildren and
luckyFew. The data in panels b)/c) and d) have been averaged over 48 and 96 statistically independent GAs respectively.

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 309This journal is © The Royal Society of Chemistry and IChemE 2023

the computational time needed, on average, to converge the
GA to a satisfactory accuracy. In particular, we have:

• The mutation chance, mutationChance.
• The population size, popSize.
• The early stopping criteria, earlyStop and earlyNum.
• The ratio between the number of children,

numChildren, and the number of individuals, luckyFew, that
are randomly selected as parents notwithstanding their score.

We begin with Fig. 4a), where we report the evolution of
the score with the number of generations for a set of GA
characterised by different mutationChance. It is clear that
introducing a sufficient level of mutation is key for the GA to
avoid getting stuck into a particular region of the search
space (mutationChance = 0.1 in Fig. 4a)). Moving from a
specific GA to the result reported in Fig. 4c), which has been
averaged over 48 different GAs, we conclude that a
mutationChance greater or equal to 0.20 introduces, for this
specific dataset at least, a sufficient degree of flexibility into
the GA. Broadly speaking, we envisage the occurrence of a
compromise between accuracy and computational effort, as
lower and higher values results in terms of mutationChance
might result in inferior accuracy and substantially higher
number of generations, respectively. However, it is important
to note that – except for very low mutationChance – the
extent of mutation has a relatively minor impact on the
performance of SOAP_GAS in this case.

A similar compromise in terms of accuracy vs.
computational effort can be observed when varying popSize,
i.e. the size of the GA population. As illustrated in Fig. 4b),
increasing popSize results in an improvement in terms of the
score. As a larger population size allows the GA to explore the
search space more effectively, the number of generations
needed to converge SOAP_GAS tends to shrink as popSize
increases. However, in terms of computational time we need
to consider that the total number of machine learning
models evaluated within the GA is equal to the number of
generations multiplied by popSize. As such, increasing
popSize appears to be a feasible strategy to improve the
overall accuracy of the SOAP descriptors – bearing in mind
the associated increase in computational effort.

Interestingly, we have found that the early stopping
criteria (i.e. earlyStop and earlyNum) have a negligible impact
on the performance of SOAP_GAS. This is encouraging, as it
serves to highlight the robustness of the algorithm. On the
other hand, the ratio between numChildren and luckyFew
can have a significant impact as illustrated in the heat map
reported in Fig. 4d). In principle, increasing the fraction of
luckyFew relative to numChildren equates to increase the
flexibility of the GA, by introducing an element of
randomness that should be akin to the effect of the mutation
process. However, we have found that this particular
parameter behaves much more erratically than
mutationChance, in that specific numChildren/luckyFew
ratios seems to lead to fairly different accuracy. Further data
relative to the impact of the GA parameters on the
performance of SOAP_GAS can be found in the ESI.† Note

that as many as 96 statistically independent GAs (i.e. started
with different random combinations of SOAP parameters for
each individual within the initial population) have been used
to obtain the heat map in Fig. 4d). Thus, while the impact of
this parameter is not drastic, different choices are certainly
worth exploring.

In light of these findings, we can conclude that SOAP_GAS
is rather robust with respect to the choice of the GA
parameters.

C. SOAP_GAS timing & accuracy: comparison with grid search

Having established that SOAP_GAS provides robust results,
notwithstanding the specific choice of the GA parameters
discussed in the previous section, we can now attempt to
make a comparison between SOAP_GAS and potentially the
most straightforward alternative to optimising SOAP
parameters, namely a randomised grid search (RSCV). The
latter simply involves a trial-and-error procedure whereby a
certain number of SOAPs characterised by randomly chosen
SOAP parameters are evaluated and scored.

To offer a fair comparison, we have used the same search
space for both RSCV and SOAP_GAS (see sec. IIIA). In terms
of centres and neighbors, we have used C atoms exclusively,
and we have not applied any compression. The results are
summarised in Fig. 5, where we report the score for both
RSCV and SOAP_GAS as a function of the number of
individuals. In the case of SOAP_GAS, the number of
individuals corresponds to the total number of SOAP
descriptors evaluated across all the generations needed to

Fig. 5 The performance of SOAP_GAS is similar to that of a
randomised grid search approach when dealing with the optimisation
of a single SOAP descriptor. Accuracy (score) as a function of the
number of individuals taken into account for either the RSCV (purple
markers and line) and the SOAP_GAS algorithm (orange markers). The
error bars relative to the RSCV data are min–max error bars.

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

310 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

converge the algorithm. As the time needed to obtain the
score for a given SOAP vector (which is the computational
intensive step for both approaches) is exactly the same for
either RSCV or SOAP_GAS, we can compare directly the
interplay between accuracy and computational effort for the
two methodologies. We have accumulated 84 and 96
statistically independent instances of RSCV and SOAP_GAS
respectively to obtain a robust statistics. Whilst the
SOAP_GAS results are reported as a scatter plot (as different
GAs require different number of individuals to converge), the
nature of the RSCV results allows us to assign (min–max, in
this particular case) error bars to the accuracy corresponding
to specific numbers of individuals.

The results for both RSCV and SOAP_GAS show a
substantial degree of variability, thus strengthening the
concept that multiple combinations of potentially even quite
dissimilar SOAP parameters can provide similar results in
terms of the accuracy of the SOAP vector. The number of
individuals required to achieve a significant improvement in
terms of accuracy is similar for RSCV and SOAP_GAS, albeit
we found that in some cases SOAP_GAS manages to
outperform the RSCV results, given the same number of

individuals. This suggests that, overall, SOAP_GAS provides a
framework which is equally efficient to the RSCV approach,
but with the potential to identify combinations of SOAP
parameters which lead to greater accuracy.

D. Working with multiple SOAPs

We would expect the accuracy of multiple SOAPs optimised
at the same time (Conc. in Table 4) to be higher than that of
multiple SOAPs optimised individually and subsequently
concatenated (Ind. in Table 4). This is indeed the case, as
illustrated by the results summarised in Table 4. In
particular, we have chosen to focus on 5 different
combinations of the ten -ten SOAP vectors (where  stand
for one of the most abundant atomic species in the dataset,
see Table 1) analysed in Table 2. The gains in terms of
accuracy are small, but suggest that the “best” parameters for
each SOAP vector in a concatenated descriptor does depend
to some extent on whether the SOAP vector was considered in
isolation. To strengthen this claim, it appears that the
accuracy gains increase when considering longer

Table 4 SOAP_GAS improves on both the accuracy and the computational cost for combinations of SOAP descriptors, optimised concurrently as
opposed to individually – and subsequently concatenated. Performance (score, MSE and PCC, see main text) of individually optimised (and subsequently
concatenated) combinations of SOAP (Ind.) compared with that of concurrently optimised combinations of SOAP (Conc.). The “Gens.” columns report
the number of generations needed to converge the SOAP_GAS algorithm. In the case of Ind., this number is the sum of the number of generations
needed to converge the SOAP_GAS for each individual SOAP, whilst for Conc. this number is the average (taken over ten different runs) number of
generations needed to converge the SOAP_GAS algorithm for the concurrent optimisation of the SOAP combinations. The “time” columns refer to the
total time needed to converge the SOAP_GAS algorithm. In the case of Ind., this number is the sum of the time needed to converge the SOAP_GAS for
each individual SOAP, whilst for Conc. this number is the average (taken over ten different runs) time needed to converge the SOAP_GAS algorithm for
the concurrent optimisation of the SOAP combinations

Performance

Ind. Conc.

Score
Time
(s) Gens. Score

Time
(s) Gens.

[C, H] 0.297 6061 8 0.291 1302 5.3
[C, H, O] 0.287 7201 11 0.29 1305 5
[C, H, O, Cl] 0.289 7966 14 0.281 1452 5.2
[C, H, O, Cl, N] 0.282 9019 17 0.271 1454 5.4
[Br, C, Cl, F, H, I, N, O, P, S] 0.283 12 121 32 0.268 3655 4

MSE

Ind. Conc.

Test Train Test Train

[C, H] 1.144 ± 0.067 0.905 ± 0.014 1.14 ± 0.07 0.898 ± 0.013
[C, H, O] 1.138 ± 0.061 0.883 ± 0.011 1.141 ± 0.062 0.89 ± 0.011
[C, H, O, Cl] 1.139 ± 0.058 0.889 ± 0.01 1.165 ± 0.070 0.926 ± 0.013
[C, H, O, Cl, N] 1.125 ± 0.051 0.880 ± 0.011 1.105 ± 0.07 0.866 ± 0.011
[Br, C, Cl, F, H, I, N, O, P, S] 1.125 ± 0.051 0.88 ± 0.011 1.113 ± 0.067 0.872 ± 0.016

PCC

Ind. Conc.

Test Train Test Train

[C, H] 0.883 ± 0.002 0.91 ± 0.001 0.884 ± 0.002 0.911 ± 0.001
[C, H, O] 0.884 ± 0.002 0.913 ± 0.001 0.883 ± 0.001 0.912 ± 0.001
[C, H, O, Cl] 0.883 ± 0.001 0.912 ± 0.001 0.885 ± 0.002 0.913 ± 0.001
[C, H, O, Cl, N] 0.885 ± 0.002 0.913 ± 0.001 0.888 ± 0.003 0.915 ± 0.001
[Br, C, Cl, F, H, I, N, O, P, S] 0.885 ± 0.002 0.913 ± 0.001 0.887 ± 0.003 0.915 ± 0.002

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 311This journal is © The Royal Society of Chemistry and IChemE 2023

combinations of SOAP vectors – which in turn offer a larger
parameter space to be optimised as a whole.

Importantly, the optimisation of multiple SOAP vectors at
the same time is a situation where SOAP_GAS outperforms
the RSCV approach, as illustrated in Fig. 6. Not only are the
results of SOAP_GAS consistently more accurate than the
RSCV ones, but it turns out that in this case the RSCV can
barely manage to improve on the accuracy of the individual
(concatenated) SOAP (obtained via RSCV), which corresponds
to the blue, dashed line in Fig. 6. Conversely, SOAP_GAS
pushes well below the red dashed line corresponding to the
accuracy of the individual (concatenated) SOAP obtained via
SOAP_GAS.

This finding is not entirely surprising, as when attempting
to optimise multiple SOAPs at the same time via RSCV the
number of grid points needed to converge increases
massively. On the other hand, SOAP_GAS is inherently better
equipped to explore the search space in a more clever
fashion, steering the SOAP parameters toward different local
minima without wasting time in probing regions of the
search space that result in very low accuracy.

In addition, we have found that, when using SOAP_GAS,
optimising multiple SOAP vectors at the same time is less
computationally expensive than optimising each SOAP vector
individually. This is illustrated in Table 4, where we compare
the number of generations (“Gens.” column – or,
equivalently, the time) needed for the SOAP_GAS to converge
in these two distinct scenarios. Crucially, the more SOAP
vectors we include, the larger the difference in terms of
computational cost between individual and concurrent
optimisations. For instance, a total of 32 generations are
needed to converge the [Br, C, Cl, F, H, I, N, O, P, S] SOAP

Fig. 7 A visual comparison of the accuracy improvement obtained via the SOAP_GAS algorithm applied to a specific SOAP descriptor. “Vanilla”
refers to the results obtained without optimising the SOAP parameters, whilst “GA” refers to the results obtained by applying the SOAP_GAS
algorithm. Purple and green markers correspond to train and test prediction (obtained over a 5-fold cross-validation). The results refer to the
C-ten SOAP, with compression: μ = 0,  = 1, ν = 1 and  = 0. The SOAP parameters for the vanilla results are: cutoff = 5, lmax = 6, nmax = 12 and
atom_sigma = 0.5, which upon optimisation (GA) changed to cutoff = 12, lmax = 8, nmax = 5 and atom_sigma = 1.1.

Fig. 6 SOAP_GAS outperforms the randomised grid search approach
when dealing with the concurrent optimisation of multiple SOAP
descriptors. Interplay between accuracy and timing (as in, no. of ML
models generated) for the concurrent optimisation of multiple SOAPs
at the same time, RSCV vs. GAs. The blue and red lines correspond to
the best score of the same SOAP combinations where the different
SOAP vectors have been optimised individually and subsequently
concatenated. The performance of the SOAP_GAS algorithm was
evaluated 5 times to ensure consistent results.

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

312 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

vectors individually, whilst only 4 generations are – on
average – required to converge this combination of SOAP
vectors concurrently. Note that the same number of
individuals per generation has been used to craft this
comparison. This is important as it demonstrates that the
SOAP_GAS framework can be used to efficiently optimise
combinations of different SOAP vectors at the same time,
which, as we have seen, also typically leads to further (if
rather small) gains in terms of the overall accuracy of the
descriptor as well.

We conclude our discussion by offering a visual
comparison of the improvement, in terms of accuracy,
obtained by applying SOAP_GAS to this particular dataset.
The result in Fig. 7 have been obtained with the C-ten SOAP,
μ = 0,  = 1, ν = 1 and  = 0 compression. The initial SOAP
parameters were cutoff = 8, lmax = 6, nmax = 2 and atom_sigma
= 0.5, which upon optimisation changed to cutoff = 12, lmax =
8, nmax = 5 and atom_sigma = 1.1. The MSE(PCC) for the test
set improved from 1.515(0.839) to 1.209(0.875).

Solubility measurements found in literature are usually
characterised by experimental uncertainties of the order of
±0.5–0.7 log S.62 On account of that, ML models for predicting
solubility having MSEs (for the test set) in the range of 0.5–
1.2 are generally considered to be good.51 Additionally, recent
solubility models leveraging ML algorithms, including
random forest regression, have produced PCCs (again, for the
test set) in the range of 0.81–0.95.14,15,48,63 As shown in
Table 4, the SOAP_GAS solubility model resulted in MSE and
PCC values that lie in those ranges for both the training and
test sets. Although our model MSE values may fall in the
upper range of what is favourable, we highlight that most of
the models cited used comparatively much smaller test sets
(less than 100 molecules, compared with ∼2000 in our case)
than the ones we have considered in this work.

IV. Conclusions

The SOAP vector has been gaining popularity in the context of
machine learning for physical chemistry applications as a
general-purpose descriptor to extract information from a variety
of systems – ranging from small drug-like molecules to
semiconducting alloys. Aside from the key consideration
involving the choice of which atomic species to use in order to
describe the relevant local atomic environments, four
parameters need to be chosen when building any given SOAP
vector.

In this work, we demonstrate that this choice is not trivial,
and cannot be guided entirely by physical intuition. To address
this issue, we have developed SOAP_GAS, a computational
framework based on genetic algorithms that offers a reliable
alternative to e.g. the grid search approaches commonly used
to identify well-performing combinations of SOAP parameters.

SOAP_GAS is freely available on GitHub at https://github.
com/gcsosso/SOAP_GAS.git, and leverages the recent
developments described in ref. 26 to enable the efficient
description of heterogeneous datasets containing different

molecules characterised by different number of atoms and
different atomic species, as either isolated molecules or
within condensed phases. It also uses the compression
options described in ref. 46 to minimise the computational
cost needed to deal with large datasets. SOAP_GAS offers full
control over the flexibility of the underlying GA and can
benefit from parallel computing as well.

We have chosen to explore the capabilities of SOAP_GAS
by focusing on the prototypical machine learning-base
challenge of predicting the solubility of a relatively small
(∼6000) dataset small drug-like molecules. We reiterate that
this work does not aim to further the state-of-the-art in terms
of this specific application, but rather we seek to showcase
the capabilities of the SOAP_GAS algorithm when deployed in
the context of a fairly standard ML problem for drug design
and discovery. We show that SOAP_GAS consistently improves
the accuracy of a given non-optimised SOAP vector which
parameters have been taken “off-the-shelf”. An analysis of
the reproducibility of our results revealed that multiple
combinations of very different SOAP parameters can yield
equally accurate predictions, thus highlighting the need for a
robust optimisation strategy as opposed to relying on
physical intuition when it comes to the choice of the SOAP
parameters. In addition, we found only very weak correlations
between the SOAP parameters. This was unexpected in that
one might intuitively think that expanding the spatial extent
of the atomic environment under consideration would
necessitate an increase in the number of angular, but even
more so radial basis functions utilised to specify the SOAP
vector of interest. However, this is not the case, and in fact
simply utilising longer cutoffs does not result in improved
accuracy.

The SOAP_GAS algorithm itself relies on the specification
of a few parameters, aimed at tailoring the flexibility of the
underlying GA. We have explored the impact of the different
choices in terms of said parameters, and found SOAP_GAS to
offer rather robust results notwithstanding the specific
choice of GA parameters. Of these, the mutation chance is
perhaps the most prominent one, in that it has to be
sufficiently high for the GA to manage to escape local
minima of the search space.

We have also compared the efficiency of SOAP_GAS to that
of the customarily used randomised grid search (RSCV)
approach, particularly in terms of the interplay between
computational effort and resulting SOAP accuracy. Overall,
RSCV and SOAP_GAS offer similar performance, with the
latter yielding marginally better results. However, SOAP_GAS
consistently outperforms the RSCV when dealing with the
concurrent optimisation of multiple SOAP vectors at the same
time – a scenario that does lead, in the case of SOAP_GAS, to
further (if on average rather small) improvements in terms of
accuracy. This result is not entirely unexpected, in that the
number of grid points for the RSCV substantially increase
when dealing with multiple SOAP vectors, whilst the
SOAP_GAS algorithm is inherently designed to avoid non-
relevant region of the search space to converge onto the well-

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

https://github.com/gcsosso/SOAP_GAS.git
https://github.com/gcsosso/SOAP_GAS.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 313This journal is © The Royal Society of Chemistry and IChemE 2023

performing combinations of SOAP parameters. Importantly,
we found that optimising multiple combinations of SOAP
vectors at the same time via the SOAP_GAS algorithm not
only leads to further improvements in terms of accuracy, but
it is also more computationally efficient than optimising each
SOAP vector individually.

In the future, it would be interesting to expand the
SOAP_GAS framework to include other descriptors requiring
parameter optimisation. For the time being, we hope that
this simple tool might facilitate the usage of the SOAP
descriptor for machine learning applications in physical
chemistry, and we are looking forward to exploring the
capabilities of the algorithm when applied to more
challenging datasets/problems in, e.g., the realm of drug
design and discovery.

Data availability statement

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of interest

A. P. B. is listed as an inventor on a patent filed by
Cambridge Enterprise Ltd. related to SOAP and GAP (US
patent 8843509, filed on 5 June 2009 and published on 23
September 2014).

Acknowledgements

T. B. thanks EPSRC for a PhD studentship through the
Mathematics for Real-World Systems Centre for Doctoral
Training (MathSys, EPSRC grant number EP/S022244/1). S. T.
thanks EPSRC for a PhD studentship through the Centre for
Doctoral Training in Modeling of Heterogeneous Systems
(HetSys, EPSRC Grant No. EP/S022848/1). A. P. B. is supported
by the NOMAD Centre of Excellence (European Commission
grant agreement ID 951786) and the CASTEP-USER project,
funded by the Engineering and Physical Sciences Research
Council under the grant agreement EP/W030438/1. We
gratefully acknowledge the use of Athena at HPC Midlands+,
which was funded by the EPSRC through Grant No. EP/
P020232/1, through the HPC Midlands+ consortium, as well as
the high-performance computing facilities provided by the
Scientific Computing Research Technology Platform at the
University of Warwick.

Notes and references

1 O. V. Prezhdo, Advancing Physical Chemistry with Machine
Learning, J. Phys. Chem. Lett., 2020, 11, 9656–9658.

2 F. Noé, A. Tkatchenko, K.-R. Müller and C. Clementi,
Machine Learning for Molecular Simulation, Annu. Rev. Phys.
Chem., 2020, 71, 361–390, DOI: 10.1146/annurev-physchem-
042018-052331.

3 M. Ceriotti, C. Clementi and O. Anatole von Lilienfeld,
Machine learning meets chemical physics, J. Chem. Phys.,
2021, 154, 160401.

4 J. A. Keith, V. Vassilev-Galindo, B. Cheng, S. Chmiela, M.
Gastegger, K.-R. Müller and A. Tkatchenko, Combining
Machine Learning and Computational Chemistry for
Predictive Insights Into Chemical Systems, Chem. Rev.,
2021, 121, 9816–9872.

5 A. Karthikeyan and U. D. Priyakumar, Artificial intelligence:
machine learning for chemical sciences, J. Chem. Sci.,
2022, 134, 2.

6 M. R. Dobbelaere, P. P. Plehiers, R. Van de Vijver, C. V.
Stevens and K. M. Van Geem, Machine Learning in
Chemical Engineering: Strengths, Weaknesses,
Opportunities, and Threats, Engineering, 2021, 7, 1201–1211.

7 G. C. Sosso, V. L. Deringer, S. R. Elliott and G. Csányi,
Understanding the thermal properties of amorphous solids
using machine-learning-based interatomic potentials, Mol.
Simul., 2018, 44, 866–880, DOI: 10.1080/
08927022.2018.1447107.

8 X. Gu and C. Zhao, Thermal conductivity of single-layer
mos2 (1-x) se2x alloys from molecular dynamics simulations
with a machine-learning based interatomic potential,
Comput. Mater. Sci., 2019, 165, 74–81.

9 D. Visaria and A. Jain, Machine-learning-assisted space-
transformation accelerates discovery of high thermal
conductivity alloys, Appl. Phys. Lett., 2020, 117, 202107.

10 J. Xiong, S.-Q. Shi and T.-Y. Zhang, A machine-learning
approach to predicting and understanding the properties of
amorphous metallic alloys, Mater. Des., 2020, 187, 108378.

11 H. Miyazaki, T. Tamura, M. Mikami, K. Watanabe, N. Ide, O. M.
Ozkendir and Y. Nishino, Machine learning based prediction of
lattice thermal conductivity for half-Heusler compounds using
atomic information, Sci. Rep., 2021, 11, 13410.

12 T. S. Schroeter, A. Schwaighofer, S. Mika, A. Ter Laak, D.
Suelzle, U. Ganzer, N. Heinrich and K.-R. Müller, Estimating
the domain of applicability for machine learning qsar
models: a study on aqueous solubility of drug discovery
molecules, J. Comput.-Aided Mol. Des., 2007, 21, 485–498.

13 Q. Cui, S. Lu, B. Ni, X. Zeng, Y. Tan, Y. D. Chen and H. Zhao,
Improved Prediction of Aqueous Solubility of Novel
Compounds by Going Deeper With Deep Learning, Front.
Oncol., 2020, 10, 121.

14 S. Boobier, D. R. Hose, A. J. Blacker and B. N. Nguyen,
Machine learning with physicochemical relationships:
solubility prediction in organic solvents and water, Nat.
Commun., 2020, 11, 1–10.

15 M. Lovrić, K. Pavlović, P. Žuvela, A. Spataru, B. Lučić, R.
Kern and M. W. Wong, Machine learning in prediction of
intrinsic aqueous solubility of drug-like compounds:
Generalization, complexity, or predictive ability?,
J. Chemom., 2021, 35, e3349.

16 K. Ge and Y. Ji, Novel Computational Approach by
Combining Machine Learning with Molecular
Thermodynamics for Predicting Drug Solubility in Solvents,
Ind. Eng. Chem. Res., 2021, 60, 9259–9268.

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1080/08927022.2018.1447107
https://doi.org/10.1080/08927022.2018.1447107
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

314 | Mol. Syst. Des. Eng., 2023, 8, 300–315 This journal is © The Royal Society of Chemistry and IChemE 2023

17 Z. Ye and D. Ouyang, Prediction of small-molecule
compound solubility in organic solvents by machine
learning algorithms, J. Cheminf., 2021, 13, 98.

18 Y. Ma, Z. Gao, P. Shi, M. Chen, S. Wu, C. Yang, J. Wang, J.
Cheng and J. Gong, Machine learning-based solubility
prediction and methodology evaluation of active
pharmaceutical ingredients in industrial crystallization,
Front. Chem. Sci. Eng., 2022, 16, 523–535.

19 H. Chen, O. Engkvist, Y. Wang, M. Olivecrona and T.
Blaschke, The rise of deep learning in drug discovery, Drug
Discovery Today, 2018, 23, 1241–1250.

20 L. Deng, The mnist database of handwritten digit images for
machine learning research, IEEE Signal Processing Magazine,
2012, vol. 29, pp. 141–142.

21 D. Dua and C. Graff, UCI machine learning repository, 2017.
22 T. Barnard, H. Hagan, S. Tseng and G. C. Sosso, Less may be

more: an informed reflection on molecular descriptors for
drug design and discovery, Mol. Syst. Des. Eng., 2020, 5,
317–329.

23 C. R. Collins, G. J. Gordon, O. A. von Lilienfeld and D. J.
Yaron, Constant size molecular descriptors for use with
machine learning, arXiv, 2017, preprint, arXiv:1701.06649,
DOI: 10.48550/arXiv.1701.06649.

24 E. M. Collins and K. Raghavachari, Effective molecular
descriptors for chemical accuracy at dft cost: Fragmentation,
error-cancellation, and machine learning, J. Chem. Theory
Comput., 2020, 16, 4938–4950.

25 M. J. Martínez, M. Razuc and I. Ponzoni, Modesus: A
machine learning tool for selection of molecular descriptors
in qsar studies applied to molecular informatics, BioMed
Res. Int., 2019, 2019, 2905203.

26 A. P. Bartók, R. Kondor and G. Csányi, On representing
chemical environments, Phys. Rev. B: Condens. Matter Mater.
Phys., 2013, 87, 184115.

27 S. N. Pozdnyakov, M. J. Willatt, A. P. Bartok, C. Ortner, G.
Csanyi and M. Ceriotti, Incompleteness of Atomic Structure
Representations, Phys. Rev. Lett., 2020, 125, 166001.

28 M. O. Jäger, E. V. Morooka, F. Federici Canova, L. Himanen
and A. S. Foster, Machine learning hydrogen adsorption on
nanoclusters through structural descriptors, npj Comput.
Mater., 2018, 4, 1–8.

29 J. L. Priedeman, C. W. Rosenbrock, O. K. Johnson and E. R.
Homer, Quantifying and connecting atomic and
crystallographic grain boundary structure using local
environment representation and dimensionality reduction
techniques, Acta Mater., 2018, 161, 431–443.

30 M. A. Caro, Optimizing many-body atomic descriptors for
enhanced computational performance of machine learning
based interatomic potentials, Phys. Rev. B, 2019, 100,
024112.

31 S. De, A. P. Bartók, G. Csányi and M. Ceriotti, Comparing
molecules and solids across structural and alchemical space,
Phys. Chem. Chem. Phys., 2016, 18, 13754.

32 R. Todeschini and P. Gramatica, New 3d molecular
descriptors: the whim theory and qsar applications, in 3D
QSAR in drug design, Springer, 2002, pp. 355–380.

33 V. Zaverkin and J. Kästner, Gaussian moments as physically
inspired molecular descriptors for accurate and scalable
machine learning potentials, J. Chem. Theory Comput.,
2020, 16, 5410–5421.

34 M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi
and P. Marquetand, wacsf—weighted atom-centered
symmetry functions as descriptors in machine learning
potentials, J. Chem. Phys., 2018, 148, 241709.

35 M. O. J. Jäger, E. V. Morooka, F. F. Canova, L. Himanen and
A. S. Foster, Machine learning hydrogen adsorption on
nanoclusters through structural descriptors, npj Comput.
Mater., 2018, 1–8.

36 A. Goscinski, F. Musil, S. Pozdnyakov, J. Nigam and M.
Ceriotti, Optimal radial basis for density-based atomic
representations, J. Chem. Phys., 2021, 1–12.

37 V. Fung, J. Zhang, E. Juarez and B. G. Sumpter,
Benchmarking graph neural networks for materials
chemistry, npj Comput. Mater., 2021, 7, 1–8.

38 A. S. Rosen, S. M. Iyer, D. Ray, Z. Yao, A. Aspuru-Guzik, L.
Gagliardi, J. M. Notestein and R. Q. Snurr, Machine learning
the quantum-chemical properties of metal–organic
frameworks for accelerated materials discovery, Matter,
2021, 4, 1578–1597.

39 Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi,
A. V. Shapeev, A. P. Thompson and M. A. Wood, et al.,
Performance and cost assessment of machine learning
interatomic potentials, J. Phys. Chem. A, 2020, 124, 731–745.

40 M. F. Langer, A. Goeßmann and M. Rupp, Representations
of molecules and materials for interpolation of quantum-
mechanical simulations via machine learning, npj Comput.
Mater., 2022, 8, 1–14.

41 F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi
and M. Ceriotti, Physics-inspired structural
representations for molecules and materials, Chem. Rev.,
2021, 121, 9759–9815.

42 S. K. Natarajan and M. A. Caro, Particle swarm based hyper-
parameter optimization for machine learned interatomic
potentials, arXiv, 2020, preprint, arXiv:2101.00049, DOI:
10.48550/arXiv.2101.00049.

43 K. De Jong, Genetic-algorithm-based learning, in Machine
learning, Elsevier, 1990, pp. 611–638.

44 J. J. Grefenstette, Genetic algorithms and machine learning,
in Proceedings of the sixth annual conference on Computational
learning theory, 1993, pp. 3–4.

45 J. Mavračič, F. C. Mocanu, V. L. Deringer, G. Csányi and S. R.
Elliott, Similarity between amorphous and crystalline phases:
The case of tio2, J. Phys. Chem. Lett., 2018, 9, 2985–2990.

46 J. P. Darby, J. R. Kermode and G. Csányi, Compressing local
atomic neighbourhood descriptors, npj Comput. Mater.,
2022, 8, 166.

47 M. C. Sorkun, J. V. A. Koelman and S. Er, Pushing the limits
of solubility prediction via quality-oriented data selection,
iScience, 2021, 24, 101961.

48 S. Boobier, A. Osbourn and J. B. Mitchell, Can human
experts predict solubility better than computers?, J. Cheminf.,
2017, 9, 1–14.

MSDEPaper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

https://doi.org/10.48550/arXiv.1701.06649
https://doi.org/10.48550/arXiv.2101.00049
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

Mol. Syst. Des. Eng., 2023, 8, 300–315 | 315This journal is © The Royal Society of Chemistry and IChemE 2023

49 C. Saal and A. Nair, Solubility in pharmaceutical chemistry,
Walter de Gruyter GmbH & Co KG, 2020.

50 A. Llinàs, R. C. Glen and J. M. Goodman, Solubility
Challenge: Can You Predict Solubilities of 32 Molecules
Using a Database of 100 Reliable Measurements?, J. Chem.
Inf. Model., 2008, 48, 1289–1303.

51 A. Llinas, I. Oprisiu and A. Avdeef, Findings of the second
challenge to predict aqueous solubility, J. Chem. Inf. Model.,
2020, 60, 4791–4803.

52 N. M. O'Boyle, C. Morley and G. R. Hutchison, Pybel: a
python wrapper for the openbabel cheminformatics toolkit,
Chem. Cent. J., 2008, 2, 1–7.

53 K. Chen, C. Kunkel, K. Reuter and J. T. Margraf,
Reorganization energies of flexible organic molecules as a
challenging target for machine learning enhanced virtual
screening, Digital Discovery, 2022, 1, 147–157.

54 S. Axelrod and R. Gomez-Bombarelli, Molecular machine
learning with conformer ensembles, arXiv, 2021, preprint,
arXiv:2012.08452 [physics], DOI: 10.48550/arXiv.2012.08452.

55 L. Breiman, Random forests, Mach. Learn., 2001, 45, 5–32.
56 M. Olson, A. Wyner and R. Berk, Modern neural networks

generalize on small data sets, Adv. Neural Inf. Process. Syst.,
2018, 31, 1–10.

57 T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins and N.
Khovanova, Decision tree and random forest models for

outcome prediction in antibody incompatible kidney
transplantation, Biomed. Signal Process Control, 2019, 52,
456–462.

58 A. P. Bartók, N. Bernstein, G. Csányi and J. Kermode, GAP
and SOAP documentation, https://libatoms.github.io/GAP/,
accessed November 2022.

59 H. Doll and S. Carney, Statistical approaches to uncertainty:
p values and confidence intervals unpacked, Equine Vet. J.,
2007, 39, 275–276.

60 L. C. Blum and J.-L. Reymond, 970 Million Druglike
Small Molecules for Virtual Screening in the Chemical
Universe Database GDB-13, J. Am. Chem. Soc., 2009, 131,
8732–8733.

61 G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K.
Hansen, A. Tkatchenko, K.-R. Müller and O. A. V.
Lilienfeld, Machine learning of molecular electronic
properties in chemical compound space, New J. Phys.,
2013, 15, 095003.

62 D. S. Palmer and J. B. Mitchell, Is experimental data quality
the limiting factor in predicting the aqueous solubility of
druglike molecules?, Mol. Pharmaceutics, 2014, 11,
2962–2972.

63 A. Avdeef, Prediction of aqueous intrinsic solubility of
druglike molecules using random forest regression trained
with wiki-ps0 database, ADMET and DMPK, 2020, 8, 29–77.

MSDE Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

3
N

ov
em

be
r

20
22

. D
ow

nl
oa

de
d

on
 2

/1
1/

20
26

 1
1:

00
:2

8
PM

.
 T

hi
s

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n

3.
0

U
np

or
te

d
L

ic
en

ce
.

View Article Online

https://doi.org/10.48550/arXiv.2012.08452
https://libatoms.github.io/GAP/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2me00149g

	crossmark:

