Materials Advances

CORRECTION

View Article Online

Cite this: Mater. Adv., 2023. 4, 6449

Correction: DFT investigation of the oxygen reduction reaction over nitrogen (N) doped graphdiyne as an electrocatalyst: the importance of pre-adsorbed OH* and the solvation effect

Yuelin Wang, Thanh Ngoc Pham, Harry H. Halim, Likai Yan and Yoshitada Morikawa*ab

DOI: 10.1039/d3ma90095a

rsc.li/materials-advances

Correction for 'DFT investigation of the oxygen reduction reaction over nitrogen (N) doped graphdiyne as an electrocatalyst: the importance of pre-adsorbed OH* and the solvation effect' by Yuelin Wang et al., Mater. Adv., 2023, https://doi.org/10.1039/d3ma00502j.

The authors regret that on the 5th page of the article, in the three paragraphs from "Consequently, upon applying a limiting potential of 0.22 V..." to "...cannot be used as an ORR electrocatalyst.", all instances of 'sp-N1GDY(OH)/GDY' and 'sp-N2GDY(OH)/GDY' were mislabelled. They should be read as 'sp-N1GDY(OH)/G' and 'sp-N2GDY(OH)/G', respectively.

In Fig. 4, section (a), 'sp-N1GDY/G (OH)' and 'sp-N2GDY/G (OH)' were mislabelled. They should be read as 'sp-N1GDY(OH)/G' and 'sp-N2GDY(OH)/G', respectively. The correctly labelled Fig. 4 is given below.

In the section titled "The electronic structure of the active site relates to O₂ activation", the O₂ dissociation barrier values for sp-N1GDY(OH)/G and Pyri-NGDY/G are given incorrectly. The correct text should be "...and O2 dissociation barrier is high (1.86 eV and 1.52 eV)".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Osaka 565-0871, Suita, Japan. E-mail: morikawa@prec.eng.osaka-u.ac.jp

^b Research Center for Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Osaka, Japan

c Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China

Correction

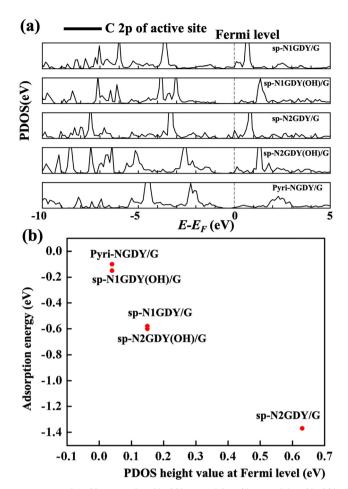


Fig. 4 (a) PDOS of C 2p of the active site in sp-N1GDY/G, sp-N1GDY(OH)/G, sp-N2GDY/G, sp-N2GDY(OH)/G, and Pyri-NGDY/G. (b) The relationship between PDOS height value at the Fermi level and the adsorption energy of O₂.