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Graphene, being a two-dimensional all-aromatic sheet bonded with sp? carbon atoms, has attracted
much attention due to its excellent physicochemical properties like a large surface area, good electrical
conductivity, and high thermal and chemical stability. Since the discovery of graphene, various efforts
have been made to modify its structural properties for integrating this novel material in various
electronic devices, fuel cells, and other energy storage applications. Furthermore, modification leads to
the production of different graphene-based nanomaterials and one of the derivatives of a graphitic
material is porous graphene. The advantage of using porous graphene in energy systems is that it has
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the properties of both porous material and graphene. In this connection, various synthesis conditions,
dopants, and surface defects all significantly contribute to enhance the electrochemical performance of
porous graphene. In this review, the recent advancements in 3D porous graphene-based electrode
materials and their structural properties in relation to electrochemical energy storage systems are
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1. Introduction

The fast depletion of fossil fuels and non-renewable resources
has caused negative environmental impacts, leading to the
search for eco-friendly and sustainable energy resources.' Due
to the increasing development of electronic devices, including
laptops, mobile phones, smart gadgets, and electric vehicles,
there has been a large amount of research interest in designing
energy storage devices with high energy density, a fast-charging
rate, and good cycling stability in the past few years.>” Nowa-
days, it is critical to developing novel materials that can provide
more efficient and sustainable energy storage performance.
Among them, supercapacitors and batteries are two types of
electrochemical energy storage systems utilized for industrial
device fabrication with complementary energy storage
mechanisms.*” Various electrode materials used in batteries,
fuel cells, and supercapacitors have certain problems like
feeble electron/ion transport, poor thermal and electrochemical
stability, and a lack of reproducibility because of their aging
process.®” Interestingly, the electrodes based on porous mate-
rials have gained better capacitance activity because these
porous frameworks allow ions to reach the surface easier and
faster,®° leading to pore effects.

Graphene, being a unique two-dimensional (2D) material,
has attracted attention of quite a large number of researchers in
various fields since the time of its invention in 2004."° The
synthesis of graphene materials and graphene-based compo-
sites involves considerable strategies for energy-based applica-
tions. Owing to the large flat layered structure with strong sp>
covalent bonds, a high surface area, and excellent electron
transport properties, graphene sheets are considered to be
promising electrode materials for energy devices such as
lithium batteries, supercapacitors, and many others.'"'> Graphene
has a high theoretical surface area value of 2630 m> g~ *,**
and it possesses unique physicochemical properties like
superior electrical conductivity, excellent chemical stability,
and good thermal conductivity.'*"> Unfortunately, the chemi-
cally reduced graphene oxide (GO) suffers from re-stacking due
to the inter-sheet van der Waals interactions between the
graphene layers. This results in the significant degradation of
its unique properties such as its large surface area, reduced
transport channel, and ion diffusion.'®'” To fully understand
the potentiality of graphene and overcome the re-stacking
issue, much effort has been made into modifying its electronic
and magnetic properties through doping with heteroatoms™®
and hydrogenation."> Meanwhile, graphene-based porous
materials with a large number of pores and different pore
structures have been prepared to improve their performance
and broaden their application in various energy storage
applications®®® as illustrated in Fig. 1. Depending on the
carbon source, the doping agents used for synthesis purposes
and the surface alterations including the defective sites, the
pores present in the resultant graphene sheets may range from
atomic to nanoscale magnifications.”® Interestingly, the proper-
ties of porous graphene are distinct from those of ordinary
graphene, such as their high surface area, better mechanical
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Fig. 1 Schematic illustration of different hierarchical porous graphene
utilized for lithium-ion batteries, lithium—sulfur batteries, sodium-ion
batteries, and supercapacitors. Porous structures are reprinted with per-
mission from ref. 21 (micropore),?> (macropore),®®* (mesopore),2*
(hybrid),?® (heteroatoms doped).

stability, abundantly exposed edges (3D structure), and ability
to accelerate mass transfer (ions and molecules) not only on the
surface but also throughout their porous framework, leading to
their potential application in various fields.***® In particular,
the porosity, specific surface area (SSA), and surface-to-volume
ratio of the porous materials can be effectively fine-tuned by the
preparation conditions*® and their investigations have focused
on optimizing these dimensional properties over the past few
years.>>"*” Theoretical studies to analyse the electronic struc-
ture of porous graphene claim that its capacitance perfor-
mances depends on the porous nature (including the number
of pores), surface area, and active sites,”® which is in agreement
with the experimental results. There are numerous studies on
the formation of 2D and 3D porous graphene architectures.** >
The 2D porous graphene sheets represent the holey graphene
sheets where pores are distributed in their plane®® while the 3D
porous graphene sheets possess an out-of-plane macroporous
structure and they include graphene aerogel,® graphene
foam,*® graphene hydrogel,®" and graphene sponge.** Overall,
the unique properties of porous graphene nanomaterials make
them a highly promising system for achieving improved elec-
trochemical energy storage performance. However, there are a
few issues that should be addressed to make porous graphene a
multifunctional material for industrialization. In this review,
we summarized the recent advancements in nanostructured
3D porous graphene-based electrode materials depending
on their pore size and structural properties, with an emphasis
on electrochemical energy storage systems like lithium-ion
batteries (LIB), lithium-sulfur batteries (LSB), sodium-ion
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batteries (SIB) and supercapacitors (asymmetric and sym-
metric). We also discuss about some of the practical limitations
of porous graphene nanomaterials in detail.

2. Recent progress in porous
graphene-based nanomaterials for
electrochemical energy storage
systems

According to industrial demands, the progress in designing
battery materials is becoming more challenging day by day.
There are numerous efforts made by researchers around the
globe to find better electrode materials with superior electro-
chemical performances for energy storage applications. Nowa-
days, the utilization of carbonaceous materials, especially
graphene, is becoming recommended in the development of
energy devices such as batteries due to their high surface area,
good mechanical strength, and chemical stability.’® However,
graphene has a tendency to stack or aggregate together, which-
ever impairs its physicochemical properties such as surface
area reduction and low electrochemical performance. Interest-
ingly, synthesizing porous graphene with a 3D structure can
effectively solve the above-mentioned difficulties, since they
have hierarchal porous structures, which are very important for
energy storage performances.® In comparison to 2D basal
plane graphitic structure, 3D (edge plane geometry) materials
exhibit higher specific capacitance and high electron transport
owing to their more exposed edges and oxygen-rich functional
groups on the surface.’® Hence, the electrochemical perfor-
mance is better in the 3D edge plane than in the 2D basal plane.
By carefully tailoring the structure of hierarchal porous gra-
phene, we can achieve more active sites that facilitate fast
electron transfer reactions.

2.1 Recent progress in porous graphene-based lithium-ion
batteries

Lithium-ion batteries (LIBs) have been the most desired energy
storage devices in the past two decades. Their energy density is
high (400 W h L") and is comparably higher than that of lead-
acid (80 W h L"), nickel-metal (300 W h L"), and nickel-
cadmium (150 W h L") batteries.** Since 1991, researches have
been focused on the improvement of LIB performances in
terms of energy density, power density, and cycling stability.*®
To enhance the electrochemical performance of any energy
storage system, it is necessary to utilize active materials like
metal oxides and other alloys that have high electrical con-
ductivity, a high specific surface, and good cycling stability.'
Moreover, these active materials serve as an alternative to
graphite anodes due to their high theoretical capacitance.®*
Unfortunately, these metals and alloys suffer from poor cycling
and rate performances due to their intrinsic resistance and the
significant volume change that occurs during the long charge-
discharge cycling process.**

2526 | Mater. Adv, 2023, 4, 2524-2543
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To overcome these drawbacks, the active materials have to
be combined with carbonaceous materials like graphene, car-
bon nanotubes, and other carbon derivatives.***” Recently,
porous graphene has attracted much attention in battery
research due to its superior electric conductivity, ionic con-
ductivity, and surface properties.*® For example, a hierarchical
porous 3D graphene nanomaterial (PHG) was prepared by the
chemical vapor deposition (CVD) method using magnesium
oxide (MgO) and methane (CH,) as starting materials. The
synthesis process was carried out in a fluidized-bed reactor
under an argon atmosphere. It is reported that MgO was chosen
as a catalyst instead of any metal substrate because it is cost-
effective and can easily control nanostructure and size by
synthesis routes. However, by varying the reactor time (from
2, 5, 10, and 20 min), different batches of samples were
prepared, and PHG-5 (5 min reactor time) was chosen as an
optimal sample with better surface and electrical properties. It
is noteworthy that the hierarchical porous structures of PHG
were maintained even after the removal of MgO, as shown in
Fig. 2(a—d).*® The BET surface area of pure MgO is 181.8 m* g *

100 ricn
el

Fig. 2 (a and b) Low and high magnification SEM images of PHG/MgO
nanocomposites, (¢ and d) low and high magnification SEM images of
optimal PHG nanocomposites after removal of MgO, (e and f) SEM and
TEM morphology of PHG nanocomposites. Reprinted with permission,*®
Copyright [2019] American Chemical Society.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Tabulation on coin cell construction of lithium-ion, lithium—sulfur, sodium-ion batteries and supercapacitors

Lithium-ion batteries

S. no Battery type Positive Separator Negative Electrolyte Ref.
1. 3D porous gra- PHG/carbon black/PVDF — Li/Li+ 1 M LiPF¢ mixed in EC/DME 39
phene nanosh- (85:5:10 wt%)
eet (PHG)
(CR 2025)
2. N-doped porous N-doped porous graphene/ethy- Celgard 2300 Lithium foil 1 M LiPFs mixed in EC/DEC 40
graphene lene black/PVDF (80:10:10 wt%) (50:50 v/v)
(CR 2430) dissolved in NMP coated on a
copper foil
3. N, S-doped por- N, S-doped porous graphene/ Celgard 2400 Lithium foil 1 M LiPFs mixed in EC/DEC (1:1 41
ous graphene  acetylene black/PVDF (8:1:1) v/Iv)
(CR 2032) dissolved in NMP coated on cop-
per foil
4.  VG-PMS@Ag VG-PMS@Ag/super P/carboxyl Celgard 2325 Lithium metal 1 M LiPFs in a mixed EC/EMC 42
(CR 2032) methylcellulose, polymerized (1:1 v/v) with 10 wt% of FEC and 1
styrene-butadiene rubber wt% of vinylene carbonate
(60:20:10:10) coated on a copper
foil
Lithium-sulfur batteries
S. no Battery type Positive Separator Negative Electrolyte Ref.
5. 3D porous gra- PHG-S/carbon black/ — Li*/Li 1 M LiTFSI/DOL/DME. 39
phene nanosh- PVDF(80:10:10)
eet (PHG-S)
6. 3D porous N-  Composite/super P/PVDF — Lithium foil 15 pL of 1 M (LiTFSI)/LiNO;/DME/ 56
graphene/S (80:10:10) mixed in NMP on DOL [1:1 v/v] with 1 mg sulfur
(CR 2025) deposited on a carbon-coated
aluminium foil
7. S@VN/N-rGO S@VN/N-rGO film immersed in  Celgard 2400 Metallic lithium 1 M LiTFSI/DOL/1,2- 61
(CR 2025) Sulfur/carbon disulfide dimethoxyethane DME (1:1 v/v)
with an additive of 2% LiNO;
8.  LPG-Ni/S LPG-Ni/S/super P/PVDF (8:1:1) Celgard 2500 Lithium foil 1 M LiTFSL and 0.1 M LiNO; in 63
mixed in a NMP coated on alu- (1:1 v/v) DOL/DME
minium foil
9.  GA-NiC0,0,/S GA-NiC0,0,/S/super P/PVDF Celgard 2400 Li-Metal 1.0 M LiTFSL in DME/DOL (1:1 v/ 64
(CR 2032) (8:1:1) IN NMP coated on a Al- v) with 1 wt% of LiNO;
foil
Sodium-ion batteries
S. no Battery type Positive Separator Negative Electrolyte Ref.
10. N-3DPG N-3DPG/super P/sodium alginate Whatman glass Sodium foil 1ML " NaClO, in EC/PC (1:1v/v) 72
(CR 2032) (80:10:10) coated on a copper  microfibre with non-reactive 5 wt% FEC
foil membrane additive
11. FeS,C-RG FeS,C-RG/carbon black/PVDF Whatman glass Sodium foil 1 M NaCl, in EC/DEC (1:1v/v) 73
(80:10:10) on Cu foam microfibre
membrane
12.  PVA-In,S;- PVA-In,S;-graphene/carbon black/ Whatman glass Sodium metal 1 M NaClO, in EC/DEC/DMC 77
graphene carboxymethylcellulose microfibre (1:1:1 v/v) with 5 wt% FEC
(CR 2032) (60:20:20) membrane additive
13. a-Si@rGO a-Si@rGO/carbon black/sodium  Whatman glass Sodium metal 1 M NaPFs in EC/DEC (1:1v/v) 78
carboxymethyl cellulose (7:2:1) microfibre with 2 wt% FEC
coated on copper foil membrane
Supercapacitors
S. no Active material Positive Separator Negative Electrolyte Ref.
14. N-Graphene UPGA/acetylene black/PTFE Cellulose UPGA/acetylene black/ 40 mL EMIMBF, 93
aerogel (UPGA) coated on nickel foam (85:10:5) membrane PTFE coated on nickel
foam
15. GO/PANI nanor- GPGC/Carbon black/PTFE Cellulose GPGC/Carbon black/PTFE 1 M H,So, 95
ods (GPGC) (80:10:10) coated on a stainless membrane (80:10:10) coated on a
steel stainless steel
16. 3D BPGC 3D BPGC/PVDF (9:1) in NMP — 3D BPGC/PVDF (9:1) in 2 M MgSO4 + 0.05 M FeSO4 96

coated on a aluminium foil

© 2023 The Author(s). Published by the Royal Society of Chemistry

NMP coated on aluminium
foil
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Table 1 (continued)

Lithium-ion batteries
S. no Battery type Positive Separator Negative Electrolyte Ref.
17. Ni-TEGO Ni-TEGO coated onto a nickel Whatman glass TEGO coated onto a nickel 3.5 M KOH 97

(CR 2032) foam disk fibre was used as a foam disk

separator

18. Porous graphene PGNH coated on copper foil KOH/PVA gel PGN/CNT 1 M KOH 98

LiPF¢-lithium hexafluorophosphate, LiTFSI-lithium bis(trifluoromethanesulfonyl)imide, EC-ethylene carbonate, DEC-diethylene carbonate, FEC-
fluoroethylene carbonate, DOL-1,3 dioxolane, DME-dimethoxyethane, LiNO,-lithium nitrate, NMP-N-methyl-2-pyrrolidone, NaClO,-sodium per-
chlorate, EC-ethylene carbonate, PC-propylene carbonate, NaPFg-sodium hexafluorophosphate, EMIMBF,-1-ethyl-3-methylimidazolium tetrafluor-
oborate, H,SO,-sulfuric acid, MgSO,-magnesium sulfate, FeSO,-ferrous sulfate, KOH-potassium hydroxide.

Table 2 Tabulation on synthesis, surface area and electrochemical performance of porous graphene-based materials for lithium-ion battery, lithium

sulfur and sodium ion batteries discussed in this manuscript

Porous graphene SSA Current
S.no based electrode material Synthesis method (m? g~ ') Capacitance density Cycling performance Ref.
Lithium-ion atteries
1. 3D porous graphene nanosh- CVD 1460.9 1560 mAhg™' 01Ag' — 39
eet (PHG)
2. N-doped porous graphene  Pyrolysis using template  531.3 1523 mAhg ' 100 mAg ' 760 mA h g ' at 100 mA g " after 40
approach 100 cycles
3. N, S-doped porous graphene Hydrothermal 13.75 531mAhg ' 0.1C 474.7 mA h g at 0.5C after 41
200 cycles
4.  VG-PMS@Ag CVD 7.95 31216 mAhg ' 1Ag™"! 14039 mAhg 'at2 Ag 'after 42
100 cycles
Lithium-sulfur batteries
5. 3D porous N-graphene/S Hydrothermal followed by 432 1311mAhg ' 02C 714 mA h g ' at 1.5 mA C m™? after 56
pyrolysis 400 cycles
6. S@VN/N-rGO Template approach 5.9 698 mAhg'  1.0C 577 mA h g~ " at 1.0C after 200 cycles 61
7. LPG-Ni/S Hydrothermal followed by — 7187mAh g 0.1C 353.8 mA h cm ™ at 1 C after 63
pyrolysis 1000 cycles
8. GA- NiCo,0, Hydrothermal followed by 82 12141 mAh g™ 0.1C 4442 mA h g " at 2 C after 64

freeze drying
Sodium ion batteries

9. N-3DPG Template approach using 224
polystyrene

10. FeS,-C/RG Hydrothermal followed by 245.93
one-step vulcanization

11. PVA In,S;/1-G One pot hydrothermal 193.5
approach

12. a-Si@rGO Sodiothermic reaction 199

and its corresponding pore size is around 3.2 nm in diameter,
while the calculated BET surface area of the as-prepared PHG-5
(after the removal of MgO) is 1460.9 m> ¢~ ' and the pore size is
around 4-5 nm. In contrast, the in situ formed porous graphene
was prepared as an anode electrode material (refer Table 1) for
lithium-ion battery performance, which is robust, has a stable
cycling performance and delivers a specific capacitance of 1560
mA h g~" at 0.1 A g ' (Table 2), respectively. In addition, the
same composite (PHG) was doped with sulfur and subjected to
testing as cathode material (refer Table 1) for lithium-sulfur
battery performance, which delivered a specific capacitance of
around 1640 mA h g~ ' at 0.1C and retained a capacitance of
95% over 80 cycles.*® The optimization of the porous graphene
network in this work reported by Zhu et al. resulted in excellent
charge storage capacity. In another study, Xie et al have
reported on nitrogen-doped porous hybrid graphene materials

2528 | Mater. Adv, 2023, 4, 2524-2543

1000 cycles

285 mAhg' 02Ag ' 310mAhg 'at0.2Ag 'after 72
500 cycles

1196 mAhg™ 0.1Ag "' 291.7mAhg 'at6Ag " after 73
1000 cycles

565mAhg ' 200mAg ' 509 mAh g ' at 200 mA g ' after 77
100 cycles

681.6 mAhg ' 100mAg ' 1421 mAhg 'at 800 mAg ' over 78
2000 cycle

using calcium carbonate as a template source.”” The as-
prepared porous graphene material was doped with iron
nitrate, which is a starting material for nitrogen dopants, and
waste coffee grains as carbon sources (refer to Fig. 3A). More-
over, three different compositions of the above-mentioned
components were prepared in order to check the influence of
carbonate and nitrogen on the physicochemical and electro-
chemical performance of porous graphene composites. A spe-
cific composition (NC 3320) was chosen as the best positive
electrode material for LIB applications (Table 2). The as-prepared
anode material could deliver a capacitance of 760 mA h g * at a
current density of 100 mA g ' after 100 cycles. The reported
high-rate capacitance was around 330 mA h g ' at a
current density of 3200 mA g~ ' as shown in Fig. 3B. The
enhanced electrochemical performance of the optimal porous
graphene composition is highly due to the large BET surface

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) Schematic representation of porous carbon network, (B) capacitance at different current densities from 50 to 3200 mA g2, (d) comparative
response of retention rate vs. D average of different samples at various current densities, (C) TEM images of the optimal sample at different
magnifications. Reprinted with permission,*® Copyright (2021) from Elsevier.

area of 531.3 m”> g~ ', with an average pore dimension of 9.8 nm
(for NC 3320) and its optimal surface properties (Fig. 3B and
C).** A recent study by Feng et al. reported a nitrogen and
sulfur-doped porous graphene aerogel as an enhanced positive
electrode (Table 1) material for high-performance LIBs. In this
work, urea and thioacetamide were taken as starting materials
for nitrogen and sulfur doping components, whereas graphene
oxide and graphite are directly used as graphitic source materi-
als. The self-assembled nitrogen- and sulfur-doped 3D porous
graphene aerogel/natural graphite composite (N, S-PGA/NG)
was prepared via a hydrothermal approach (Fig. 4A).*' The
surface area of the as-prepared porous graphene aerogel/nat-
ural graphite (PGA/NG) was around 5.78 m”* g~ ', which further
increased to 13.75 m* g ' as a result of doping nitrogen and

© 2023 The Author(s). Published by the Royal Society of Chemistry

sulfur components in the PGA/NG system. However, N, S-PGA/
NG could deliver an amount of capacitance around 531 mAh g~ " at
0.1C, and the rate performance is around 277 mA h g * at 2 C,
whereas the individual graphene materials (PGA/NG) delivered a
much lesser capacitance of 479 mA h g~ at 0.1C, respectively.
It is revealed that N, S-PGA/NG, and PGA/NG delivered a
discharge capacitance of 474.7 and 388.9 mA h g ' after 200
charge-discharge cycles at 0.5C as tabulated in Table 2. The better
electrochemical performance and cycling stability of the as-
prepared N, S-PGA/NG anode material is high due to the
optimal doping of sulfur and nitrogen, which facilitates abun-
dant pores and channels for efficient electron and ion transfer,
as can be seen from Fig. 4B and C. Similarly, Mo et al. reported
on high-performance LIBs using an in situ grown vertical

Mater. Adv., 2023, 4, 2524-2543 | 2529
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(A) Schematic representation of N, S-PGA/NG, (B) (a—c) SEM images of pure graphene, PGA/NG and optimal N, S-PGA/NG, (C) rate performance

at different current densities and cycling performance at 0.5C current density. Reprinted with permission,** Copyright (2021) from Elsevier.

graphene (VG) material anchored onto the microporous silicon
(PMS) with encapsulated silver nanoparticle VG-PMS@Ag
(Fig. 5A). The influence of graphene on enhancing the electro-
chemical performance of silicon materials for LIBs was studied
in this work.*> Silicon is already a growing field in LIBs due to
its high theoretical capacitance (4200 mA h g "),** but in
practice, it has many drawbacks due to its low electrical and
cycling performances. In this work,*” an attempt was made to
overcome the above-mentioned drawback by designing this
silicon-based electrode in such a way that it enhances the
conductivity and cycling stability. The nanosilver encapsulated
on the surface of porous micro-silicon (as in Fig. 5A and B)
accelerates the charge transfer, which is beneficial for the
electrochemical rate performance. The as-prepared VG-
PMS@Ag positive electrode (refer to Table 1) exhibits an initial

2530 | Mater. Adv., 2023, 4, 2524-2543

capacitance of 3121 mA h g' at 1 A ¢ and a high-rate
capacitance value of 943.8 mA h g~ ' at 6 A g™, respectively. Even
after 100 cycles, a reversible capacitance of 1403.9 mA h g™*

2 A g " was observed (refer to Fig. 5C and Table 2). The reported
specific surface area of VG-PMS@Ag is 7.95 m> g~ . This remark-
able surface and electrochemical performance of the optimal
composite may be due to the synergic interaction between the
active sites of vertically grown graphene sheets, resulting in acting
as an excellent electrical contact network on the domains of both
electrode surface and silicon nanoparticles.

2.2 Recent progress in porous graphene-based lithium-sulfur
batteries

Lithium-sulfur batteries (LSBs) are superior to conventional
LIBs because they use sulfur as an additional component,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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which is abundant in nature, inexpensive, and less toxic.** LSBs
possess a high theoretical surface area of 1675 mA g ' and an
energy density of 2835 W h kg™ ".**> However, they suffer from
various drawbacks. First, sulfur and lithium sulfide are highly
insulating materials; they have to be combined with some
conducting additives in order to make them more active
materials.*® Secondly, while constructing the battery system
(LSB), some lithium polysulfides readily dissolve in the electro-
lyte medium and react with the lithium present at the anode,
causing the “shuttle effect””.*”*® This leads to reduced capaci-
tance performance and poor efficiency®® due to which com-
mercializing LSBs is a challenging task.

Various strategies have been implemented to overcome this
drawback, like encapsulating sulfur with a conducting
substrate,” adapting the separators,®® and varying the electro-
lyte medium.”” Among these strategies, utilizing porous carbon
materials have been proven to effectively suppress polysulfide
formation with modified synthesis routes.”>* In this context,
porous graphene is one of the most promising systems because
it can not only offer high conductivity and surface area but also
effectively enhance the charge/discharge volume exchange.
Cheng et al. reported on a 3D nitrogen-doped porous graphene

© 2023 The Author(s). Published by the Royal Society of Chemistry

(3D-PNG/S) hydrothermally prepared (Fig. 6A) for LSB applica-
tions. In this report, urea is chosen as a precursor for nitrogen
sources, and it also serves as a self-removal template for
optimizing the surface pore dimension. The hydrothermally
prepared N-doped porous graphene possesses (3D-PNG) more
3D interlinked porous structure as-like the conventional pure
3D reduced graphene oxide (rGO), which can be seen from
morphological images in Fig. 6B.® The measured specific
surface area for 3D-PNG is around 432 m”> g ' which is
comparatively higher than that for 3D-rGO with 203 m* g*
The 3D-PNG/S-based electrode exhibits a capacitance of
1311 mA h g ! at 0.2C, a rate capacity of 950 mA h g " at 1
C, and a cycling performance of 714 mA h g * at 1.5 mA cm 2
after 400 cycles (as tabulated in Table 2). The interconnected
porosity on the surface of 3D-PNG makes it a suitable host
material for sulfur accommodation (3D-PNG/S). However, it is
challenging to achieve high volumetric energy density in LSB;
hence, the inclusion of metal nitrides in the composite system
has been extensively studied to enhance the electrochemical
performance of LSBs and improve polysulfide retention.”” > Unfor-
tunately, metal nitrides also suffer from aggregation during the
synthesis process, due to which there will be a lot of inactive

Mater. Adv,, 2023, 4, 2524-2543 | 2531
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sites in the cathode, making polysulfide unapproachable.®® To
overcome such drawbacks, Li et al. made a recent study on
vanadium nitride nanomaterial-induced, nitrogen-doped 3D
porous graphene (VN/N-rGO) reported for improved lithium-
sulfur battery application, as shown in Fig. 7A.*" Inducing
graphene with vanadium nitride can increase the binding
energy and active sites and also enable rapid surface reactions
since VN has high electrical conductivity (~10° S m™").%?
Furthermore, at a current density of 1.0C, the sulfur-doped
VN/N-rGO exhibits respective capacitance values of 785 and
698 mA h g~ for sulfur loadings of 4.1 and 7.3 mg cm 2. After
200 cycles, the capacitance was still maintained at 668 and
577 mA h g~ ' for the same above-mentioned loading concen-
tration of sulfur at 1.0C. The specific surface area of sulfur-
doped VN/N-rGO is about 5.9 m* g ' with a reduced pore
volume from 0.75 to 0.02 m® g~* due to the encapsulation of
sulfur in VN/N-rGO (as shown in Fig. 7B). The uniform dis-
tribution of VN in the porous graphene network would be one
possible reason for such excellent electrochemical perfor-
mance. Another study was reported by Zhang et al. on enhan-
cing the volumetric capacitance of lamellar porous graphene
by combining it with nickel (LPG-Ni) later doped with sulfur

2532 | Mater. Adv., 2023, 4, 2524-2543

(LPG-Ni/S) and prepared as a cathode material for LSB applica-
tion (refer to Fig. 8A and Table 1).*® The densely stacked
network (Fig. 8A-b-d) exhibits excellent electronic and ionic
conductivity; thus, the cathode material provides a large
gravimetric and volumetric capacity of around 718.7 mA h g !
and 884.0 mA h cm™® at 0.1C (as tabulated in Table 2),
respectively. As can be seen from Fig. 8B, over 1000 cycles,
the as-prepared material (LPG/Ni-S) could hold a discharge
capacitance of up to 353.8 mA h cm™® at 1C. The unique
composition of lamellar porous graphene and the nickel
component effectively improved the redox kinetics and sup-
pressed the shuttling effect of polysulfides. Moreover, the
porous nature of graphene makes it highly efficient in accel-
erating ion transport through the electrode interface, which
results in such high capacitance. Similarly, Tian et al also
reported on NiCo,0, nanoparticle-dispersed porous gra-
phene aerogel composite (NCO-GA/S) for improved capacitance
activity of LSBs synthesized by hydrothermal approach
followed by freeze drying and annealing.®® The reported
specific surface area of NCO-GA is about 82 m”> g '. The
discharge-specific capacitance was around 1214.1 mA h g*
at 0.1C, with a rate capability of about 435.7 mAh g "at 5 C

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(refer to Fig. 9A-a-c). The cathode material could retain a
specific capacitance of 444.2 mA h g' after 1000 cycles at
2 C (refer Fig. 9A-d and Table 2), respectively. The porous
graphene present in this system improved sulfur confinement
and enhanced electron-ion transport in the composite system.
Moreover, NiCo,0, greatly suppresses the polysulfide shuttling
and promotes the physical adsorption of sulfur, as represented
in Fig. 9B.

2.3 Recent progress in porous graphene-based sodium-ion
batteries

LIBs have greatly progressed in the past several years and
acquired high demand in the industry, but there are some
limitations, like an increase in toxicity, demand for lithium
sources, and limited lithium extractions.®® Therefore, it is
necessary to switch to an alternative rechargeable battery with
eco-friendly, low-cost, and high-performance systems. Sodium-
ion batteries (SIBs) have been identified as an appealing alter-
native to LIBs because less expensive, abundant in nature, and
less toxic.®® However, the heavier mass and larger radius of Na*
inevitably result in lower electrochemical kinetics and larger
volume expansion of active materials than that of lighter
and smaller Li'. Interestingly, various cathode materials
for SIBs have been derived from previously established LIB
cathode materials in order to evaluate the electrochemical

© 2023 The Author(s). Published by the Royal Society of Chemistry

performances (LiCoO, as NaCoO, and LiFePO, as NaFePO,)
of those electrodes in SIBs.®” However, the large ionic radius of
sodium (1.02 A) may cause a small number of sodium ions to
intercalate into graphite, this makes it difficult to make use of
graphite anodes in SIB systems.®®®® Hence, other forms of
carbon-based materials like graphene and carbon nanotubes
have been studied as positive electrode materials for the
improved electrochemical performance of SIBs.”””* Moreover,
optimizing the test conditions for graphene-based electrode
materials and investigating the sodium storage mechanism for
SIBs are some of the challenging research issues.

In the study of nitrogen-doped porous graphene (N-3DPG)
for high-performance SIBs by Qiao et al., the mechanism of
intercalation and deintercalation of sodium ions on the gra-
phene network surface during the redox reaction process is
described in detail.®® Template sources such as polystyrene (PS)
nanospheres and melamine are used as starting materials to
prepare N-3DPG. Graphene oxide and PS were combined with a
varying weight percent ratio of melamine (1, 2, 4, or 8), followed
by freeze drying and carbonization (Fig. 10A). The typical sur-
face morphology of the optimal composites is depicted in
Fig. 10B. The reported high specific capacitance is about
310 mA h g~ ! after 500 cycles at a current density of 0.2 A g~*
and the reversible capability is about 169 mA h g™* at a high
current density of 10 A g~ '. Based on the melamine concen-
tration, the highest specific surface area reported in the as-

Mater. Adv., 2023, 4, 2524-2543 | 2533
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(A) (a) Schematic representation of the as-prepared LPG-Ni/S composite, (b—d) cross-sectional FESEM images of LPG-Ni at various magnifica-

tions and its corresponding elemental mapping of C, O, Ni. (B) Long-term cycling performance of the LPG-Ni/S cathode material. Reprinted with

permission,®® Copyright (2022) from Elsevier.

prepared N-3DPG system is around 224 m* g~ '. The random
distribution of melamine is the likely reason for a major
impediment in the electrochemical performance of the as-
prepared system.”?

Wang et al. reported on a metal sulfide/graphene-based
(FeS,-C/RG) composite for SIB applications using the hydro-
thermal approach. Among various metal sulfide materials, iron
disulfide (FeS,) is a widely available and attractive metal sulfide
material, with a theoretical capacitance of 894 mA h g~ '.”*
Various FeS,/carbon-based composites have previously investi-
gated the capacitance loss due to the volume expansion during
the FeS, to Na,S electrochemical cycling process.”*’® In this
study, reported by Wang et al., Prussian blue nanomaterials
and rGO were used as a starting precursor for the fabrication of
porous FeS,-C/RG-based composites. The reported specific
capacitance is 1196 mA h g~ " at 0.1 A g and this capacitance
remains at 655.9 mA h g~* even after 100 cycles at a current
density of 0.1 A g '. The composite also possesses a high
specific surface area of about 245.93 m”> g ' as tabulated in
Table 2. It is noteworthy that the inclusion of rGO suppressed
the aggregation of FeS, nanoparticles on the composite surface
(Fig. 11)”* and improved the overall capacitance performance.

2534 | Mater. Adv,, 2023, 4, 2524-2543

Following this trend, another report was studied by Yue et al
on PVA-based, indium sulfide (In,S;) graphene porous 3D
composite (PVA In,S;/rG) prepared as a positive electrode
material for enhanced SIB performance (refer to Table 1). The
reported surface area for the optimal composite system is
around 193.5 m® g '. The initial and final capacities of
this PVA-inducive In,S;/rG composite are around 565 and
770 mA h ¢~ at a current density of 200 mA g~ ' and a reversible
capacitance value of 509 mA h g~'.”” Zhang et al. reported
on amorphous silicon (Si) composite coated with rGO (a-Si/
rGO) as a positive material for SIB applications. The composite
was prepared by sodiothermic reduction of hollow silica nano-
boxes (SiO, HNB) and then coated with rGO by electrostatic
interactions. The optimal a-Si/rGO composite exhibits an initial
capacitive discharge of 681.6 mA h g~ ' at an applied current
density of 100 mA g~ ' and capacitive stability (142.1 mA h g™*)
for more than 2000 cycles at 800 mA g !, with a reported
specific surface area of around 199 m> g~ ' (refer Table 2).”®
Graphene inhibition improved surface and electrical proper-
ties, and porous a-Si enhanced the sodium diffusion mecha-
nism at the electrode/electrolyte interface for better battery
performance.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.4 Recent progress in porous graphene-based
supercapacitors

Among various energy storage devices, supercapacitors have
been extensively studied for the development of portable elec-
tronic applications due to their high energy density, rate
capability, and safe operation.”® Conventional electric double-
layer capacitors (EDCL) store charge electrostatically at the
electrode/electrolyte interface (non-faradaic process).*® Among
various capacitance measurements, pseudo-capacitive materi-
als have emerged with completely different electrochemical
energy storage mechanisms (such as batteries) in which the

© 2023 The Author(s). Published by the Royal Society of Chemistry

current response is neither purely capacitive nor faradaic.®" It is
well known that supercapacitors have limited energy storage
but high-power density, while batteries have low power density
but high energy density. A device with the combined character-
istics of both systems (battery and supercapacitor) is expected
to achieve high power density and high energy density simulta-
neously. In this context, there is growing research interest in
asymmetric and hybrid supercapacitors,®*#* which improve not
only the electrochemical performance but also the cycle stabi-
lity and lifetime of supercapacitors.®**> Various metal oxides/
hydroxides and conducting polymers doped with carbonaceous

Mater. Adv., 2023, 4, 2524-2543 | 2535
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materials are utilized as positive and negative electrodes, and
these electrodes are wusually described in the research
report.**"®° However, these electrodes experienced low conduc-
tivity and large volume changes during the cycling process,
resulting in low power density and flat stability.”® A complica-
tion observed in carbonaceous electrode materials for super-
capacitors is the low energy density due to the lamination of
carbon, which limits the surface exposure to the charge storage

View Article Online

Review

mechanism, and results in low capacitance activity.”* To over-
come this problem, research is being carried out to increase the
surface area by utilizing porous graphene-based electrode
materials for enhanced capacitance performance. For instance,
Sethi et al. have reported on porous graphene-based NiCo,0,
nanorod doped hybrid composites (PGNCs) for supercapacitor
applications.”®> The porous structural hybrid composite was
created using a solvothermal method with a varying weight %
of GO in the NiCo,0, system, followed by heating at 400 °C. The
highest capacitance measured with the optimal composite
(10PGNC) is 1684 F g ' with 1 A g~ applied current under
2 M KOH electrolyte condition (Fig. 12b). As shown in Fig. 12d,
the cycling stability of the as-prepared composite could hold
94% of the initial capacitance value for 10000 cycles at a
current density of 8 A g~ . The optimal electrode as a working
system achieved the high energy and high-power density of
45.3 W h kg™" and 17843.5 W kg ™" (as tabulated in Table 3),
respectively. Such an improvement in electrochemical behavior
can be attributed to the synergic interaction of GO and NiC0,0,
in the composite system. Recently, Cheng et al.®® reported a
nitrogen-doped ionic liquid-based porous graphene aerogel
(UPGA) composite prepared by a hydrothermal approach for
supercapacitor applications. They utilized urea phosphate as a
source material for nitrogen doping, and phosphate also acts as
a protective barrier to retain the hydroxyl group present on the
surface of graphene oxide. This prevention of oxygen-rich
functional groups (functionalization) is very important to tune
the bandgap and other physicochemical properties of graphene
to improve its electrical performance.’® The surface morphol-
ogy of the optimal samples is shown in Fig. 13A. The reported
specific capacitance of the optimal sample is 196.7 F g~ ' at a
current density of 1 A g~ (refer to Table 3). The energy density
of the symmetric electrode material is around 97.2 W h kg™ " at
a power density of 0.9 kW kg ' and demonstrated good

Fig. 11 SEM morphology of (a) PB, (b) FeS,-C, (c) PB/r-GO, (d) FeS,-C/RG,
permission,”® Copyright (2020) from Elsevier.
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(e and f) TEM and HRTEM images of optimal FeS,-C/RG. Reprinted with
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Table 3 Tabulation on synthesis, surface area and electrochemical performance of porous graphene-based materials for supercapacitors discussed in

this manuscript

Porous graphene based SSA

S.no electrode material Synthesis method

Capacitance & cur- Type of capacitor (energy &
(m? g~ ") rent density

Cycling performance

power density) in (%) Ref.

1. PGNC composite Hydrothermal synthesis 109 1684 F g~ ' at Symmetric (45.3 W h kg™" at 94% at 8 A g~ " after 92
using GO/NiC0,0,/Urea 1Ag? 1784.5 W kg™ ) 10000 cycles
followed by calcination

2. N-graphene aerogel Hydrothermal synthesis  — 196.7 F g ' at Symmetric (97.2 W h kg™' at 78.3% at 1 A g~ " after 93

(UPGA) using urea phosphate 1Ag? 0.9 kw kg™ ) 5500 cycles

3. GO/PANI nanorods Chemical activation of 2837 507 Fg ' at Symmetric (28.3 W h kg™' at 96.8% at 10 A g~ " after 95
PANI/GO by KOH 1Ag" 700 W kg™ ) 1000 cycles

4. 3D BPGC Carbonization of mantis 2300 317Fg ' at Symmetric (17.7 W h kg™* at 87.2% at 1 A g~ " over 96
shrimp shell and KOH 05Ag" 180 W kg™ ) 30000 cycles
activation

5. Ni-TEGO Thermal exfoliation of gra- 500 1900 F g ' at Asymmetric (37 Wh kg 'at 72% at 1 Ag 'over 97
phite oxide at 1150 °C 2mvs ! 40mA g 10000 cycles

6. Porous graphene Carbonization followed by 1281.8 290 F g™ ' at Symmetric (12.9 W h kg™ at 86% at 0.5 A g~ " over 98
chemical activation of silk 02Ag " 95 W kg ") 10000 cycles

cocoon fibroins and exfo-
liated graphene sheet

capacitance retention of 78% after 5500 cycles at 1 A g "
(Fig. 13B). Similarly, Gao et al. reported on nitrogen-doped
porous graphene composites (GO/PANI nanorods array/GO
electrode = GPGC) prepared by combining polyaniline nanorod
arrays and graphene oxide, then chemically activating the
samples with KOH at 700 °C in an N, atmosphere.”® The as-
prepared porous GPGC composite was reported to have a high
specific surface area of 2837 m> g~ " as a result of the inclusion
of porous graphene oxide (Fig. 14). The specific capacitance was

© 2023 The Author(s). Published by the Royal Society of Chemistry

around 507 F g ' at 1 A g~ ' for the as-prepared porous
composite in three-electrode measuring technique, and the
cycling stability was around 96.8% at an applied current density
of 10 A g~ " after 1000 cycles (refer Table 3). The same composite
was also studied for symmetric capacitance (two-electrode
energy storage system as in Table 1) and the reported specific
capacitance was 28.3 W h kg™' at the specific power of
700 W kg~ ' respectively. The inclusion of GO enhanced the
surface morphology as well as the electrochemical performance

Mater. Adv,, 2023, 4, 2524-2543 | 2537
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(A) SEM images of (a) UPGA and (b) TEM image of UPGA, (B) electrochemical Response of UPGA: (a) GCD response (b) cycling stability vs.

coulombic efficiency at 1 A g~ Reprinted with permission,®® Copyright (2021) from Elsevier.
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Fig. 14 TEM images of (a and c) nitrogen doped porous carbon (b and d),
porous GO/PANI nanorods array/GO electrode (GPGC) composite. Rep-
rinted with permission,®® Copyright (2021) from Elsevier.

of the GPGC composite. Similarly, Tao et al. reported on 3D
porous graphene-like electrode material with naturally doped
nitrogen content (3D BPGC) by utilizing activated biocarbon

2538 | Mater. Adv, 2023, 4, 2524-2543

from mantis shrimp shell for supercapacitor applications. The
specific surface area of the as-prepared 3D BPGC nanomaterial
is about 2300 m? g~ *. The symmetric capacitance offered by the
porous electrode material is 317.2 Fg ' at 0.5 Ag 'at 2 M
MgSO, + 0.05 M FeSO, electrolyte condition (refer to Fig. 15A
and Table 1). The composite could maintain 87.2% of the
initial capacitance value over 30000 cycles at 1 A g " and the
gravimetric energy density is around 17.7 W h kg ' at a power
density of 180 W kg™ ', respectively. This proposed porous
material delivered improved cycling stability due to the opti-
mized porous structure (Fig. 15B)°® and the surface property of
activated carbon material. Morenghi et al. reported an asym-
metric supercapacitor (ASC) using a nickel-doped nanoparticle
incorporated porous graphene hybrid (Ni-TEGO) composite
system. The graphene was synthesized by thermal exfoliation
of graphite oxide (TEGO) at 1150 °C under high vacuum
conditions and this graphene oxide possessed a specific surface
area of 500 m”? g~ and electrical conductivity of 9.5 S cm ™,
respectively. When the individual electrodes (Ni-TEGO and
TEGO) were subjected to a three-electrode system, the reported
specific capacitance was 1900 and 310 F g ' at a scan rate of
2 mV s~ as shown in Fig. 16A. However, the developed ASC
with Ni-TEGO as positive and TEGO as negative electrodes in
3.5 M KOH electrolyte medium showed impressive specific
energy of 37 W h kg™' at 40 mA ¢ ' and 10 W h kg ' at
10 A g ' of applied current density, respectively. The assembled
ASC electrodes possessed excellent capacitance retention of
72% over 10000 cycles as shown in Fig. 16B.°” Such high
capacitance is due to the synergic interaction of graphene with

© 2023 The Author(s). Published by the Royal Society of Chemistry
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nickel nanoparticle composition coated onto the nickel foam
disk. Similarly, Zhou et al. studied the symmetric capacitance of
porous graphene/composite using activated silk cocoon
fibroins/exfoliated graphene (represented as KCC) as a starting
material.”® The as-prepared silk-derived carbon material was
pyrolyzed and then chemically activated with KOH at different
temperatures. The reported specific surface area of the optimal
composite material was 1281.8 m> g~ " and exhibited a specific
capacitance of 290 F g ' at an applied current density of
0.2 A g ' (refer to Table 3). The maximum energy density is
about 12.9 W h kg~ " at 95 W kg~ ' power density. Overall, the
composite possesses 86% of capacitance retention at 0.75 A g~ "
after 10000 cycles. The high cycling stability of the reported
composite is due to N and O heteroatoms present in the
carbonized samples.

3. Role of intrinsic defects on
carbonaceous materials

In the field of energy storage and conversion systems, the
beneficial functions of defective (both intrinsic and extrinsic)
carbonaceous materials have been extensively studied to
improve the performance of rechargeable batteries and
electrocatalysts.”>'%° Defect engineering is considered as an

© 2023 The Author(s). Published by the Royal Society of Chemistry

effective means of modifying the surface chemistry of carbon
skeleton and thus promoting electrochemical reactivity. In
carbonaceous materials, intrinsic defects (in 3D structures)
are divided into three categories: topological defects, carbon
vacancy defects, and edge defects. Whereas, extrinsic defects
are caused by the intercalation of dopants in the crystal lattice
and it includes doping of heteroatoms (N, S, B, etc.) and metal
atoms (Fe, Co, Ni, etc.).'"®" In particular, carbon vacancies
(intrinsic defect) refer to the absence of one or a few carbon
atoms, and hole defects refer to the absence of a large number
of carbon atoms, causing a hierarchical porous structure with
the formation of micropores, mesopores, and macropores on
the surface network.'* This type of defect engineering may
modify the surface-to-porous ratio in the graphene network and
serve as an effective active center to facilitate more synergetic
active sites. These synergetic active sites promote more charge
transfer at the surface of porous graphene, facilitating improved
electrochemical performance.'”>'%* According to Wang et al.,'**
these intrinsic defect structural carbons have the capacity to
improve the m-m electron donor-acceptor interactions. Many
current reports claim that intrinsic defects have better electro-
chemical activity than those doped with heteroatoms, and this
interesting fact has generated much research interest in defective
carbonaceous materials (such as porous graphene) for a variety of
energy-related applications and their industrialization.'* %"
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4. Summary and future perspective

Porous graphene-based electrode materials are promising can-
didates for the fabrication of electrochemical energy storage
devices. Other energy devices utilizing conventional graphene
systems greatly suffer from the aggregation/re-stacking of gra-
phene sheets, resulting in poor energy storage performance
hindering their practical applications. Interestingly, 3D porous
graphene allows the electrolyte (containing ions) to reach the
graphene surface layer more quickly and this characteristic
feature promotes improved capacitance activity, fast charge
transfer, and long-term stability.

Recently, there has been an increasing research interest in
porous graphene electrodes with more edge, basal plane struc-
tures for energy and other applications. The most recent
developments in 3D porous graphene-based electrodes are
discussed in this review with regards to achieving optimal
electrochemical charge-storage performances in batteries. Por-
ous graphene nanomaterials, however, still have some chal-
lenges to be resolved: firstly, the precise controlling of
homogeneity in the pore size, structure, and pore morphology
by the synthesis conditions still remains a challenge in opti-
mizing the structural properties of porous systems. In general,
the preconditioning of starting materials, doping agents (het-
eroatoms and metal species) used, and preparation methods all

2540 | Mater. Adv., 2023, 4, 2524-2543

together contribute to the porous surface designing. In addi-
tion to this, the process of preparing porous graphene involves
multiple steps using different raw materials, which sometimes
results in a low yield of carbon. Secondly, choosing cost-
effective starting materials with longevity and stability for
large-scale industrialization of porous graphene-based energy
storage systems still remains a challenging task. Third, many
research papers also lack information on energy storage per
unit volume (volumetric energy density), which is an important
parameter for commercializing porous graphene-based materi-
als in energy systems. Numerous studies in the last few years
have suggested that 3D porous materials, such as graphene
hydrogels and graphene foams, can increase long-term electro-
chemical cycling stability by preventing the stacking of gra-
phene sheets, so this finding should prompt researchers to
focus more on developing edge-plane site porous surface
materials. In the future, crystalline porous organic frameworks
like organic cages, covalent triazine frameworks (CTFs), porous
aromatic frameworks (PAFs), covalent organic frameworks
(COFs), hyper-crosslinked polymers (HCPs), and conjugated
microporous polymers (CMP) may be used as source materi-
als for the preparation of porous graphene. By this way
of synthesis, it is possible to realize highly periodic
porous structures that are advantageous for energy storage
performance.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ma00022b

Open Access Article. Published on 12 April 2023. Downloaded on 1/20/2026 3:23:23 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

It is true that porous graphene is a novel system, and if the
above-mentioned problems can be effectively solved or recti-
fied, 3D porous graphene has the potential to serve as an
innovative nanomaterial for the manufacture of advanced
energy storage devices in the future.
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