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De Vries-like materials show small layer shrinkages at the SmA to SmC transition and can therefore be applied
in surface-stabilized ferroelectric liquid crystal displays. Here we report the synthesis and characterization of a
new class of de Vries mesogens with a simple 2-phenylazulene-1-carbonitrile-based core. These materials
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exhibit an exceptionally small lower threshold for the maximum layer shrinkage of only 0.16%. One of the
investigated compounds shows an orthogonal SmA re-entrance phase below the tilted SmC phase. This
behavior has not been observed for achiral calamitic molecules before. The rationalization of the anomalous
phase behavior might lead to a new design principle for liquid crystalline compounds showing re-entrant
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Introduction

Liquid crystalline phases differ from each other by the degree of
orientational and positional order. In the nematic (N) phase the
mesogenic molecules orientate along the director A." In con-
trast, smectic phases behave like 2D fluids where the molecules
form layers. When 7 is parallel to the layer normal & a smectic A
(SmA) phase is present. An additional tilt of the molecules at
the angle @ leads to a SmC phase. The tilt-direction in a SmC
phase can be controlled by an external electric field. When
anchored between planar surfaces of a liquid crystal cell, a
macroscopic polarization is exhibited by ferroelectric SmC*
phases. This effect is exploited in surface-stabilized ferroelec-
tric liquid crystal displays (SSFLCDs).>?

SSFLCDs outperform liquid crystal displays based on nematic
mesogens in terms of switching time and offer bistable modes of
operation.>* However, the SSFLCD technology is limited to specific
applications due to fabrication difficulties. The major problem is
the layer contraction that occurs at the SmA-SmC transition due to
tilting of the mesogens which can be rationalized by the rigid rod
model (Fig. 1a).> Buckling of the layers causes chevron structures,
which lower the quality of the display. So-called zigzag defects at
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the boundary of domains with different fold directions are visible
as image irregularities in the display. A possible solution to this
problem is the use of materials with SmC phases with low or no
layer contraction during cooling, which are called de Vries-like
materials.® This behavior is often explained by the diffuse cone
model (Fig. 1b), where the SmA-SmC transition is characterized by
a change from disorder to order according to seminal work by de
Vries in 1979.* It suggests that the molecules are already tilted in
the SmA phase but have a random azimuthal distribution.” During
formation of the SmC phase the molecules tilt in the same
direction, increasing the order while maintaining the layer spacing
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Fig. 1 Models for the behavior during the SmA-SmC transition. (a) Rigid
rod model and (b) diffuse cone model. Reproduced from ref. 9 with
permission from the Royal Society of Chemistry.
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d. Experimental temperature-dependent XRD studies of com-
pounds possessing a SmA phase at higher temperatures and a de
Vries-like SmC phase at lower temperatures reveal that d passes
through a minimum and increases again upon cooling in the SmC
phase.®> The ratio between the lowest value of d and the layer
spacing at the SmA-SmC transition dac is defined as the maximum
layer contraction lcy,.. Both the rigid rod model and the diffuse
cone model are ideal cases and usually a mixture of both cases is
observed. Besides lc,,,a, the reduction factor R is defined to quantify
the degree of de Vries-like behavior:®

cos ™! (Iemax)

R(T) = Oopi(T)

R can assume values between 1 and 0, whereby R = 0 describes
perfect de Vries-like and R = 1 classic rigid rod behavior. For
comparison purposes, the optical tilt angle @, is given at 10 K
below the SmA-SmC-transition.

Roberts et al. claimed that a frustration between SmA and
SmC promoting elements within one molecule establishes de
Vries-like properties.” In a more general approach, a combi-
nation of a low orientational order parameter S, and very well-
defined layers lead to the sought-after de Vries-like properties.
Usually nano-segregating elements like perfluorated side
chains,® carbosilane®® units or ionic headgroups'® were chosen
to acquire the necessary degree of translational order. However,
materials with ordinary alkyl chains and very low lc,,.x have
also been reported.'™'* The rapid availability and chemical
inertness of those side chains renders them attractive for
potential applications.

Frustration is an important concept not only in creating materi-
als with de Vries-like properties. The appearance of re-entrant
phases can also be explained by a frustration between different
effects.'® Re-entrant phases form on cooling and are characterized
by a less-ordered phase geometry than the corresponding higher
temperature phase.** Often, re-entrant phases appear in mixtures
of liquid crystals.">'® On the other hand, pure compounds with
re-entrance behavior are also known.'”*® Orthogonal re-entrant
phases following a tilted SmC phase are rare and limited to bent
mesogenic dimers and rod-like molecules with permanent
chirality.***" Novotna et al found a SmA*-SmC*-SmA*,. phase
sequence for 9ZBL (Fig. 2a)."**> Among a homologous series, the
anomalous phase behavior did only occur for this derivative and
was explained by the interaction of multiple effects such as dipolar
interactions, packing arrangements and the rotational distribution
of various conformers."* It was further argued that the presence of
multiple chiral centers might be important for the re-entrant phase.
More recent studies showed that racemic mixtures with only one
chiral center would also form the SmA re-entrance phase.”

Azulene Az has been highlighted as a potential candidate for
numerous applications due to its optoelectronic properties.>*"
As a non-alternant isomer of naphthalene, azulene Az consists of a
five-membered and a seven-membered ring (Fig. 2b). Owing to
Hiickel’s rule, a zwitterionic resonance structure can be drawn
which explains the dipole moment of 1.08 D. Embedded in a
calamitic molecule, the polar aromatic motif improves transla-
tional order in smectic phases. Therefore, the soft crystalline SmE

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Structure of 9ZBL exhibiting a SmA,. phase (b) Localized and
zwitterionic resonance structure of azulene Az. (c) Design concept for
azulene derivatives with de Vries and re-entrant behavior.

appears frequently in those systems.*** We recently described a

series of 2-bromo-6-alkyloxyazulenes n0-Az-Br forming those
highly ordered SmE phases.*” From these results we anticipated
that lateral substitution at the azulene moiety should reduce the
order within the layers while preserving the translational order
induced by the phenyl azulene core (Fig. 2c). Adapting the concept
of Lagerwall and Giesselmann this could result in de Vries
behavior.® Indeed, as detailed below azulene derivatives with de
Vries behavior were identified. Surprisingly, one of the investi-
gated compounds displayed a SmA,. phase below the tilted
SmC phase.

Results and discussion

The synthesis of azulene target compounds is detailed in Fig. 3.
Starting from the known 2-bromo-6-alkyloxyazulene nO-Az-Br,*>
implementation of a nitril substituent in the 1-position of the
azulene moiety was achieved via Vilsmeier-Haack reaction with
DMF and POCI;, followed by direct oxidation with iodine in aqueous
ammonia to yield nO-AzCN-Br (1 = 8, 12, 16) in 73-94%. The target
compounds nO-AzCN-PhOm were prepared by a Suzuki-Miyaura
cross-coupling with arylboronic acids in 64-99% yield (n, m = 8,
12, 16).

Fortunately, single crystal structures of all five compounds
were obtained, allowing a close comparison between the solid
state interactions. In the solid state structure of the shortest
member 80-AzCN-PhO8 (Fig. 4a) only little nanosegregation
was observed. Thus, the alkyl side chains of a certain molecule
are located between the aromatic units of neighboring mole-
cules. Along the a axis phenylazulene cores are oriented in
a syn-periplanar fashion, while neighboring phenylazulenes

Mater. Adv., 2023, 4,1306-1313 | 1307
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80-AzCN-PhO16 8 16  99%
Cs,CO3, PA(PPhy)s | 120.AzCN-PhO12 12 12 64%
dioxane, 16 h, 100°C | 160.AzCN-PhO16 16 16  71%
160-AzCN-PhO8 16 8  75%

CN
H2n+1cno OO O OCmHZmM

Fig. 3 Synthesis of the target compounds nO-AzCN-PhOm.

within the bc plane are oriented anti-periplanar. However, no
dimers are formed. In contrast, for 80-AzCN-PhO16 nanose-
gregation and interdigitation of side chains is clearly visible in
the solid state (Fig. 4b). Phenylazulene cores are stacked along
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the b axis in a syn-periplanar fashion. Within the ac plane
dimers are formed due to the non-classical hydrogen bond
CN.--H-C(azulene). In these dimers the phenylazulenes are
oriented antiperiplanar with a parallel shift along the a axis
(i.e. parallel to the long molecular axis) so that the dipole
interaction between azulene moieties is maximized. For
120-AzCN-PhO12 nanosegregation and interdigitation of alkyl
chains is further improved (Fig. 4c). Phenylazulene cores are
stacked along the a axis antiperiplanar and the nearest neigh-
bors within such stack are shifted along the b axis (ie.
perpendicular to the long molecular axis), so that the n-n
interaction of the phenyl ring is lost. Non-classical H-bonded
dimers are formed within the bc plane. For 160-AzCN-PhO8
nanosegregation and interdigitation of side chains is visible
(Fig. 4d). Phenylazulene cores are stacked along the a axis in
antiperiplanar manner. However, in contrast to the symmetrical
derivative 120-AzCN-PhO12 with C;, chains at both ends of the
phenylazulene core, in 160-AzCN-PhO8 nearest neighbors are
stacked along the a axis in such a manner, that the 7-membered
ring of the “upper” azulene core is positioned at the center of
the “lower” azulene core, i.e. the connecting bond between 5-
and 7-membered ring of the “lower” azulene. In addition, the
H-bonded dimers are visible in the bc plane. For the symme-
trical member 160-AzCN-PhO16 with C;4 chains on both ends
perfect nanosegregation and interdigitation of alkyl chains was
observed (Fig. 4e). Phenylazulene cores are oriented along the a
axis in an syn-periplanar fashion, however the neighboring
phenylazulenes are tilted with respect to each other, thus
reducing n-n interactions. Clusters composed of four confor-
mers including pseudo-dimers are formed in the bc plane. The
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Fig. 4 Single crystal structures of all compounds. (a), (c)-(e) View along the a axis and (b) view along the b axis.
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unit cell of 160-AzCN-PhO16 bears four independent molecules
and crystallizes in the chiral space group P1.

Mesomorphic properties were characterized first by polariz-
ing optical microscopy (POM). All compounds showed Maltese
crosses and fan textures when cooling down from the isotropic
liquid. On further cooling, these textures changed to Schlieren
and broken fans indicating a SmA-SmC phase sequence (see
Fig. $8, ESI).*® Phase transition temperatures were determined
by differential scanning calorimetry (DSC). For 80-AzCN-PhOS8,
an endothermic peak at 99 °C indicated the entrance into the
mesophase (Table 1 and Fig. S6, ESIt). At 154 °C, 80-AzCN-PhO8
cleared into the isotropic yield. Due to supercooling, crystallization
was detected at 60 °C. The transition from the SmA to SmC phase
was not visible in the thermogram for any compound and therefore
was determined via POM. In the case of 80-AzCN-PhOS8, the
SmC phase formed at 88 °C during cooling, thus only showing a
monotropic phase. When extending the length of the chain at
the phenyl ring from Cg to Cie transition temperatures of
80-AzCN-PhO16 hardly changed. Clearing was observed at 148 °C
and the monotropic SmA to SmC transition took place at 77 °C.
120-AzCN-PhO12 melted at 90 °C and formed an enantiotropic
SmC phase that changed into the SmA phase at 133 °C. Further
elongation of the side chains to 160-AzCN-PhO16 resulted in a
lower clearing temperature at 139 °C. The SmA-SmC transition
was detected at 135 °C, thus the phase width of the SmA phase
was only 4 K. During heating, the transition temperatures
of 160-AzCN-PhO8 were smiliar to those of 120-AzCN-PhO12.
To our astonishment, during cooling a rare monotropic SmA
re-entrance (SmA,.) phase beneath the SmC phase was detected,
leading to a SmA-SmC-SmA phase sequence (Fig. S7, ESIT).

The layer spacing d as a function of temperature was
measured by small angle X-ray scattering (SAXS) (Fig. 5). In
the SmA phase, an increase of d with decreasing temperature is
expected.” However, 160-AzCN-PhO16 displayed a linear corre-
lation between T and d. This might be due to the small phase
width of the observed orthogonal SmA phase. The phase might
not have fully developed from the isotropic liquid before the
transition to the SmC phase occurred. The monotropic SmC
phases of 80-AzCN-PhO8 and 80-AzCN-PhO16 revealed
typical rigid rod-like behavior with a linear layer shrinkage
during cooling. In contrast, layer thicknesses of compounds
120-AzCN-PhO12, 160-AzCN-PhO16, and 160-AzCN-PhO8
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passed through a minimum and increased again. This behavior
is typical for de Vries-like liquid crystals.” In fact, an over-
compensation of the tilt-caused layer shrinkage is observed in
our case. The maximum layer contraction lc,,,, was as low as
0.16% for 160-AzCN-PhO8 compared with d at the SmA-SmC-
transition (Table 2). To the best of our knowledge this is the
lowest value reported in the literature. Upon entering the SmA,.
phase, 160-AzCN-PhO8 showed another discontinuity by chan-
ging back to a linear relation between d and T. This fits well
with the SmA,. phase observed by POM.

The ratio between d and the molecular length L is usually
between 0.95 and 1 for smectic monolayers due to orientational
disorder within the layers.*” The compounds 80-AzCN-PhOS8
and 80-AzCN-PhO16 that follow the rigid rod model have a low
dac/L ratio of 0.93 at the SmA-SmC transition (Table 2 and
Fig. S9, ESIf). With dac/L = 0.86, 120-AzCN-PhO12 and
160-AzCN-PhO8 are far out of the usual range. The ratio for
160-AzCN-PhO16 is even lower (dac/L = 0.78). This observation
suggests that the all-trans-configuration is not present at the
SmA-SmC transition at least for the de-Vries compounds.

Temperature dependent WAXS measurements were per-
formed to ensure that the unusual phase of phase of
160-AzCN-PhO8 was indeed a SmA,. phase rather than a higher
order orthogonal SmB phase (Fig. 6a). The absence of sharp
reflexes in the wide-angle region confirms the proposed smectic
phase without positional order in the layers. However, the halo
in the partially orientated 2D WAXS diffractogram becomes
sharper and more focused, indicating an increasing orienta-
tional order upon cooling (Fig. 6a and b). At short angles,
higher ordered layer reflexes become more pronounced upon
cooling, indicating an increase in translational order. It is
worth noting that the third order diffraction peak of the layer
spacing is stronger than the second order peak. In agreement
with Davidson and Strzelecki, in such cases the electron density
along the director 7 cannot be described with a single sinusoi-
dal modulation.*® In our case, the second function might be
assigned to the electron density of the nitrile substituent.

With the temperature dependent layer thickness in hand, we
determined the optical tilt angle @ as a function of T via POM
in a glass cell with rubbed nylon layers (Fig. 7). Compounds
with linear layer shrinkage in the SmC-phase showed
smaller tilt angles compared to their de Vries-like behaving

Table 1 Onset transition temperatures [°C] and enthalpies [kJ mol™Y] of azulenes nO-AzCN-PhOm determined by DSC

Compound Transition temperatures/°C (and enthalpies/k] mol™*)

80-AzCN-PhO8 Cr 99 (31.8) — — — — SmA 154 (7.3) I h
Cr 60 (—21.3) — — SmC 88“ SmA 155 (—=7.1) I c

80-AzCN-PhO16 Cr 95 (51.4) — — — — SmA 148 (8.4) I h
Cr 60 (—48.3) — — SmC 77° SmA 149 (—8.3) I c

120-AzCN-PhO12 Cr 90 (31.8) — — SmC 133° SmA 149 (9.9) I h
Cr 65 (—46.9) — — SmC 133¢ SmA 150 (—9.9) I c

160-AzCN-PhO16 Cr 95 (62.6) — — SmC 135¢ SmA 138 (10.9) I h
Cr 87 (—75.3) — — SmC 135 SmA 139 (—9.2) I c

160-AzCN-PhOS Cr 86 (41.0) — — SmC 133¢ SmA 151 (11.5) I h
Cr 26 (—3.5) SmA,. 784 SmC 133 SmA 151 (—11.9) I c

Heating/cooling rate: 5 K min~", h: 2nd heating, ¢: 2nd cooling. Crystal-crystal transitions are not listed.  Determined via POM.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Plot of the relative layer spacing d/dac as a function of T — Tac for
nO-AzCN-PhOm. (a) Full size and (b) close to the SmA-C transition.

counterparts. 160-AzCN-PhO16 had the largest tilt angle with
©® =24° 10 K beneath the SmA-SmC transition. The optical tilt

Table 2 Layer spacing at the SmMA-SmC transition dac, ratio of the layer
to molecular length d/L and maximum layer contraction lc,.x measured
with SAXS, tilt angles determined by POM and R-values of de-Vries like
liquid crystals at T — Tac = —10 K of the characterized compounds

Compound dac/A dac/L® lcmax/% Oopt/ R
80-AzCN-PhO8 30.8 0.93 —_ —_ —_
80-AzCN-PhO16 40.2 0.93 — — —
120-AzCN-PhO12 37.2 0.86 0.65 15 0.43
160-AzCN-PhO16 41.4 0.78 0.18 24 0.14
160-AzCN-PhOS8 37.2 0.86 0.16 18 0.18

“ Calculated for the all-trans-configuration via Chem3D.
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Fig. 6 (a)

WAXS
160-AzCN-PhO8. (b) 2D diffractogram of the WAXS measurement of

Temperature  dependent measurements  of
the SmA phase at T — Tac =

T~ Tac = —50 K.

20 K and (c) of the SmA, phase at

of 160-AzCN-PhO8 with a SmA re-entrance phase peaked
10 K beneath the SmA-SmC transition and decreased
while approaching the SmA,. phase. Similar behavior was
observed in an SmA-SmC-SmA,. phase sequence reported by
Novotna et al.”*
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Fig. 7 Temperature dependence of the optical tilt angle @ during the
SmC phase.
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With knowledge of @ and lcyay, the R-value could be
calculated (Table 2). The lowest value was achieved by
160-AzCN-PhO16 with R = 0.14, which is similar to state of
the art de Vries-like materials.’®**° The fact that longer side
chains improve de Vries-like properties is in good accordance
with a model by Merkel et al, who showed that the layer
contraction caused by the tilting of the core can be compen-
sated for only by increasingly ordered side chains.*

Ahmed et al. argued that the layer shrinkage caused by tilting
of the molecule is compensated for either by a decrease in
interdigitation and/or by an increase of orientational order within
the layers.*® Since interdigitation plays only a minor role in
smectic monolayers, compensation should arise through increas-
ing order. The molecules do not have nanosegregating head
groups that are commonly associated with de Vries-like behavior.
They usually cause high translational order between the layers
which compensate for a low order within the layers in the SmA
phase. It might be argued that the dipolar azulene core mimics
such a headgroup, therefore acting as a nanosegregating core.

Order within the layers can be quantified by the nematic
order parameter S,. Unfortunately, even after repeated attempts
it was not possible to achieve completely orientated WAXS
samples. Therefore, determination of S, via X-ray diffraction
was not possible. Instead, we measured the birefringence An
which is closely related to S, using a Phi-Viz Imaging System
(Polaviz, APSYS Inc.).>® As seen in Fig. 8, all compounds
showed a discontinuity of An at the SmA-SmC transition,
followed by a rise of An. 80-AzCN-PhO8 showed the highest
overall An, but only a small increase when entering the SmC
phase. Since An is mainly caused by the aromatic moiety of the
molecules, it is expected that the birefringence decreases with
increasing chain length in the homologous series. As expected,

0.14 :
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Fig. 8 Temperature dependence of birefringence An for compounds
nO-AzCN-PhOm.
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160-AzCN-PhO16 has the lowest birefringence which, however,
increases strongly after the SmA-SmC transition. Those obser-
vations suggest the compensation of the layer shrinkage
through increasing order. However, 80-AzCN-PhO16 also has
a strong increase in An while following classic behavior.
Furthermore, 160-AzCN-PhO8 has the lowest lc,,c while only
showing a moderate increase in An. Therefore, it might be
argued that the increasing S, cannot be the only factor con-
tributing to the observed compensation.

The X-ray data reported by Novotna et al. suggest, that
compound 9ZBL behaves like a de Vries material (Fig. 2a),
albeit with a moderate R-value of about 0.8 due to the low tilt
angle.”” However, the qualitative behavior of d and @ during
the SmA-SmC-SmA,. phase sequence is similar to our observa-
tions. They reasoned that quadrupolar ordering increases on
cooling. With higher order the lateral chloro substituent of
9ZBL hinders closer packing. The system avoids the steric
hindrance by a shift of mass centers and so, increases the layer
spacing.'® Taking inspiration by Novotna et al., we propose a
related packing model for 160-AzCN-PhO8 in which the nitrile
group sterically hinders the packing similar to the lateral chloro
substituent in 9ZBL (Fig. 9). In addition, the nitrile group
contributes a lateral dipole moment and enhances the dipole
caused by the zwitterionic resonance structure of the azulene
moiety. This combination of lateral and axial dipoles might be
important for the strong increase in quadrupolar ordering on
cooling. Re-entrance phases purely driven by steric frustration
have been predicted.*' In our case the steric frustration is
intrinsically entangled with dipole-dipole interactions since
the nitrile is a key element to both. The reinforcement between
those two effects might be crucial for the anomalous behavior.

During the first SmA phase, the low d/L ratio of 160-AzCN-PhO16
suggests that the long C;¢ chain is not present in the all-trans
configuration (Fig. 9a). The entangled chain fills up the free volume
left by the shorter Cg chain. The shift of mass centers slightly
compensates for the different length of the side chains allowing the
Cy6 chain to adopt a more linear configuration (Fig. 9d). This
might be a reason why the SmA,. phase is only present for
160-AzCN-PhO8. In 80-AzCN-PhO16, the shifting would further
unbalance the already different chain lengths, thus the shifting
seems not to take place. This might be the reason why classical
behavior was observed for 80-AzCN-PhO16. The active role of the
side chains on the appearance of re-entrancy was also highlighted by
Novotna."*

Although comparisons of single crystal structures with meso-
phase packing geometries should be handled with great care, solid
structures might give some useful hints about the specific interac-
tions relevant for the packing in the mesophase, particularly where
solid state structures of a whole series are available. The solid state
structure of 160-AzCN-PhO8 in Fig. 5d resembles the model of the
SmA,. phase in Fig. 9d. As discussed above, the loss of the n-n
interaction of the phenyl ring is compensated for by dipolar
interactions, and strong van der Waals interactions of the inter-
digitated alkyl chains. In both, the mesophase and the crystalline
phase subtle changes of the chain lengths lead to completely
different behavior of the phase.
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Fig. 9 Proposed mechanism for the formation of the SmA,. phase of 160-AzCN-PhO8 due to a shift of mass centers based on a model by Novotna
et al* (a) The SmA phase is present. (b) Tilting of the mesogens in the SmC phase leads to layer contraction. (c) A shift of mass centers is induced by the
hindrance of the nitrile group and the layer thickness increases. (d) Mesogens lose their tilt in the SmA,. phase, the layer thickness further increases.

In summary, we synthesized a new class of liquid crystals based
on the azulene core. These readily available compounds turned out
to be potent de Vries-like materials with very low maximum layer
shrinkages and R-values as low as 0.14 for 160-AzCN-PhO16. The
overcompensation of the layer shrinkage might be a useful property
when creating mixtures with other de Vries behaving compounds
in order to achieve minimal layer shrinkages. It was suggested that
the layer shrinkage caused by the molecular tilt is compensated for
not only by an increase of the molecular order, but also by a shift of
mass center in the aromatic core. In the case of 160-AzCN-PhO8
the frustration between shift of mass center, good van der Waals
interaction, but reduced dipole and n-r interaction might have led
to the orthogonal SmA,. phase below the tilted SmC phase.
The observations are in close analogy to the re-entrance phase
of 9ZBL.'"** However, in contrast to 9ZBL azulene compound
160-AzCN-PhO8 does not have chiral centers, indicating that
anomalous phase behavior can exist without chirality. These
observations might lead to a new design principle for achiral liquid
crystalline compounds showing re-entrant phases and de Vries
behavior. Further work to understand this behavior in more detail
is currently in progress and will be reported in due course.
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