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Preparation and photocatalytic activity
of ZnGa2O4-b-Ga2O3 thin films†

Premrudee Promdet, Claire J. Carmalt and Ivan P. Parkin *

ZnGa2O4 and ZnGa2O4-b-Ga2O3 thin films were prepared via aerosol-assisted chemical vapor deposition

(AACVD) using various ratios of the Zn and Ga precursors, resulting in the formation of amorphous ZnGa2O4

and Ga2O3. The formation of crystalline zinc gallate and heterostructure zinc gallate thin films was achieved

by annealing the resulting films at high temperatures under air. The ZnGa2O4-b-Ga2O3 thin films showed

enhanced photocatalytic activity compared with ZnGa2O4. The photocatalytic enhancement of the

ZnGa2O4-b-Ga2O3 is explained by the formation of type-II band alignment at the interfaces between

ZnGa2O4 and Ga2O3, resulting in enhanced photoinduced charge separation in the material.

1. Introduction

Oxide semiconductors have attracted much interest as an effective
material for photocatalysts because of their high photocatalytic
activity and mechanical and chemical durability.1–3 Semi-
conductor-based photocatalysts have been applied for various
applications, such as for self-cleaning, organic/inorganic pollutant
decomposition, photoelectrochemical water splitting and anti-
microbial coatings. Since the first study on p-block metal oxides
of MIn2O4, M2SnO4 and M2Sb2O7 (M = Ca, Sr) was reported by
Inoue et al.,4–7 semiconductors with a d10 electronic configuration
have been widely studied and show promise as photocatalysts.8–12

Among the p-block metal oxide photocatalysts, zinc gallate
(ZnGa2O4) is also a promising photocatalyst and has been applied
to water splitting,13–15 organic pollutant degradation16 and CO2

reduction17,18 applications under UV irradiation. However,
ZnGa2O4 has had limited practical success due to its wide band
gap energy (4.1–4.5 eV) and high recombination rate of the
electrons and holes,19 resulting in low photocatalytic perfor-
mance. Therefore, broadening the light absorption and prevent-
ing the rapid recombination of the photogenerated electron–hole
pairs of ZnGa2O4 photocatalysts, has become an area of focus.

Doping ZnGa2O4 with foreign ions is one approach to
broaden the light absorption and improve the photocatalytic
performance. Doping ZnGa2O4 with cations has been investi-
gated showing improved visible light absorption.20,21 Although
the band gap was successfully reduced, some metal-doped
ZnGa2O4 showed low photocatalytic efficiency due to rapid
electron–hole recombination.22 The formation of heterojunction

structures is an attractive strategy to improve the photocatalytic
properties of ZnGa2O4 by increasing the charge separation in
photocatalytic processes. Heterojunction structures, such as
ZnGa2O4/N-rGO14 and ZnO/ZnGa2O4,23 have been developed for
improving the photocatalytic performance of ZnGa2O4.

Many methods have been used to synthesize ZnGa2O4

particles or thin films including hydrothermal,24 solid-state,25

sol–gel,26 chemical vapor deposition,27 and RF magnetron
sputtering.28 Among the large number of synthesis methods
to produce ZnGa2O4 materials, the synthesis of thin films is
widely convenient for practical applications compared with
powders, due to the problems in the separation and recovery of
powders. Aerosol-assisted chemical vapor deposition (AACVD) is a
promising technique for thin film preparation because it is a
simple, scalable, and cost-efficient technique that allows good
control over physical and chemical properties.29,30 In AACVD,
precursors with low vapor pressure are dissolved in an appropriate
solvent and the solution is aerosolized and transported into the
CVD chamber using a carrier gas. The chemical composition of
the starting material can play a crucial role in influencing the
chemical and physical properties of the deposited films.

In this study, the formation of crystalline zinc gallate and
heterostructure zinc gallate (ZnGa2O4-b-Ga2O3) thin films was
studied. A deeper understanding of the effect of the hetero-
structure formation on band alignment, charge transfer and
photocatalytic activity is required to explain the phenomena at
the interfaces between ZnGa2O4 and Ga2O3.

2. Experimental section
2.1. Preparation of ZnGa2O4 and ZnGa2O4-b-Ga2O3 thin films

Zinc acetylacetonate [(Zn(C5H7O2)2)], 99.9% and gallium acetyl-
acetonate [(Ga(C5H7O2)3], 99.9%) from Sigma Aldrich were used
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as the zinc and gallium source materials, respectively. In a
round bottom flask, solutions for AACVD were prepared by
dissolving 0.5 mmol of zinc acetylacetonate and different
amounts of gallium acetylacetonate (0.5, 0.7 and 1.0 mmol) in
40 mL methanol. Using a piezoelectric ultrasonic humidifier, a
precursor mist was created and delivered to the reaction
chamber with a flow rate of 1.0 L min�1 nitrogen gas. The
deposition was carried out in a reactor at 400 1C. The obtained
films were then annealed at 700 1C in air for 5 h, yielding clear
thin films.

2.2. Analytical methods

Film morphology and thickness were studied using top- and
side-view scanning electron microscopy (SEM) in a JEOL6301
instrument (10 kV). X-ray diffraction (XRD) analysis was carried
out using a Bruker-Axs D8 (GADDS) diffractometer. The instru-
ment operated with a monochromated Cu X-ray source with Cu
Ka1 (l = 1.54056 Å) and Cu Ka2 radiation (l = 1.54439 Å) emitted
with an intensity ratio of 2 : 1 and a 2D area X-ray detector with
a resolution of 0.011. Films were analyzed with a glancing
incident angle (y) of 11. The diffraction patterns obtained were
confirmed using database standards. UV/Vis spectroscopy
was performed using a double monochromated PerkinElmer
Lambda 950 UV/Vis/NIR spectrophotometer in the 300–800 nm
range. X-Ray photoelectron spectroscopy (XPS) was performed
using a Thermo K alpha spectrometer with monochromated
Al Ka radiation, a dual beam charge compensation system
and constant pass energy of 50 eV. Survey scans were collected
in the range of 0–1200 eV. High-resolution XPS spectra
were used for the principal peaks of Zn (2p) and Ga (2p),
and deconvoluted using CasaXPS software with the calibration
of C1s at 284.5 eV. The surface roughness of the films
was characterized by atomic force microscopy (AFM) on a
Keysight 5600LS scanning probe microscope taken at a scale
of 5 mm � 5 mm.

2.3. Photocatalytic tests

The intrinsic photocatalytic properties of the films were inves-
tigated through the photodegradation of octadecanoic (stearic
acid), which was used here as a model organic pollutant.31

Stearic acid is very stable under UV irradiation in the absence of
a photocatalyst. In these experiments, the films were dip coated
with a thin layer of stearic acid (0.05 M solution in chloroform)
and then monitored under UVC irradiation over a period of
32 h using a PerkinElmer RX-I Fourier transform infrared
(FTIR) spectrometer. Plots of integrated areas of characteristic
C–H infrared bands at 2923 and 2853 cm�1 were produced and
the photodegradation rates were estimated from linear regres-
sion of the initial 30–50% of the curves. A conversion factor
from the literature (1 cm�1 = 9.7 � 1015 molecules of stearic
acid)32 allowed for the estimation of the number of molecules
of stearic acid degraded upon irradiation time. The light source
used was a UVC (l = 254 nm) Vilber-Lourmat BLB lamp
(2 � 8 W, I = 1.0 mW cm�2). The irradiance of the lamp was
measured using a UVX radiometer (UVP).

3. Results and discussion

Amorphous thin films were grown on quartz substrates using
aerosol-assisted chemical vapor deposition (AACVD) at 400 1C,
as detailed in the experimental section. On the heated sub-
strates, the precursors react and deposit on the substrates. The
unreacted precursors and waste products are carried away to
the exhaust, as shown in Fig. S1 (ESI†). A series of zinc gallate
thin films were deposited using different molar ratios of Zn/Ga
in the precursor mixture, resulting in the Zn/Ga mole ratios of
0.45, 0.26 and 0.17 in the films, as determined by elemental
analysis (EDS), henceforth referred to as ZG-[Zn/Ga mole ratio],
namely ZG-0.45, ZG-0.26 and ZG-0.17, respectively. X-ray dif-
fraction (XRD) of the as-deposited films from AACVD showed
no patterns and therefore they were presumed to be amorphous
(Fig. S2, ESI†).

The amorphous phase was analyzed by XPS, where the
energy separation between the Zn 2p3/2 and Ga 2p3/2 peaks
was studied. The energy separation between Zn 2p3/2 and Ga
2p3/2 peaks (DE) has been used as a tool to distinguish whether
the obtained product is a complete ZnGa2O4 or a composite of
ZnO and Ga2O3, where the formation of ZnGa2O4 provides
lower DE compared with a mixture of ZnO and Ga2O3.33,34

In this work, DE of a mixture of commercial ZnO and Ga2O3 was
studied providing a value of 96.6 eV. It was found that DE of the

Fig. 1 XRD patterns of thin films annealed under air on quartz substrates
at 700 1C of ZG-0.45, ZG-0.26 and ZG-0.17, respectively. Triangle symbols
correspond to cubic-phase ZnGa2O4 (JCPDS no. 86-0415) and circle
symbols correspond to b-Ga2O3 (JCPDS no. 43-1012).
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commercial mixture is higher than DE of the as-deposited
amorphous thin films giving a value of 96.2 eV (Table S1, ESI†).
This indicates the formation of zinc gallate under AACVD. The
amorphous thin films were annealed under air at 700 1C,
resulting in the formation of crystalline zinc gallate, which
was confirmed by XRD as shown in Fig. 1. For those samples
with low Ga content (ZG-0.45) only the pattern of cubic-phase
ZnGa2O4 (JCPDS no. 86-0415)35 was found. Relatively high
Ga contents (ZG-0.26 and ZG-0.17), showed additional reflec-
tion peaks that were consistent with b-Ga2O3 (JCPDS no.
43-1012).22,36

The morphology and cross-section SEM images of the sam-
ples are shown in Fig. 2(a)–(c). SEM analysis showed similar
surface morphologies in all thin films, with the thickness of
ZG-0.45, ZG-0.26 and ZG-0.17 being 230, 280 and 340 nm,
respectively. The surface topography of the annealed films
(ZG-0.45, ZG-0.26 and ZG-0.17) was investigated by AFM, taken
with a scale of 5 mm � 5 mm, as shown in Fig. 2.

Inspection of these images shows that the surface area and
surface roughness of the thin films was not significantly
affected by the ratio of Zn and Ga in the films. The surface
roughness (rms roughness) of the annealed films (ZG-0.45,
ZG-0.26 and ZG-0.17) was 63, 51 and 73, respectively, with
surface areas of 26.7, 25.6 and 25.7 mm2, respectively, as
depicted in Table 1.

High-resolution XPS was further employed to investigate the
composition and surface electron state of the thin films. Fig. 3
shows the XPS spectra revealing (a) Ga 2p and (b) Zn 2p of the
films ZG-0.45, ZG-0.26 and ZG-0.17, respectively. Binding
energy (BE) calibration was carried out using the C1s peak
located at 284.5 eV. The XPS spectrum of the ZG-0.45 reveals a
symmetric peak for the Ga 2p orbital, with a BE of 1118.5 eV,
while the spectra of ZG-0.26 and ZG-0.17 can be deconvoluted
into two peaks, with binding energy values of Ga 2p3/2 at
1118.4 and 1119.8 eV, respectively, which are associated with
Ga3+ species in Ga2O3 and ZnGa2O4, respectively.37

Fig. 2 Scanning electron microscopy (SEM) of (a) ZG-0.45, (b) ZG-0.26 and (c) ZG-0.17. Atomic Force Microscopy (AFM) images showing the surface
morphology (top) and 3D images (bottom) of (d), (g) ZG-0.45, (e), (h) ZG-0.26 and (f), (i) ZG-0.17 thin films on quartz substrates prepared by the AACVD
method at different mole ratios of Zn and Ga in the precursor mixture. The surface topography of the annealed films investigated by AFM, taken with a
scale of 5 mm � 5 mm.

Table 1 Structural, optical, and functional parameters of ZnGa2O4 and ZnGa2O4-b-Ga2O3 heterojunction films prepared with different ratios of zinc
acetylacetonate and gallium acetylacetonate in the precursor mixture

Sample

Zn/Ga atomic ratio

ZnGa2O4 :
Ga2O3 Eg (eV)

Film
thickness
(nm)

Surface
area
(mm2)

RMS
roughness
(nm)

Surface
area (mm2)

x � 10�4

(molecules photon�1)
In precursor
solution

In as-deposited
thin films

ZG-0.45 1.0 0.45 9 : 1 5.2 230 26.69 63 26.69 0.50
ZG-0.26 0.7 0.26 1 : 1 5.1 280 25.59 51 25.59 1.64
ZG-0.17 0.5 0.17 1 : 2 4.9 340 25.67 74 25.67 0.80
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The XPS spectrum of the Zn 2p1/2 peaks in the films was
B1022 eV, which could be related to the formation of
ZnGa2O4.38 To investigate the vertical distribution of ZnGa2O4

and Ga2O3 in the films, the Zn/Ga ratio was calculated using
XPS depth profiling shown in Fig. S3 (ESI†). The Zn/Ga atomic
ratio of thin films with etching shows that there is a homo-
genous mix of ZnGa2O4 and Ga2O3 in the thin films (ZG-0.45,
ZG-0.26 and ZG-0.17).

The light absorption properties of the materials were stu-
died by using UV-vis spectroscopy. The absorption edges of
ZG-0.45, ZG-0.26 and ZG-0.17 were located at around 250 nm.
The band gap energy of the materials was determined from the
Tauc plot for indirect band gap absorption, as shown in
Fig. 4(a). The samples (ZG-0.45, ZG-0.26 and ZG-0.17) had Eg

values of 5.2, 5.1 and 4.9 eV, respectively.
The photocatalytic activity of the thin films was evaluated by

testing the degradation rate of stearic acid, a model organic
pollutant under UVC irradiation (BLB lamp, 1.0 mW cm�1), as
shown in Fig. 5 and Table 1. In the absence of catalyst, the
detected concentration of stearic acid was stable under illumi-
nation, while the presence of catalyst (ZG-0.45, ZG-0.26 and
ZG-0.17) leads to obvious degradation of stearic acid. The
degradation of steric acid under irradiation results from the
redox reactions of steric acid by photogenerated electrons and
holes on the photocatalytic surface, providing the production of
non-toxic CO2 and H2O.39,40 The corresponding degradation
curves are plotted against irradiation time in Fig. 5(a). The
trend of degradation curves was as expected with the ZnGa2O4-
b-Ga2O3 heterostructure thin film (ZG-0.26 and ZG-0.17) being a

more effective photocatalyst than ZnGa2O4 (ZG-0.45). In the
case of ZG-0.26, with the ratio between ZnGa2O4 and Ga2O3

being 1 : 1, this provided higher photocatalytic performance,
compared with the other thin films. As mentioned above, the
surface area of the thin films was similar, and the photo-
catalytic efficiency was independent of the thickness of the
thin films (Table 1). The apparent enhancement could then be

Fig. 3 High-resolution XPS of (a) Ga 2p and (b) Zn 2p spectra of ZG-0.45, ZG-0.26 and ZG-0.17 deposited by AACVD on quartz.

Fig. 4 (a) Tauc plot allowing an estimation of the band gap energies and
the inset figure (b) shows the UV-Vis total transmittance of the annealed
samples (ZG-0.45, ZG-0.26 and ZG-0.17) deposited by the AACVD
method at different mole ratios between Zn/Ga in the precursor mixture
of 1, 0.7 and 0.5, respectively.
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related to the optimal ratio between ZnGa2O4 and Ga2O3 in the
thin film.

The fitting of the initial degradation steps (zero-order
kinetics) allowed for the estimation of the formal quantum
efficiencies (x, units molecules photon�1), given as the number
of acid molecules degraded per incident photon (Fig. 5(b)). The
cycle experiments resulted in a slight drop of the initial x values
of the thin films. The drop of photocatalytic performance in the
cycling experiments might be due to carbon contamination
during the photodegradation of organic pollutants.

The higher photocatalytic performance of heterostructures
(ZG-0.26 and ZG-0.17) might result from the formation of a
heterojunction, which is an interface between the two regions
of dissimilar semiconductors. In order to classify the type of
band alignment in the interface, the valence band potential and
band gap energy of ZnGa2O4 and b-Ga2O3 were considered. The
band structures of ZnGa2O4 and b-Ga2O3 were analyzed using
XPS showing that the valence band potential of b-Ga2O3 was
1.5 eV more positive than that of ZnGa2O4.22 ZnGa2O4 has a
wide bandgap energy of B4.1–4.5 eV being similar to the

bandgap energy of b-Ga2O3 (4.8 eV). Therefore, the band align-
ment of the ZnGa2O4-b-Ga2O3 heterojunction could be a type-II
band alignment, which can enhance charge separation, as
shown in Scheme 1.

The photogenerated electrons tend to migrate from the
conduction band (CB) of ZnGa2O4 to that of b-Ga2O3, while
the generated holes transfer from b-Ga2O3 to ZnGa2O4. Conse-
quently, the recombination process in this material is
decreased, benefiting the enhancement of the photocatalytic
performance. The higher photocatalytic performance of
ZG-0.26 than ZG-0.17 might result from achieving an ideal ratio
between ZnGa2O4 and b-Ga2O3 (1 : 1) in the ZnGa2O4-b-Ga2O3

heterojunction, resulting in the increase of the heterojunction
interface in the material.

4. Conclusion

In this research, the ability to tune the composition of ZnGa2O4

and b-Ga2O3 thin films by varying the ratios of Zn and Ga

Fig. 5 (a) Integrated area of the IR spectra obtained from the initial rates of photodegradation of stearic acid upon irradiation time under UV illumination
(UVC, l = 254 nm, I = 1.0 mW cm�2), with thin films (ZG-0.45, ZG-0.26 and ZG-0.17) acting as photocatalysts in the photodegradation. (b) Corresponding
formal quantum efficiencies (x), given as molecules degraded per incident photon (units, molecules photon�1), upon cycling experiments. A blank
reference corresponds to the quartz substrate without the photocatalytic coating.

Scheme 1 A schematic description of charge transfers across the ZnGa2O4-b-Ga2O3 heterojunction.
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precursors in the starting mixture under aerosol-assisted
chemical vapor deposition (AACVD) has been demonstrated.
The optimal ratio between the Zn and Ga precursor was found
to be 0.7, which showed promising photocatalytic performance
of the final product (ZG-0.26). The ZnGa2O4-b-Ga2O3 hetero-
junction possesses type-II band alignment, resulting in
enhanced photocatalytic properties of the material. This result
is a step forward toward the fabrication of an optimized
photocatalytic material and calls for the implementation of
synthesis strategies of zinc gallate.
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