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Binary solvent engineering for small-molecular
organic semiconductor crystallization

Zhengran He, *a Ziyang Zhang,b Kyeiwaa Asare-Yeboahc and Sheng Bi *d

Solution processed, flexible electronics has garnered great research attention in the last decade, and has

found promising applications in semiconductor device fabrication such as in thin film transistors and

organic gas sensors. Binary solvents have been demonstrated to exert an important impact on

the semiconductor dissolution, crystal growth, phase segregation, film morphology, crystal alignment,

film crystallinity and charge transport of organic semiconductors. In this article, we conducted a

comprehensive review on the effect of engineering binary solvents on the crystallization of organic

semiconductors. By studying the organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene as a

representative example, we showcase that the optimization of solvent choices can play a vital role

in modulating the solvent evaporation, intermolecular interaction, supramolecular aggregation,

semiconductor nuclei, crystal orientation and charge carrier mobilities. Based on a detailed review of

these important works, we wish to shed light on the great potential of fine-tuning the solvent choices in

order to optimize the charge transport and electrical performance of flexible electronic devices.

1. Background and challenges

In recent years, flexible electronics, which is mainly the appli-
cation of solution processable organic semiconductors in elec-
tronic device fabrication, has attracted considerable research
attention.1–8 Significant progress has been achieved in improv-
ing the charge carrier mobilities and air stabilities of organic
semiconductors. Various small-molecular solution processed
organic semiconductors, such as 6,13-bis(triisopropylsilyl-
ethynyl) pentacene (TIPS pentacene),9–11 5,6,11,12-tetraphenyl-
tetracene (rubrene),12–14 2,7-dioctyl[1]benzothieno[3,2-b][1]
benzothiophene (C8-BTBT),15–17 and 2,7-didodecyl[1]benzothieno
[3,2-b][1]benzothiophene (C12-BTBT)18–21 based thin film tran-
sistors have been reported with mobilities close to or even
higher than 10 cm2 V�1 s�1 by various research groups. These
organic semiconductors also demonstrated enhanced electrical
stability when exposed to air,22 bias,23 or illumination.24 These
high charge carrier mobilities and exceptional stabilities have
opened up more pathways for implementing organic semicon-
ductors in the fabrication of high performance semiconductor

devices including organic thin film transistors,25–28 organic gas
sensors,29–33 organic optoelectronic devices,34–40 and compli-
mentary circuits.41–43

Nevertheless, a challenging issue in organic semiconductor
growth is the control of crystallization and morphology. This is
mainly caused by the intrinsic crystal misorientation when the
organic semiconductor is grown in solution, as reported in
many small molecular organic semiconductors. For example,
TIPS pentacene, when deposited via the method of drop cast-
ing, can exhibit dendritic structures of morphology with each
organic crystal pointing in different directions.44–49 The organic
semiconductor 5,6,11,12-tetrachlorotetracene was also reported
to exhibit multiple layers of misoriented wires stacking upon
one another.50 The 2,5-di-(2-ethylhexyl)-3,6-bis(500-n-hexyl-2,20,
50,200]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH)
semiconductor from drop casting in a single solvent showed
star-shaped organic crystals while a majority of semiconductors
formed aggregations on the substrate without full crystalli-
zation.51 Other issues besides the crystal misorientation include
poor film coverage on the substrate52 and abundant grain
boundaries.53–55 These obstacles have unfortunately led to the
failure of many endeavors to apply small molecular organic
semiconductors in the fabrication of the aforementioned high
performance semiconductor devices.

In order to more precisely manipulate the crystal orientation
and enhance the film morphology, enormous efforts have been
made to explore possible pathways to control the organic
semiconductor growth in a more consistent manner. One
successful pathway to obtain a desirable morphology is to
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mix organic semiconductors with polymer additives.56,57 Amor-
phous polymers including poly(a-methylstyrene) (PaMS),58–62

poly(methyl methacrylate) (PMMA),63–68 polystyrene (PS),69–74

and poly(triaryl)amine (PTAA)75–79 can both improve the semi-
conductor film uniformity and induce a vertically phase-separated
active layer structure. This further forms a semiconductor sublayer
with an elevated semiconductor concentration at the dielectric
layer interface,80,81 and/or a polymer encapsulation layer at the air
interface,82,83 which favors the charge transport and air stability
of the transistor device. Other types of polymers, such as con-
jugated polymers84–89 and semicrystalline polymers,90–93 have
also been reported for their capability to tune the polymorphism,
diffusivity, surface energies and nucleation of organic semi-
conductors. Another pathway is to apply external forces to align
the crystal growth direction at the same time when the semi-
conductor undergoes crystallization.94 This gives rise to miscel-
laneous alignment methods, such as air force navigation,95,96

pinning confinement,97,98 solution shearing,99–104 blade
coating,105,106 zone casting,107–109 and selective patterning.110–112

Regardless of polymer mixing or external alignment, it is still
imperative to control the various factors that critically influence
semiconductor crystallization. One of these factors is the choice of
solvents that are used to dissolve organic semiconductors. The
solvent choices not only impact the solubility the semiconductor,
but also influence the nucleation,113,114 crystallization,115,116

alignment,117,118 phase segregation,119,120 film morphology,121

and charge transport.122,123

2. Binary solvent effect on
crystallization

The solvent choices can be divided into single solvent and
binary solvents. A single solvent should possess good solubility
of the organic semiconductor. As compared to a single solvent,
binary solvents are composed of a main solvent and an additive
solvent, in which the organic semiconductor may find varying
solubility. The engineering and optimization of binary solvent
choices have various advantages and exert beneficial effects on
enhancing the crystal alignment, tuning phase segregation,
controlling nucleation sites, reducing grain boundaries, and
eliminating charge trap centers of the organic semiconductors.
It is important to note that the direction of crystal alignment is
determined by the direction of the solution drying. In this
section, we will discuss the advantages of optimizing solvent
choices in greater detail.

Crystal alignment: as mentioned above, solution based
growth of organic semiconductors can result in inferior crystal
alignment. Poor crystal alignment can further cause consider-
able mobility variations as measured from a batch of transistor
devices,124–131 which make them infeasible for flexible electro-
nics applications. By intentionally aligning the crystal orienta-
tion at different angles to the direction from the source to drain
contacts, the mobility variations can reach one order of
magnitude.132–136 In this regard, a binary solvent system has
been proved to be highly effective in aligning the crystal

orientations when combined with other external alignment
methods. It is important to note that without applying the
binary solvent method, some alignment methods, such as the
controlled evaporative self-assembly method (CESA),51 cannot
solely eliminate the random orientations of organic semi-
conductor crystals.

Phase segregation: when an organic semiconductor is mixed
with a polymeric additive to form a binary system, the system
can likely go through vertical phase segregation,137 lateral
phase segregation, or a combination of both phase
segregations.138,139 The type and extent of phase segregation
can strongly influence the crystallization process, semiconduc-
tor morphology and charge transport.140–143 The boiling point
of the solvent is an important factor, among various other
factors, that impact the phase segregation between the semi-
conductor and polymeric additive.144,145 In particular, binary
solvents with a high boiling point can possess a low evapora-
tion rate. As a result, the organic semiconductor deposited in
binary solvents with a high boiling point has sufficient time to
diffuse within the semiconductor/polymer mixture and forms
more pronounced phase segregation with the polymer.

Nucleation sites: instead of dissolving the organic semicon-
ductor in a single solvent, a binary solvent system can be used
to better modulate the nucleation and crystallization process of
the semiconductor.50 The binary solvent system is primarily
composed of a ‘‘good’’ solvent (in which the semiconductor has
a good solubility) as the main solvent and a ‘‘bad’’ solvent (in
which the semiconductor has limited or little solubility) as the
additive solvent. When the organic semiconductor is first
dissolved in the main solvent and then injected into a larger
volume of the additive solvent, dramatically reduced solubility
in the binary solvent can promote nucleation of the organic
semiconductor. The subsequent oversaturation upon solvent
deposition and evaporation further promotes the semiconduc-
tor nucleation, which exerts a greater effect on facilitating the
crystallization and crystal orientation alignment.

Grain boundaries: the different solvent choices and binary
solvents can effectively control the grain width of the organic
semiconductor crystals. In particular, binary solvents with a
higher boiling point can take longer to dry out, which allows
more time for the organic semiconductor to crystallize and
form crystals with enlarged grain width. Crystalline defects
exist at the grain boundaries as trap centers of charge
carriers.146–150 Increased size of the crystal domains can reduce
the amount of crystalline defects and thereby clear the pathways
for charge transport.151–155

A desirable morphology of drop-casted organic semiconduc-
tors would include good crystal alignment, absence of grain
boundary, high-quality charge transport interface, as well as
morphology uniformity. Specifically, crystal alignment favors
charge carrier mobility, which can be 10 times higher from
crystals perpendicular to the source and drain contacts than the
counterpart based on crystals parallel with the contacts.156 The
absence of grain boundary and negligible crystalline defects
benefit charge transport at the interface between the dielectric
layer and organic semiconductor layer. Good film uniformity
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not only improves charge transport but also enhances device-to-
device mobility consistency.

The effect of crystalline deformities from the grain bound-
aries on the organic semiconductor charge transport can be
further understood based on the ‘‘grain width-dependent mobi-
lity model’’. Assume L is the length of the channel, and n is the
number of grain boundaries. Then L can be reasonably divided
into the sum of crystal length LG and the sum of grain boundary
LGB in the channel:

L = nLG + (n � 1)LGB (1)

Given the small dimension of LGB (approximately 1–2 nm) in
connection in series, LGB is much smaller than L. The total
effective mobility mE can be calculated based on both the
mobility at the crystal grains (mG) and the mobility at grain
boundaries (mGB):157–159

L

mE
¼ L� ðn� 1ÞLGB

mG
þ ðn� 1ÞLGB

mGB

(2)

Merging eqn (1) and (2):

1

mE
¼ 1

mG
þ n

LGB

LmGB

� LGB

LmG

� �
(3)

Since n (n c 1) is a large number, (n � 1) is approximated to
n. The grain boundary and crystal length can be correlated by
designating WG as the grain width:

sin y ¼WG

LG
¼ nWG

L
(4)

n ¼ L sin y
WG

(5)

By designating A ¼ 1

mG
and B ¼ sin yLGB

1

mGB

� 1

mG

� �
, then

eqn (3) becomes after merging eqn (5) into (3):

1

mE
¼ Aþ B

WG
(6)

Eqn (6) dictates a ‘‘grain width-dependent mobility model’’
and shows the effective total mobility mE is proportionally
dependent on the grain width. Thereby, a larger grain width
benefits effective mobility thanks to the fewer crystalline
defects.

3. Binary solvent technique

A binary solvent system is mainly composed of a main solvent
as well as an additive solvent. When the additive solvent is
mixed with the main solvent, the molecular structure of the
additive solvent can have a significant impact on tuning the
evaporation rate of the binary solvent system as well as on
modifying the dissolving of the solute. In a solution that is
composed of both solute and solvent, three different types of
intermolecular interactions can exist, between solute and
solute, between solvent and solvent, as well as between solute
and solvent. The solvent’s affinity for solute material can

determine the extent of these intermolecular interactions
and regulate other semiconductor crystallization and film
formation processes. The Hansen’s solubility theory can be
employed to estimate the affinity of the solvent for the solute.

Three different Hansen’s solubility parameters, including
@p, @d, and @h, represent the polar, dispersive and hydrogen
bonding component of the intermolecular interaction
force.160,161 The similarity of these three Hansen’s solubility
parameters can give rise to good solubility of the solute in the
solvent. The mismatch parameter R can be quantitatively
obtained based on the following equation:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D@P2 þ D@d2 þ D@h2

p
(7)

Eqn (7) can be utilized to calculate the mismatch parameter
and provides a useful baseline for quantitatively assessing the
solubility of a solute in a given solvent, and essentially denotes
that a larger mismatch parameter leads to lower solubility in
the given solvent. The criteria of choosing appropriate binary
solvents include the dielectric constant, boiling point as well as
the Hansen’s solubility parameters. The higher dielectric con-
stant of a solvent means a higher polarity and thereby greater
ability for the solvent to stabilize the charges. Similar boiling
points of the binary solvents can ensure simultaneous solvent
evaporation and greater control of the semiconductor evapora-
tion. In terms of the Hansen’s solubility parameters, both
solvents in the binary solvent system will have similar solubility
parameters. As similar solubility parameters result in a small
mismatch parameter based on eqn (7), a preferred choice
of solvent shall thereby possess a small value of mismatch
parameter.

In the following section, we will mainly review the applica-
tion of binary solvents in controlling the single crystal growth
and the crystal alignment and of organic semiconductors.
We will focus our discussion on the effect of binary solvents
on improving the semiconductor crystallization, thin film
morphology and charge carrier mobilities of thin film transis-
tors. It is important to note that in addition to thin film
transistor applications, the binary solvent method has also
been reported in the application of gas sensors and optoelec-
tronic devices. For instance, Ogbeide et al. reported a binary
solvent of isopropanol (IPA) and 2-butanol as the ink solvent
carrier in order to suppress the adverse coffee-ring effect, which
improves the printing uniformity and enhances the detection
limit of the gas sensor.162 Fo et al. reported binary solvents
composed of 1-chloronaphthalene (CN) and diphenyl ether
(DPE) as additives to improve the crystallinity and phase
segregation domain of the acceptor material, which in turn
inhibits charge recombination and enhances power conversion
efficiency.163 In addition to the organic semiconductors, the
binary solvent system has also been studied on other types
of semiconductors such as small molecular MoS2, and C60.
For example, Majd et al. reported a binary solvent method
composed of N,N-dimethylformamide (DMF) and IPA to obtain
two-dimensional MoS2 nanosheets with an enlarged surface
area for application in detecting miRNA-155 in breast cancer.164

Materials Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 1
/1

2/
20

26
 5

:3
3:

29
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ma00726f


772 |  Mater. Adv., 2023, 4, 769–786 © 2023 The Author(s). Published by the Royal Society of Chemistry

Wang et al. reported a binary solvent of chitosan and tetra-
hydrofuran to homogeneously disperse MoS2 nanosheets with
ultrathin thickness to tune the smoke safety property of the
epoxy (EP) nanocomposites matrix.165 Ghasemi et al. reported
a binary solvent method composed of DMF and N-methyl-2-
pyrrolidone (NMP) to modulate the size and thickness of MoS2

nanoflakes.166 The resultant MoS2 nanoflakes with few-layer
thickness without lateral dimensional shrinking were applied
in phototransistor applications and exhibited a decent response
to laser excitation. Zhao et al. reported a binary solvent (m-xylene
as the main solvent, and IPA, EtOH and MeOH as the secondary/
antisolvent solvent) based vapor diffusion method to grow
millimeter-length C60 single crystals and to improve photodetec-
tor responsivity by 10 times.167

3.1. Application in single crystal growth

Kim et al. reported a solvent exchange method in order to grow
TIPS pentacene microribbon single crystals.168 The triisopro-
pylsilyl side groups of TIPS pentacene provide conformational
flexibility, giving rise to good solubility in various hydrophobic
solvents such as toluene, while enhanced density of the bulky
groups allows tight packing of the backbones and maximizes
the p–p interactions. Consequently, the TIPS pentacene organic
semiconductor is insoluble in solvents with more polarity such
as acetonitrile. Thereby, TIPS pentacene was first dissolved in
toluene, before the solution was injected into a large volume of
acetonitrile. The minimized interactions with the acetonitrile
solvent promoted the intermolecular p–p interactions of TIPS
pentacene, and gave rise to the formation of long-extended,
single crystal microribbons after the solution was deposited
via a simple drop casting method for crystallization, as shown
by the scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) images of Fig. 1(A) and (B), respectively.
Fig. 1(C) shows the selected area electron diffraction pattern of a
TIPS pentacene microribbon, which demonstrated high crystal-
linity of the microribbon. Thin film transistors were fabricated
based on the microribbon crystal (Fig. 1(D)), producing an
enhanced hole mobility of 1.42 cm2 V�1 s�1. This work shows
that the single crystalline TIPS pentacene 1D microribbons
exhibit a preferred growth direction along the [010] direction
which is also parallel with the p–p stacking direction of TIPS
pentacene small molecules, resulting in an improved charge
carrier mobility.

He et al. combined a binary solvent exchange method with
a nucleation agent to control and disperse the self-assembly
process of TIPS pentacene microribbon single crystals.169 TIPS
pentacene, when drop casted from a single solvent toluene,
formed misoriented bulk crystals as shown by the polarized
optical microscopic images in Fig. 2(a). A solvent-exchange
method composed of both toluene and acetonitrile was
employed to alter the crystal growth from bulk crystals to
microribbon crystals. However, the resultant microribbon crys-
tals were aggregated (Fig. 2(b)). Thereby, the nucleation agent
4-hexylbenzoic acid (HBA) was employed to disperse the aggre-
gated microribbons. HBA was first dissolved in toluene, and
was then mixed with acetonitrile at a volume ratio of 1 : 50.

Subsequently, the TIPS pentacene solution was injected into
the HBA/toluene/acetonitrile mixture. After deposition via drop
casting, HBA self-assembled onto the substrate forming an
interfacial layer, while its hydrophobic tails underwent inter-
actions with the alkyl chains of TIPS pentacene molecules.
Consequently, effective dispersion of TIPS pentacene micro-
ribbons with more uniform coverage and morphology were
observed in the optical images of Fig. 2(c) and (d). Thin film
transistors incorporating the dispersed microribbons as the
active layer demonstrated a hole mobility of 0.36 cm2 V�1 s�1 as
well as a 9 times increase in average mobility when compared to

Fig. 1 (A) SEM image and (B) TEM image of a TIPS pentacene microribbon
crystal grown by using the solvent exchange method. (C) Selected area
electron diffraction pattern of a TIPS pentacene microribbon. (D) Polarized
optical image of a transistor device based on a TIPS pentacene micro-
ribbon as the active layer. Reproduced from ref. 168, with permission from
Wiley.

Fig. 2 Polarized optical images of (a) pristine TIPS pentacene bulk
crystals, (b) TIPS pentacene microribbon crystals, and (c and d) TIPS
pentacene microribbon crystals incorporating the HBA small molecule
as a nucleation agent. Images (a–c) have the same scale bar. Reproduced
from ref. 169, with permission from The Japan Society of Applied Physics.
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the counterpart based on the pristine crystals. This work show-
cases that the self-assembled process from the HBA nucleation
agent can effectively modulate the nucleation and crystal-
lization of the organic single crystals while simultaneously
improving the film uniformity by dispersing single crystal
aggregations.

Li et al. reported a binary solvent based approach to fabri-
cate large TIPS pentacene single crystals with sizes extending to
millimeters.170 Two different binary solvent systems, including
IPA/toluene and EtOH/toluene, exhibit a positive azeotropic
point but opposing polarities. The TIPS pentacene solutions
were drop casted in an ambient clean room environment or in a
nitrogen environment. Different ratios of the binary solvents
were tested, which gave rise to the distinct thin film morpho-
logy of the resultant TIPS pentacene crystals as shown in the
polarized optical images of Fig. 3. The TIPS pentacene mor-
phology abruptly transitioned to single crystals with a large
domain size from polycrystalline films, as the solvent composi-
tion of the binary solvents reached the azeotropic point.
In particular, the azeotropic point is at 50.1/49.9 for the IPA/
toluene solvents and at 59.8/40.2 for the EtOH/toluene solvents.
Accordingly, the charge carrier mobility of self-assembly TIPS
pentacene large single crystals were enhanced by 4 times to
0.73 cm2 V�1 s�1. Besides, the single crystal-based transistor
devices showed a threshold voltage close to zero, implying a
high-quality interface between the active layer and the gate
dielectric layer. The improved interface quality was attri-
buted to the high crystallinity, well-defined facets of the single
crystals, the specific thermodynamics of the azeotrope mixture,
as well as the mechanical flexibility of crystal ribbons. This
work shows azeotropic binary solvent mixtures provide an
effective method to fabricate organic single crystals via a self-
assembled process, with crystals ranging from small needles to
large parallelepipeds dependent on the binary solvent ratios
with respect to the azeotropic point.

Minemawari et al. reported a binary solvent system, includ-
ing chlorobenzene as the main solvent and DMF as the anti-
solvent, to deposit single-domain TIPS pentacene film by using
a double-shot ink-jet printing (DS-IJP) technique.122 A piezo-
electric IJP apparatus mounted with dual IJP heads was
employed for the alternate deposition of semiconductor
solution microdroplets. Various printing conditions were tested
including droplet volume, travel velocity, repetition frequency
and deposition sequence of the antisolvent ink and solution
ink. Without adding the antisolvent, inkjet printing TIPS
pentacene resulted in a nonuniform film with undesirable
coffee rings. Thereby, a different deposition sequence involving
the main solvent and antisolvent was tested on the morphology
of the resultant thin film morphology. For the first sequence,
TIPS pentacene/antisolvent ink was deposited first followed by
overprinting of the TIPS pentacene/chlorobenzene ink. Optical
microscopic images showed plate-like crystals with a large
thickness. For the second sequence, TIPS pentacene/chloroben-
zene ink was deposited before the TIPS pentacene/antisolvent
ink instead. This gave rise to large single crystal domains of
TIPS pentacene, yielding a hole mobility of 0.042 cm2 V�1 s�1.
The improved hole mobility was due to uniform thin films free
of pinholes, enlarged crystal domains as well as uniform film
thickness. This work indicates that the crystalline preference
of a small molecular organic semiconductor should be a key
consideration when optimizing the inkjet printing processes.

Balakrishnan et al. reported the growth of one-dimensional
propoxyethyl-PTCDI single crystalline nanobelts using a
solvent exchange method.171 The propoxyethyl side chain of
propoxyethyl-PTCDI has conformational flexibility and provides
sufficient solubility in various hydrophobic solvents such as
chloroform. On the other hand, the perylene backbones exhibit
tight packing as a result of the small side chain size and
increased density. These properties resulted in insolubility of
propoxyethyl-PTCDI in more polar solvents. Therefore, when

Fig. 3 Cross-polarized optical images showing the TIPS pentacene morphology abruptly changed from polycrystalline films to single crystals with a
large domain size as the binary solvent ratios reached the azeotropic point: at 50.1/49.9 for the IPA/toluene solvents as shown in (A), and at 59.8/40.2 for
the EtOH/toluene solvents as shown in (B). All images share the same scale bar of 200 mm. Reproduced from ref. 170, with permission from Wiley.
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the propoxyethyl-PTCDI/chloroform solvent was injected into a
polar solvent such as methanol, it promoted the nanocrystal
phase to self-assemble and to form nanobelts. The solution was
drop casted onto the substrate for various characterizations.
As shown in the SEM image of Fig. 4(A), the propoxyethyl-
PTCDI nanobelts were in well-defined nanostructures. The
TEM images presented in Fig. 4(B) and (C) showed uniform
nanobelt structures. The diffraction pattern indicated sharp
diffraction spots, as shown in the inset of Fig. 4(C). The AFM
image of propoxyethyl-PTCDI nanobelts was presented in
Fig. 4(D), showing an average thickness of 100 nm. This work
showcases that a simple self-assembling process in a binary
solvent system results in the formation of the uniaxial crystal
structure of the nanobelt.

Chae et al. reported DPE and CN as additives to the main
solvent in order to tune the crystallization and thin film
morphology of TIPS pentacene single crystalline domains.172

TIPS pentacene was first dissolved in the anisole solvent and
the solvent additives were mixed at different concentrations
including 0.25%, 0.5% and 1% for DPE as well as 0.2%, 0.25%
and 0.5% for CN. The TIPS pentacene solution was drop casted
onto substrates preheated at various temperatures for crystal-
lization. Polarized optical images indicated 0.5% DPE solvent
gave rise to the formation of V-shaped microcrystals with an
enlarged crystal width. In addition, 0.2% CN solvent additive
caused the TIPS pentacene crystals to form highly packed
crystal domains with improved uniformity in the grain size distri-
bution. Accordingly, the highest mobility of 0.73 cm2 V�1 s�1 and
0.71 cm2 V�1 s�1 was obtained from the TIPS pentacene thin film
transistors based on the 0.5% DPE and 0.2% CN solvent additive,
respectively. The enhanced charge transport was mainly a result
of the enlarged grain width and reduced grain boundaries. This
work demonstrates a facile solvent additive approach to improve
the charge carrier mobility by tuning the grain boundary density
and crystalline defects.

The various binary solvent papers reviewed in this section,
along with the author, semiconductor material, binary solvent
choice, crystallization method, result and mobility, are sum-
marized in Table 1. Although the mobility values reported in
section 1 are slightly higher than those based on solvent
exchange in section 3, it is important to point out that the
higher mobilities can be partially attributed to the following
factors. Organic semiconductors reported in more recent years,
such as C8-BTBT, tend to have higher mobilities, reaching
approximately 50 cm2 V�1 s�1. Also, external alignment meth-
ods such as solution shearing, blade coating and bar coating
have been reported to enhance the mobility values. Besides,
blending organic semiconductors with polymer additives such
as polystyrene has been shown to improve the charge transport
properties.173 Therefore, the various advantages of the solvent
exchange method as reported in this review article shed light
on more universal application on other types of high mobility
organic semiconductors as well as on combination with these
external alignment and polymer blending methods. In general,
controlling the binary solvent choices and compositions pro-
vide an effective method to modulate the important morpho-
logical factors such as crystal orientation, phase segregation,
and grain size. Binary solvents composed of a ‘‘good’’ solvent

Fig. 4 (A) SEM photo of propoxyethyl-PTCDI nanobelts grown based on
the solvent exchange method. (B) TEM image of propoxyethyl-PTCDI
nanobelts, with the zoom-in TEM image shown in (C). (D) AFM image of
propoxyethyl-PTCDI nanobelts with an average thickness of 100 nm.
Reproduced from ref. 171, with permission from the American Chemical
Society.

Table 1 Summary of the publications reviewed in this section, including the semiconductors, type, types of the binary solvent, and mobility

Author Semiconductor Binary solvent
Crystallization
method Result

Mobility
(cm2 V�1 s�1)

Kim et al. TIPS
pentacene

Toluene/
acetonitrile

Drop casting Solvent exchange method promoted the intermolecular p–p
interactions and formed single crystalline microribbons

1.42

He et al. TIPS
pentacene

Toluene/
acetonitrile

Drop casting Solvent exchange method, combined with a nucleation agent,
was used to disperse the aggregated microribbons

0.36

Li et al. TIPS
pentacene

IPA/toluene,
EtOH/toluene

Drop casting Binary solvents with a positive azeotropic point but opposing
polarities gave rise to large single crystals

0.73

Minemawari
et al.

TIPS
pentacene

Chlorobenzene/
DMF

Ink-jet
printing

Adding DMF as an antisolvent ink eliminated the coffee ring
and led to large single crystal domains

0.042

Balakrishnan
et al.

Propoxyethyl-
PTCDI

Chloroform/
methanol

Drop casting Binary solvent promoted the nanocrystal phase to self-assemble
and form well-defined nanostructures

Not
reported

Chae et al. TIPS
pentacene

Anisole/DPE
or CN

Drop casting Binary solvent with solvent additive led to V-shaped micro-
crystals and highly packed enlarged crystal domains

0.73
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and a ‘‘bad’’ solvent effectively modulate the semiconductor
solubility, nucleation, crystallization and crystal alignment.
Besides, solvents with a high boiling point possess a slow
evaporation rate and provide sufficient time for solute diffu-
sion, which not only promotes more pronounced phase segre-
gation, but also results in an enlarged grain size with reduced
grain boundaries and crystalline defects.

3.2. Application in crystal alignment

He et al. combined the binary solvent method with a controlled
solvent evaporation method to realize the aligned crystal-
lization of a p-type organic semiconductor 5,6,11,12-tetra-
chlorotetracene.50 The binary solvent system is composed of a
chloroform solvent as the ‘‘good’’ solvent and a methanol
solvent as the ‘‘bad’’ solvent. The organic semiconductor
5,6,11,12-tetrachlorotetracene was first dissolved in the chloro-
form solvent and the solution was then injected into methanol,
which caused supramolecular aggregations to form as indi-
cated by the blue shift in the UV-vis absorption spectra. These
supramolecular aggregations serve as seeds for the 5,6,11,12-
tetrachlorotetracene semiconductor to nucleate and crystallize.
In the meantime, a controlled solvent evaporation method was
applied to induce capillary force, which aligned the growth
direction of the 5,6,11,12-tetrachlorotetracene semiconductor.
In order to optimize the thin film morphology and crystal
alignment, different ratios between chloroform and methanol
including 1 : 0, 10 : 1, 5 : 1, and 3 : 1 were tested. A simple drop
casting method was adopted to deposit the organic semi-
conductor solution. As shown in the polarized optical images
of Fig. 5, without the methanol solvent, the 5,6,11,12-tetra-
chlorotetracene crystal growth based on the pure chloroform
solvent showed random patterns, leaving a majority of the
substrate uncovered with crystals. In contrast, both crystal
alignment and substrate coverage were enhanced at 10 : 1 and
5 : 1 ratios of the chloroform/methanol binary solvent. When
the ratio further changed to 3 : 1, the alignment started to wane.

Electrical characterization results indicated that the 5,6,11,12-
tetrachlorotetracene based thin film transistors with chloro-
form/methanol binary solvent at 10 : 1 exhibited an improved
hole mobility of 1.1 cm2 V�1 s�1, which was attributed to the
improved crystal alignment and coverage. This work shows the
solvent exchange method effectively modulates the supramole-
cular aggregations, nucleation formation and crystallization of
the organic semiconductor 5,6,11,12-tetrachlorotetracene, and
when in combination with the controlled solvent evaporation
method, can powerfully lead to the directional alignment of
crystal growth.

A similar method of combining controlled evaporation with
a binary solvent system was also employed to realize the
organized crystallization of SMDPPEH.51 In this work, Bi et al.
used chloroform as the good solvent and ethanol as the bad
solvent. The controlled evaporative self-assembly method,
abbreviated as ‘‘CESA’’, involved the placement of a Pinner
on the substrate to induce capillary force. The SMDPPEH
solution was deposited onto the substrate with a preset Pinner
via a simple drop casting method. The resultant thin film
morphology of SMDPPEH, in terms of crystal orientation
alignment, film coverage as well as grain width, was observed
to correlate to the different ratios between chloroform and
ethanol. The misorientation angle was calculated to more
accurately evaluate the change of crystal alignment with differ-
ent binary solvent ratios. At ratios of 15 : 1, 10 : 1, 5 : 1, 1 : 1 and
1 : 5, average misorientation angles of 6 � 51, 4 � 31, 4 � 21,
11 � 71 and 30 � 201 were measured, respectively, which
indicated the greatest advances in alignment at both 10 : 1
and 5 : 1 ratios. The aligned SMDPPEH crystal based OTFTs at
the binary solvent ratio of 5 : 1 exhibited an enhanced mobility
of 0.016 cm2 V�1 s�1. The binary solvent method in combi-
nation with the CESA method as reported in this work effec-
tively controls the contact line pinning, enhances the
evaporation rate at the droplet edge, elevates the solution
concentration, facilitates outward flow of solute, promotes
nucleation formation, and improves crystallization.

Abdullah et al. reported the impact of anisole/decane binary
solvents on the crystallization and thin film morphology of
TIPS pentacene.113 When the composition of the anisole/
decane binary solvent ranged between 96/4 wt% and 85/15
wt%, an azeotropic composition is maintained in the solution
mixture, giving rise to a constant boiling point at 152 1C as well
as constant binary solvent composition during the solvent
evaporation. TIPS pentacene solution was drop casted at a
temperature of 30 1C onto a slightly tilted substrate and allowed
to dry for 3 hours. As the content of decane increased, the
interaction between the solute and solvent became weakened,
which promoted the nucleation of TIPS pentacene and conse-
quently the formation of large crystals. The TIPS pentacene film
deposited from pure anisole solvent showed grain like nano-
dots with a roughness of 6.3 nm. When the anisole was mixed
with decane at 96/4 wt% and 90/10 wt%, the TIPS pentacene
film changed to a terrace like morphology with a larger surface
roughness. To fabricate the thin film transistors, a polyvinyl
pyrrolidone (PVP) and poly(melamine-co-formaldehyde) hybrid

Fig. 5 Polarized optical images showing the thin film morphologies of
5,6,11,12-tetrachlorotetracene crystals grown by drop casting in binary
solvents and applying the controlled solvent evaporation method. The
images in (a–d) correspond to chloroform/methanol binary solvent at
ratios of 1 : 0, 10 : 1, 5 : 1, and 3 : 1, respectively. The images in (a–d) have the
same scale bar of 100 microns. Reproduced from ref. 50, with permission
from Elsevier.
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layer was used as the gate dielectric before TIPS pentacene was
drop casted in the binary solvents to form the active layer.
A hole mobility of up to 0.16 cm2 V�1 s�1 was obtained based on
the 93/7 wt% binary solvent. This work shows that the binary
solvents composed of anisole and decane can effectively
modulate the mean size of nanodots of TIPS pentacene as well
as its average surface roughness, promoting step-flow crystal
growth, layer ordering and long-range alignment.

Bharti et al. studied the correlation between the dissimilarity
of binary solvents, the molecular aggregation, and the charge
transport of organic semiconductors.123 In this work, TIPS
pentacene was dissolved in different solvents including single
solvent toluene, as well as binary solvents of toluene/benzene,
toluene/cyclohexane, and toluene/hexane. A simple drop cast-
ing method was used to dispense the TIPS pentacene solution
on a tilted substrate. The addition of hexane as a nonsolvent
effectively resulted in a weaker repulsive force between the TIPS
pentacene solute molecules and thereby stronger molecular
aggregations due to enhanced molecular interactions. Terra-
cing structures of TIPS pentacene were obtained based on the
single solvent. The addition of cyclohexane and hexane, which
exhibit more different structures from that of toluene, resulted
in more irregular terracing structures of TIPS pentacene.
In particular, hexane has the most dissimilar structure with
toluene and hence promotes the strongest molecular aggrega-
tion of TIPS pentacene. As a result, TIPS pentacene crystals
grown based on the toluene/hexane binary solvent showed
improved crystallinity and the highest hole mobility of
0.15 cm2 V�1 s�1. This work demonstrates that increased
dissimilarity of the additive solvent in the binary solvent system
makes it more challenging to overcome intermolecular forces
and thereby favors molecular aggregation of TIPS pentacene,
leading to enhanced crystallinity.

Lim et al. reported the effect of solvent mixture including
chlorobenzene as the main solvent and hexane, o-dichloro-
benzene or dodecane as the additive solvent to tune the crystal

growth and alignment of TIPS pentacene.118 An ink-jet printer
mounted with a single-nozzle piezoelectric head and a two-
axis motorized positioning system was employed to deposit
40–50 picoliters of the TIPS pentacene solution onto the sub-
strate which is 0.5 mm away from the head. TIPS pentacene
deposited from chlorobenzene resulted in a homogeneous film
but undesirable molecular misorientations, as shown in the
optical image of Fig. 6(a). Thereby, various solvents including
hexane, o-dichlorobenzene or dodecane, were mixed with
chlorobenzene as a solvent additive. The resultant thin film
morphology was presented in Fig. 6(b)–(d), respectively. The
addition of hexane resulted in thicker aggregation of TIPS
pentacene at the perimeter of the inkjet printed droplets.
Mixing o-dichlorobenzene with the main solvent led to a more
uniform morphology (Fig. 6(b)). Besides, hexane, which has a
high boiling point, allows a recirculation flow of the solution
and also induces a Marangoni flow that contradicts the con-
vective flow (Fig. 6(c)). TIPS pentacene crystals deposited from
the chlorobenzene/dodecane binary solvent showed orientation
enhancement, as shown in the optical image of Fig. 6(d). As a
result, the best average hole mobility of 0.12 cm2 V�1 s�1 was
obtained from the inkjet printed TIPS pentacene based on the
chlorobenzene/dodecane binary solvent. This work reveals that
in order to obtain highly aligned TIPS pentacene crystals with
high crystallinity, it is important to ensure the minor solvent
has a higher boiling point as well as lower surface tension than
the main solvent, which induces a recirculation flow opposite
to the convective flow and promotes crystal self alignment.

Zhao et al. reported a binary solvent method to grow large
scaled TIPS pentacene crystals with orientation alignment.174

A Marangoni effect-controlled oriented growth (MOG) method
was used to enable large-area deposition of TIPS pentacene
solution and allowed the substrate to move in an upward and
downward manner, which promoted contact line pinning,
liquid membrane spreading, film formation and crystal alignment.
The binary solvent system is composed of toluene and carbon

Fig. 6 Optical microscopic images of inkjet printed TIPS pentacene films based on different solvent choices including (a) chlorobenzene,
(b) chlorobenzene/hexane, (c) chlorobenzene/o-dichlorobenzene, and (d) chlorobenzene/dodecane. The volume ratio of chlorobenzene is maintained
at 25% for all cases. Reproduced from ref. 118, with permission from Wiley.
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tetrachloride with different boiling points. Carbon tetrachloride
has a low boiling point and high surface tension, whereas toluene
has a high boiling point and low surface tension. Since the solvent
evaporation had a faster rate at the contact line than inside the
liquid interior, the composition of toluene in the binary solvent at
the contact time increased over time due to its higher boiling
point. As a result, the contact line had a lower surface tension,
which created a Marangoni flow from the contact line towards the
liquid interior. This Marangoni flow further counterbalanced the
convective flow and promoted a recirculation flow, giving rise to
well-aligned TIPS pentacene crystals with large scaled domain size.
As a result, the TIPS pentacene thin film transistors based on the
binary solvent showed a mobility of 0.7 � 0.22 cm2 V�1 s�1. The
MOG method in combination with the binary solvent method is
effective in promoting directed formation of semiconducting small
molecules and self-organization of highly aligned crystalline
structures.

Lada et al. reported a binary solvent system in order to tune
the morphology and charge transport of TIPS pentacene.175 The
solvent system is composed of mesitylene as the main solvent,
and a series of additive solvents including two types of alkyl
aromatics (cumene and indane), two types of aromatic acetates
(butyl and amyl acetate) and two types of aromatic ethers
(anisole and 4-methylanisole), which give rise to a range of
boiling points close to that of the main solvent. TIPS pentacene
and the polymer additive PS finds good solubility in the main
solvent and additive solvent, respectively. The TIPS pentacene
solution with PS additive was deposited via spin coating.
Optical images showed that TIPS pentacene film exhibited
small crystallite size when deposited in the single solvent,
generating a low mobility of 0.1 cm2 V�1 s�1. In contrast,
adding anisole as the additive solvent yielded a considerable
increase in the crystal size of TIPS pentacene, and thereby
generated a much higher saturation mobility of 1.16 cm2 V�1 s�1

as well as a lower threshold voltage due to the reduced number
of grain boundaries. This work demonstrates choosing
the appropriate solubility differentials of the binary solvents

promoting phase segregation, crystallite size as well as active
layer flatness.

The various binary solvent papers reviewed In this section,
along with the author, semiconductor material, binary solvent
choice, crystallization method, result and mobility, are sum-
marized in Table 2.

4. Summary and outlook

In this work, we have reviewed a binary solvent technique for
modulating the organic semiconductor nucleation, controlling
the crystallization behavior, improving the film crystallinity
and enhancing the charge transport of organic semiconductor
based thin film transistors. Using TIPS pentacene as a primary
example for the general solution processed, organic semi-
conductors, we discussed the effects of engineering different
solvent choices on the organic semiconductor thin film morpho-
logies, phase segregation, grain width and crystal orientation.
We also explored the important correlation between the different
solvent choice, thin film morphology and charge carrier mobility
of the organic semiconductor based thin film transistors. These
works demonstrated that binary solvents can provide an effective
approach to promote supramolecular aggregation, counterba-
lance undesirable convective flow, and enhance crystal orientation
alignment when combined with miscellaneous external align-
ment methods.

Organic semiconductor based thin film transistors can be
implemented in a variety of device applications such as photo-
detectors, gas sensors and logic circuits. The exploration and
optimization of the solvent choices for solution processed
organic semiconductors becomes more important when future
endeavors are made to expand the application of organic
semiconductors in these related electrical device fabrications.
Future research in the following aspects will shed light on
the pathway to achieve high performance flexible electronics.
First of all, binary solvent is an effective method to induce the

Table 2 Summary of the publications reviewed in this section, including the semiconductors, type, types of the binary solvent, and mobility

Author Semiconductor Binary solvent
Crystallization
method Result

Mobility
(cm2 V�1 s�1)

He et al. 5,6,11,12-
Tetrachlorotetracene

Chloroform/methanol Drop casting Binary solvents promoted supramolecular
aggregations to form as nucleation seeds

1.1

Bi et al. SMDPPEH Chloroform/ethanol Drop casting Binary solvents along with a ‘‘CESA’’ method reduced
crystal misorientation and improved alignment

0.016

Abdullah
et al.

TIPS pentacene Anisole/decane Drop casting Binary solvents promoted semiconductor nucleation
and formation of large crystals

0.16

Bharti
et al.

TIPS pentacene Toluene/benzene,
cyclohexane, or hexane

Drop casting Solvent additive with the most dissimilar structure
promoted the strongest molecular aggregation and
improved crystallinity

0.15

Lim et al. TIPS pentacene Chlorobenzene/hexane,
o-dichlorobenzene or
dodecane

Ink-jet
printing

Binary solvent with dodecane additive led to
enhanced orientation alignment

0.12

Zhao
et al.

TIPS pentacene Toluene/carbon
tetrachloride

MOG method Binary solvent created Marangoni flow that counter-
balanced convective flow and promoted crystal
alignment

0.7 � 0.22

Lada
et al.

TIPS pentacene Mesitylene/various
aromatics-based
solvents

Spin coating Binary solvent incorporating hexane increased the
crystal size of TIPS pentacene and reduced grain
boundaries

1.16
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crystallization of single crystals. A single crystal is free of grain
boundaries and crystalline defects, which can yield ultra-high
charge carrier mobilities and thereby have significant applica-
tions for high performance flexible electronic devices.176–180

Besides, ternary solvents, as opposed to a single solvent or
binary solvent, have been extensively demonstrated to control
the domain of size of perovskite films for enhancing solar cell
performances.181,182 The ternary solvent system could be a
potential pathway to control the crystallization of solution
processed organic semiconductors since it has been reported
to effectively improve the semiconductor morphology unifor-
mity, enhance the crystal alignment in a long range order,
control the domain size, and modulate the interface. These
factors exert positive effects on organic semiconductor charge
transport: improved crystal morphology uniformity and long-
range alignment improves crystal bridging of contact electrodes
and ensures efficient charge transport; enlarged domain sizes
help diminish grain boundaries, crystalline defects and charge
trap centers; improved quality of the interface between the
semiconductor active layer and dielectric layer gives rise to
better charge transport. Furthermore, due to the increasingly
urgent call for a green environment, green solvents such as
n-amyl acetate or 1,3-dioxolane provide an effective alternative
to the binary solvent while simultaneously bringing little to
no toxicity to the environment.183,184 Finally, miscellaneous
external alignment methods such as bar-casting,185–188 dip-
casting,189–194 drop-pinned crystallization,195–198 off-center
coating199–205 have been previously reported as highly effective
in aligning the crystal orientation, patterning crystals on a large
area, improving areal coverage and continuity, which is pre-
ferred to enhance charge transport capability. While previous
binary solvent studies mainly employ drop casting as the
crystallization method as shown in this review article, combin-
ing these methods with the binary solvent method, thereby,
would further improve the charge carrier properties and expand
the application in organic optoelectronics or organic circuits.
We expect that future efforts in these aforementioned aspects
will expedite the progress of flexible electronic devices.
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