Lab on a Chip

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Lab Chip, 2023, 23, 2141

Correction: Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation

Lin Sun, ab Thomas Lehnert, Songjing Lib and Martin A. M. Gijs*a

DOI: 10.1039/d3lc90037a

rsc.li/loc

Correction for 'Bubble-enhanced ultrasonic microfluidic chip for rapid DNA fragmentation' by Lin Sun et al., Lab Chip, 2022, 22, 560–572, https://doi.org/10.1039/D1LC00933H.

The authors regret the omission of a reference from the original manuscript, which should have been numbered ref. 55. The reference is shown below as ref. 1 and the sentence below should have been added to the introduction on page 561, after the sentence beginning "Due to the difficulty of preparing and storing the perfluorocarbon nanodroplets...".

Okabe *et al.* realized DNA fragmentation (>2 kbp) by using lateral cavity acoustic transducers (LCATs) with bubble-induced microstreaming.⁵⁵

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

Y. Okabe and A. P. Lee, LCAT DNA Shearing, J. Lab. Autom., 2014, 19(2), 163–170.

^a Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland. E-mail: martin.gijs@epfl.ch

b Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China