Issue 21, 2023

Real-time monitoring and actuation of a hybrid siphon valve for hematocrit-independent plasma separation from whole blood

Abstract

Centrifugal microfluidics have emerged as a pivotal area of research spanning multiple domains, including medicine and chemistry. Among passive valving strategies, siphon valves have gained prominence due to their inherent simplicity and self-reliance, eliminating the need for external equipment. However, achieving optimal valve performance mandates supplementary elements like surface adjustments or pneumatic pressure. These introduce intricacies such as time-dependent behavior and augmented spatial demands. This research introduces inventive design and manufacturing methodologies to amplify siphon valve functionality. Our proposed innovation situates the siphon microchannel on the external surface of the primary chamber, linked via an inlet. The crux of novelty lies in the adaptable material selection for the microchannel's upper or lower surfaces, allowing the integration of hydrophilic materials such as glass or super hydrophilic coverslips, ensuring a leakage-free operation. Our approach offers a streamlined concept and manufacturing process, ensures consistent time-independent functionality, and accommodates the integration of multiple siphon valves within a solitary chamber, tailored for specific applications. Experimental evaluations validate a robust alignment between acquired data and analytical outcomes based on a modified equation. A customized disc is engineered, featuring four siphon valves meticulously calibrated for hematocrit (HCT) levels spanning from 20% to 50% at 10% intervals. Harnessing these valves yields a substantial surge in plasma separation efficiency, scaling up to 75%. Notably, this performance eclipses traditional single-valve reliant microfluidic methodologies, achieving a purity level exceeding 99% in plasma separation. These findings underscore the auspicious practical applicability of our proposed technique in plasma separation, fostering heightened platelet concentration, and expediting blood sample analysis.

Graphical abstract: Real-time monitoring and actuation of a hybrid siphon valve for hematocrit-independent plasma separation from whole blood

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2023
Accepted
20 Sep 2023
First published
20 Sep 2023

Analyst, 2023,148, 5456-5468

Real-time monitoring and actuation of a hybrid siphon valve for hematocrit-independent plasma separation from whole blood

R. Khodadadi, E. Pishbin, M. Eghbal and K. Abrinia, Analyst, 2023, 148, 5456 DOI: 10.1039/D3AN00862B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements