Correction: Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles

Han Wang,a Qun Shen,a Fan Zhang,b Yongxia Fu,c Yiqing Zhu,a Liangxing Zhao,a Chao Wanga and Qingyu Zhao*a

Correction for ‘Heat-treated foxtail millet protein delayed the development of pre-diabetes to diabetes in mice by altering gut microbiota and metabolomic profiles’ by Han Wang et al., Food Funct., 2023, 14, 4866–4880, https://doi.org/10.1039/D3FO00294B.

The authors regret that, in the original version of the manuscript, the same figure was displayed for Fig. 4D and E. The correct Fig. 4 is shown here.

*aCollege of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China. E-mail: zqy565527877@163.com
bBeijing Industrial Technology Research Institute Ltd, Beijing, China
cShanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
Fig. 4 HMP mitigated gut microbiota dysbiosis in prediabetic mice. (A) α diversity, (B and C) β diversity, (D–F) the relative abundance of gut microbiota at the phylum, family, and genus levels, and (G and H) the relative abundance of bacteria at the genus level. The significance of the relative abundance differences of gut microbiota at different classification levels was analyzed by the Wilcoxon rank sum test. Significant correlations are marked by *p < 0.05; **p < 0.01; ***p < 0.001. NC group: normal control group; MC group: model control group; HMP group: heat-treated foxtail millet protein group.